1812.10199v1 [cs.SD] 26 Dec 2018

arxiv

A Multiversion Programming Inspired
Approach to Detecting Audio Adversarial Examples

Qiang Zeng ', Jianhai Su T, Chenglong Fu !, Golam Kayas ?, Lannan Luo |

T University of South Carolina

Abstract

Adversarial examples (AEs) are crafted by adding human-
imperceptible perturbations to inputs such that a machine-
learning based classifier incorrectly labels them. They have
become a severe threat to the trustworthiness of machine
learning. While AEs in the image domain have been well
studied, audio AEs are less investigated. Recently, multiple
techniques are proposed to generate audio AEs, which makes
countermeasures against them an urgent task. Our experi-
ments show that, given an AE, the transcription results by
different Automatic Speech Recognition (ASR) systems dif-
fer significantly, as they use different architectures, param-
eters, and training datasets. Inspired by Multiversion Pro-
gramming, we propose a novel audio AE detection approach,
which utilizes multiple off-the-shelf ASR systems to deter-
mine whether an audio input is an AE. The evaluation shows
that the detection achieves accuracies over 98.6%.

1 Introduction

Automatic Speech Recognition (ASR) is a system that con-
verts speech to text. ASR has been studied intensively for
decades. Many core technologies, such as gaussian mix-
ture models and hidden Markov models, were developed.
In particular, recent advances (Yu and Deng 2015) based
on deep neural network (DNN) have improved the accu-
racy significantly. DNN-based speech recognition thus has
become the mainstream technique in ASR systems. Compa-
nies such as Google, Apple and Amazon have widely adopt
DNN-based ASRs for interaction with IoT devices, smart
phones and cars. Gartner (InsideRadio 2017) estimates that
75% of American households will have at least one smart
voice-enabled speaker by 2020.

Despite the great improvement in accuracy, recent stud-
ies (Szegedy et al. 2013; Goodfellow, Shlens, and Szegedy
2014) show that DNN is vulnerable to adversarial examples.
An adversarial example (AE) x’ is a mix of a host sample
x and a carefully crafted, human-imperceptible perturbation
4 such that a DNN will assign different labels to x’ and x.
Figure 1 presents an audio AE, which sounds as in the text
shown on the left to human, but is transcribed by an ASR
system into a completely different text as shown on the right.

Several techniques have been proposed to generate au-
dio AEs, and novel attack vectors based on audio AEs have
been demonstrated (Yuan et al. 2018). There are two state-

i Temple University

Audio AE generatiokn
[)

L4

“I wish you wouldn’t” “Open the front door”

Figure 1: An audio AE.

of-the-art audio AE generation methods: (1) White-box at-
tacks: Carlini et al. proposed an optimization based method
to convert an audio to an AE that transcribes to an attacker-
designated phrase (Carlini and Wagner 2018). It is classified
as white-box attacks because the target system’s detailed in-
ternal architecture and parameters are required to perform
the attack. (2) Black-box attacks: Taori et al. (Taori et al.
2018) combined the genetic algorithm (Alzantot, Balaji, and
Srivastava 2018) and gradient estimation to generate AEs. It
does not require the knowledge of the ASR’s internal param-
eters, but imposes a larger perturbation (94.6% similarity on
average between an AE and its original audio, compared to
99.9% in (Carlini and Wagner 2018)). The rapid develop-
ment of audio AE generation methods makes countermea-
sures against them an urgent and important problem. The
goal of our work is to detect audio AEs.

Existing work on audio AE detection is rare and limited.
Yang et al. (Yang et al. 2018) hypothesized that AEs are frag-
ile: given an audio AE, if it is cut into two sections, which are
then transcribed section by section, then the phrase by splic-
ing the two sectional results is very different from the result
if the AE is transcribed as a whole. However, as admitted by
the authors, this method cannot handle “adaptive attacks”,
which may evade the detection by embedding a malicious
command into one section alone. Rajaratnam et al. (Rajarat-
nam, Shah, and Kalita 2018) proposed detection based on
audio pre-processing methods. Yet, if an attacker knows the
detection details, he can take the pre-processing effect into
account when designing the loss function used for generat-
ing AFEs; this attack approach has been well demonstrated
in (Carlini and Wagner 2017). An effective audio AE detec-
tion method that can handle adaptive attacks is missing.

Our key observation is that existing ASRs are diverse with
regard to architectures, parameters and training processes.
Our hypothesis is that an AE that is effective on one ASR
system is highly likely to fail on another, which is verified
by our experiments. How to generate transferable audio AEs

that can fool multiple heterogenous ASR systems is still
an open question (Carlini and Wagner 2018) (discussed in
Section 2). This inspires us to borrow the idea of multiver-
sion programming (MVP) (Liming Chen 1995), a method
in software engineering where multiple functionally equiv-
alent programs are independently developed from the same
specification, such that an exploit that compromises one of
them is ineffective on other programs. We thus propose to
run multiple ASR systems in parallel, and an input is deter-
mined as an AE if the ASR systems generate very dissimilar
transcription results.

Our contributions are as follows. (1) We empirically in-
vestigate the transferability of audio AEs and analyze the
reasons behind the poor transferability. (2) We propose a
novel audio AE detection approach inspired by multiversion
programming, which achieves accuracy rates of over 98.6%.
(3) The detection method dramatically reduces the flexibil-
ity of the adversary, in that audio AEs cannot succeed unless
the host text is highly similar to the malicious command.

2 Transferability

There are two types of AEs: non-targeted AEs and tar-
geted AEs. A non-targeted AE is considered successful
as long as it is classified as a label different from the la-
bel for the host sample, while a targeted AE is success-
ful only if it is classified as a label desired by the at-
tacker. In the context of audio based human-computer in-
teraction, a non-targeted AE is not very useful, as it cannot
make the ASR system issue an attacker-desired command.
It explains why state-of-the-art audio AE generation meth-
ods all generate targeted AEs (Carlini and Wagner 2018;
Taori et al. 2018). Thus, our work focuses on targeted au-
dio AEs, although the proposed detection approach should
be effective in detecting non-targeted AEs as well.

An intriguing property of AEs in the image domain is the
existence of transferable adversarial examples. That is, an
image AE crafted to mislead a specific model M can also
fool a different model M’ (Goodfellow, Shlens, and Szegedy
2014; Szegedy et al. 2013; Papernot et al. 2016). By ex-
ploiting this property, Papernot et al. (Papernot, McDaniel,
and Goodfellow 2016) proposed a reservoir-sampling based
approach to generate transferable non-targeted image AEs
and successfully launch black-box attacks against both im-
age classification systems from Amazon and Google. But a
recent study (Tramer et al. 2017) points out that the transfer-
ability property does not hold in some scenarios. The experi-
ment shows a failure of AE’s transferability between a linear
model and a quadratic model. For targeted image AEs, Liu
et al. (Liu et al. 2016) proposed an ensemble-based approach
to craft AEs that could transfer to ResNet models, VGG and
GoogleNet with success rates of 40%, 24% and 11% respec-
tively. Thus, an image AE can fool multiple models (Mon-
teiro, Akhtar, and Falk 2018).

To the best of our knowledge, no systematic approaches
are available for generating transferable audio AEs. Car-
lini et al. (Carlini and Wagner 2018) found that the attack
method derived from Fast Gradient Sign Method (Good-
fellow, Shlens, and Szegedy 2014) in image domain is not

effective for audio AEs because of a large degree of non-
linearity in ASRs, and further stated that the transferability
of audio AEs is an open question.

CommanderSong (Yuan et al. 2018) represents a recent
advance in audio AE generation, in that it is able to gen-
erate AEs that can fool an ASR system in the presences of
background noise. This work also slightly explored transfer-
ability of audio AEs (see Section 5.3 of the paper (Yuan et
al. 2018)). Specifically, to create AEs that can transfer from
“Kaldi to DeepSpeech” (both Kaldi and DeepSpeech are
open source ASR systems, and Kaldi is the target ASR sys-
tem of CommanderSong), a two-iteration recursive AE gen-
eration method is described in CommanderSong: an AE gen-
erated by CommanderSong, embedding a malicious com-
mand c and able to fool Kaldi, is used as a host sample in
the second iteration of AE generation using the method (Car-
lini and Wagner 2018), which targets DeepSpeech v0.1.0 and
embeds the same command c. We followed this two-iteration
recursive AE generation method to generate AEs, but our
experiment results (Zeng et al. 2018) showed that the gener-
ated AEs could only fool DeepSpeech but not Kaldi. That is,
AEs generated using this method are not transferable.

Furthermore, we adapted the two-iteration AE generation
method by concatenating the two aforementioned state-of-
the-art attack methods (Carlini and Wagner 2018) and (Taori
et al. 2018) targeting DeepSpeech v0.1.0 and v0.1.1, respec-
tively, expecting to generate AEs that can fool both Deep-
Speech v0.1.0 and v0.1.1. But none of the generated AEs
showed transferability (Zeng et al. 2018).

Moreover, by changing the value of
“——frame-subsampling—-factor” from 1 to 3,
which is a parameter configuration of the Kaldi model, we
derived a variant of Kaldi. The AEs generated by Comman-
derSong did not show transferability on the variant, even
given the fact that the variant was only slightly modified
from the model targeted by CommanderSong. Here, we
clarify that CommanderSong did not claim their AEs could
transfer across the Kaldi variants.

Based on our detailed literature review and empirical
study, we find that so far there are no systematic AE genera-
tion methods that can generate transferable audio AEs effec-
tive across two ASR systems, not to mention three or more.
This is consistent with the statement by Carlini et al. (Car-
lini and Wagner 2018) that transferability of audio AEs is an
open question,

3 Diverse ASRs

Yu and Li (Yu and Li 2017) summarized the recent progress
in deep-learning based ASR acoustic models, where both
recurrent neural network (RNN) and convolutional neural
network (CNN) come to play as parts of deep neural net-
works. Standard RNN could capture sequence history in
its internal states, but can only be effective for short-range
sequence due to its intrinsic issue of exploding and van-
ishing gradients. This issue is resolved by the introduction
of long short-term memory (LSTM) RNN (Hochreiter and
Schmidhuber 1997), which outperforms RNNs on a vari-
ety of ASR tasks (Graves, Mohamed, and Hinton 2013;
Sak, Senior, and Beaufays 2014; Li and Wu 2014). As to

Target |
ASR

Auxiliary | | Similarity_’ Binary

e . e = AE?
ASR1 Calculation Classifier

ﬂmm¢h——b

L Auxiliary | |
ASRn

Figure 2: Overview of the proposed detection system.

CNNg, its inherent translational invariability facilitates the
exploitation of variable-length contextual information in in-
put speech. The first CNN model proposed for ASRs is time
delay neural network (Lang, Waibel, and Hinton 1990) that
applies multiple CNN layers. Later, several studies (Abdel-
Hamid, Deng, and Yu 2013; Té6th 2015; Sercu and Goel
2016) combine CNN and Hidden-Markov Model to cre-
ate hybrid models that are more robust against vocal-tract-
length variability between different speakers. But there is no
single uniform structure used across all ASRs.

In addition to several well-known ASR systems, multiple
companies have independently developed their own ASRs,
such as Google Now, Apple Siri and Microsoft Cortana. In
our system, we use DeepSpeech, Google Cloud Speech, and
Amazon Transcribe. DeepSpeech is an end-to-end speech
recognition software open-sourced by Mozilla. Its first ver-
sion (Hannun et al. 2014) uses a five-layers neural network
where the fourth layer is a RNN layer, while the second ver-
sion (Amodei et al. 2016) contains a mix of CNN and RNN
layers. Our experiments used the first version, as the second
version was not publicly available at the time of our experi-
ment. Unlike DeepSpeech, the DNN behind Google Cloud
Speech is a LSTM-based RNN according to the source
(Google AI Blog 2015). Each memory block in Google’s
LSTM network (Sak, Senior, and Beaufays 2014) is a stan-
dard LSTM memory block with an added recurrent projec-
tion layer. This design enables the model’s memory to be
increased independently from the output layer and recurrent
connections. No public information about the internal details
of Amazon Transcribe is available.

In short, existing ASR systems are diverse with regard to
architectures, parameters and training datasets. Compared to
opensourced systems, propriety ASR systems provide little
information that can be exploited by attackers. Given the di-
versity of ASR systems (and proprietary networks), it is un-
clear how to propose a generic AE generation method that
can simultaneously mislead all of them.

4 System Design

In software engineering, multi-version programming (MVP)
is an approach that independently develops multiple soft-
ware programs based on the same specification, such that
an exploit that compromises one program probably fails on
other programs. This inspires us to propose a system design
that runs multiple ASRs in parallel to detect audio AEs as

Table 1: Recognition results of an AE by multiple ASRs:
the host transcription is “I wish you wouldn’t”, while the
embedded text is “a sight for sore eyes”.

ASR Transcribed Text
DeepSpeech v0.1.0 A sight for sore eyes
DeepSpeech v0.1.1 I wish you live

Google Cloud Speech I wish you wouldn’t.
Amazon Transcribe I wish you wouldn'’t.

shown in Figure 2, where the target ASR is the system tar-
geted by the adversary (e.g., the speech recognition system
at a smart home) and auxiliary ASRs are models different
from the target ASR.

The intuition behind this design is that different ASRs
can be regarded as “independently developed programs” in
MVP. Since they follow the same specification, that is, to
covert audios into texts, given a benign sample, they should
output very similar recognition results. On the other hand,
an audio AE can be regarded as an “exploit”, and cannot
fool all ASRs as verified in Section 2. Thus, the recognition
result by the target ASR differs significantly from those by
the auxiliary ASRs. Table 1 shows a typical example, which
can only fool one ASR and fails on others.

The system works as follows: 1) the target and auxil-
iary ASRs simultaneously conduct speech-to-text conver-
sion, 2) then the transcriptions are used to calculate simi-
larity score(s), which are passed into a binary classifier to
determine whether the input audio is adversarial.

Similarity scores are calculated in two steps. First, each
transcription is converted into its phonetic-encoding repre-
sentation. Phonetic encoding converts a word to the rep-
resentation of its pronunciation (Phonetic-Encoding 2017).
This helps handle variations between ASRs, as they may
output different words for similar pronunciations. The valid-
ity of using phonetic encoding will be demonstrated in Sec-
tion 5.4. Second, for each auxiliary ASR, a similarity score
is calculated to measure the similarity between the text rec-
ognized by the target ASR and that by the auxiliary ASR. We
adopt the Jaro-Winkler distance method (Jaro-Winkler Dis-
tance 2018) to calculate the similarity score (see Section 5.4
). It gives a value between 0 and 1, where O indicates totally
dissimilar and 1 very similar.

5 Evaluation

We evaluate our system on its accuracy and robustness. We
first describe the experiment setup (Section 5.1) and discuss
the dataset used in our evaluation (Section 5.2). Next, we in-
vestigate the feasibility of our idea (Section 5.3), and exam-
ine different methods for calculating similarity scores and
select the one that provides the best results (Section 5.4).
After that, we evaluate the accuracy of our system when one
auxiliary ASR is used (Section 5.5) and more than one aux-
iliary ASR is used (Section 5.6). Finally, we evaluate the
robustness of our system against AEs generated by unseen
attack methods (Section 5.7)

Table 2: Datasets.

Dataset Name # of Samples
Benign 1125
AE White-box AEs 1025
Black-box AEs 100

5.1 Experimental Settings

Our experiments were performed on a 64-bit Linux machine
with an Intel(R) Core(TM) i9-7980XE CPU @ 2.60GHz,
NVIDIA GeForce GTX 1080 Ti, and 32GB DDR4-RAM.

Target Model. We select DeepSpeech v0.1.0, called
DSO (DeepSpeech Github Repository 2018) as the target
model. The main reason we select DSO is that its model ar-
chitecture and parameters are publicly available—making it
possible to generate white-box AEs (Taori et al. 2018). But
our system should also work if any other ASR model is se-
lected as the target model.

Auxiliary Models. There are three auxiliary models: (1)
Google Cloud Speech, called GCS (Google Cloud Speech
2018), (2) Amazon Transcribe, called AT (Amazon Tran-
scribe 2018), and (3) DeepSpeech v0.1.1, called DS1 (Deep-
Speech Github Repository 2018). The first two auxiliary
ASRs are on-line services, while the last one runs locally
with an officially pre-trained model.

We use X+{Y1, ..., Y, } to denote a system using X as
the target model and Y; (Vi € {1,...,n}) as the auxiliary
models. When only one auxiliary model is included, n = 1.

5.2 Dataset Preparation

We consider two audio AE generation techniques: white-box
based (Carlini and Wagner 2018) and black-box based (Taori
et al. 2018) methods, and build two datasets: a Benign
dataset and an AE dataset, each of which contains 1125 au-
dio samples, as shown in Table 2. The audio samples of
the Benign dataset are randomly selected from the dev_clean
dataset of LibriSpeech (LibriSpeech 2015).

The AE dataset is composed of the following two parts:
(1) 1025 white-box AEs, including 990 AEs provided by
(Carlini and Wagner 2018) and 35 ones created by us; (2)
100 black-box AEs constructed by selecting the first 100 au-
dio files in Common Voice dataset (Common Voice Dataset
2018) as host speeches, each of which is converted into an
AE by applying the black-box approach (Taori et al. 2018),
such that the AE’s transcription contains only two words.
All the AEs can successfully fool the target model DSO.

For each dataset, 80% of its samples are used for training,
and the remaining 20% for testing.

5.3 Feasibility Analysis

To detect whether an audio is an AE, the basic idea is to
compare its transcriptions generated from different ASRs.
Our intuition is that the transcriptions generated from dif-
ferent ASRs for a benign sample should be similar. On the
contrary, if the transcriptions generated from different ASRs
are dissimilar, the input audio is likely to be adversarial.

To this end, for each audio sample in the training dataset,
we use the phonetic encoding technique and Jarro-Winkler

distance method to calculate the similarity score between the
transcriptions generated by DS0 and one of the three auxil-
iary models (i.e., DS1, GCS and AT). Figure 3 confirms our
intuition visually by comparing the similarity scores for be-
nign samples and AEs—the similarity scores for AEs and
those for benign samples form two distinguishable clusters.

5.4 Comparison of Different Similarity
Measurement Methods

Many methods can calculate the similarity score of two
strings, such as Jaccard index (Jaccard Index 2018), Co-
sine similarity, and edit distance (e.g., Jaro-Winkler (Jaro-
Winkler Distance 2018)).

To analyze a transcription, some previous works first ap-
ply the phonetic encoding technique to convert the transcrip-
tion to its phonetic-encoding representation (where each
word is converted to the representation of its pronuncia-
tion), and then perform further analysis on the phonetic-
encoding representation (Phonetic-Encoding 2017). Thus,
here we come with three other methods to measure the sim-
ilarity of two strings, denoted as PE_Jaccard, PE_Consine
and PE_JaroWinkler, representing that the phonetic encod-
ing technique is first applied on each transcription and then
Jaccard index, Cosine similarity and Jaro-Winkler are ap-
plied later to computing the similarity score of two transcrip-
tions, respectively.

Each system uses a SVM classifier. We examine the afore-
mentioned six methods and evaluate the system performance
with respect to each of them. The results are shown in
Table 3. It can be observed that when PE_JaroWinkler is
adopted, all the systems achieve the best performance: for
example, the detection accuracy of the system DS0+{DS1,
AT}—using DSO as the target model and both DS1 and AT
as the auxiliary models—is 99.78% when PE_JaroWinkler
is used. Thus, in our later experiments PE_JaroWinkler is
adopted to measure the similarity between transcriptions.

5.5 Single-Auxiliary-Model System

A single-auxiliary-model system contains a target model and
only one auxiliary model. As three ASRs are selected as
the auxiliary model, we have three different single-auxiliary-
model system, denoted as DS0+{DS1}, DS0+{GCS}, and
DSO0+{AT}, using DS1, GCS, and AT as the auxiliary
model, respectively.

A single-auxiliary-model system computes a similarity
score for an input audio. If the similarity score is lower than
a threshold 7', the corresponding audio is detected as ad-
versarial, otherwise benign. We use the Receiver Operating
Characteristic (ROC) curve to select the threshold 7', such
that the sum of TPR (true positive rate) and TNR (true neg-
ative rate) is maximized.

The training results are shown in Table 4 and the corre-
sponding ROC curves are plotted in Figure 4.

We show testing results in Table 5. All of the three single-
auxiliary-model systems achieve TPR higher than 98.6%
and FPR (false positive rate) lower than 1.34%. We further
investigate the results, and have the following interesting
findings: (1) all 100 black-box AEs are correctly detected;

Table 3: Comparison of 6 similarity metrics. (Legend: X+{Yq, ...

(Vi € {1,...,n}) as the auxiliary models.)

, Yn}, stands for a system using X as the target model and Y;

Similarity Metric | Performance System
DS0+{DS1, GCS} | DSO+{DS1,AT} | DSO+{GCS,AT} | DSO+{DS1, GCS, AT}

Accuracy 447/450 (99.33%) | 447/450 (99.33%) | 435/450 (96.67%) 448/450 (99.56%)
Jaccard FPR 3/225 (1.33%) 3/225 (1.33%) 15/225 (6.67%) 2/225 (0.89%)
FNR 07225 (0.00%) 07225 (0.00%) 07225 (0.00%) 07225 (0.00%)

Accuracy 448/450 (99.56%) | 448/450 (99.56%) | 444/450 (98.67%) 448/450 (99.56%)
Consine FPR 2/225 (0.89%) 2/225 (0.89%) 6/225 (2.67%) 2/225 (0.89%)
FNR 07225 (0.00%) 07225 (0.00%) 07225 (0.00%) 07225 (0.00%)

Accuracy 4477450 (99.33%) | 447/450 (99.33%) | 444/450 (98.67%) 446/450 (99.11%)
JaroWinkler FPR 31225 (1.33%) 31225 (1.33%) 5225 2.22%) 47225 (1.78%)
FNR 07225 (0.00%) 07225 (0.00%) 17225 (0.44%) 07225 (0.00%)

Accuracy 4477450 (99.33%) | 448/450 (99.56%) | 445/450 (98.89%) 447/450 (99.3%)
PE_Jaccard FPR 31225 (1.33%) 21225 (0.89%) 5/225 (2.22%) 31225 (1.33%)
FNR 07225 (0.00%) 0/225 (0.00%) 0/225 (0.00%) 07225 (0.00%)

Accuracy | 448/450 (99.56%) | 448/450 (99.56%) | 4437450 (98.44%) 4477450 (99.33%)
PE_Consine FPR 27225 (0.89%) 27225 (0.89%) 6225 2.67%) 37225 (1.33%)
FNR 0/225 (0.00%) 0/225 (0.00%) 17225 (0.44%) 0/225 (0.00%)

Accuracy 449/450 (99.78%) | 449/450 (99.78%) | 448/450 (99.56%) 449/450 (99.78 %)
PE_JaroWinkler FPR 1/225 (0.44%) 0/225 (0.00%) 1/225 (0.44%) 1/225 (0.44%)
FNR 0/225 (0.44%) 1/225 (0.44%) 17225 (0.44%) 0/225 (0.00%)

~
=3
S

-
=3
S

3 350 400
E‘ 500 H Benign samples 3300 . w 350
& 400 Adversarial examples %250 ™ Benign samples %. 300 .
S & W Adversarial examples £ 55 M Benign samples
& 300 Q200 3 Adversaria examples
£ 2 150 £ 200
E 200 @ £ 150
2 2 100 g
€ 2 100
100 S 50 g
e O A————rY i = 0 e a— ”||‘ s, »‘-e‘m“‘ﬂl‘l ”h“ = Sg | ottt
°55558383858385835838" °83533538358438588838" ©8335883835883585538348°
Similarity Score Similarity Score Similarity Score
(a) DSO+{Ds1} (b) DSO+{GCs} (c) DSO+{AT}
Figure 3: Similarity scores of transcriptions generated by DSO and one of the three ASRs, DS1, GCS and AT.
1.0 r—- 1.0 r... 1.0 .r-.
0.8 0.8 0.8
0.6 0.6 0.6
o o o
a a a
= ~ ~
0.4 0.4 0.4
0.2 DeepSpeech0.1.0+ 0.2 DeepSpeech0.1.0+ 0.2 DeepSpeech0.1.0+
77777 DeepSpeech0.1.1 --e-- GoogleCloudSpeech --e-- AmazonTranscribe
AUC=0.999 AUC=0.993 AUC=0.997
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR FPR

(a) DSO+{Ds1}

(b) Ds0+{Gcs}

(c) DSO+{AT}

Figure 4: The ROC curves of three single-auxiliary-model systems.

and (2) for one FP (false positive) case, the transcriptions
recognized by DSO and GCS have the same meaning, but
are in different text formats. The recognition of DSO is the
phrase “SEVENTEEN SEVENTEEN”, while that of GCS is
the digit “1717”. The reason is that the alphabet model of
DSO does not include digits; as a result, any digit is repre-
sented as a word. However, if the alphabet model is inte-

grated into DSO0, such a FP case could be eliminated.

5.6 Multiple-Auxiliary-Models System

A multiple-auxiliary-model system contains a target model
and more than one auxiliary models. We designe four
different multiple-auxiliary-model systems, denoted as
DS0+{Ds1, GCS, AT}, DS0+{DS1, GCS}, DS0+{DS1,

Table 4: The training results of three single-auxiliary-model systems. TP, FN, TN and FP represent True Positive, False Nega-

tive, True Negative, and False Positive, respectively.

System Threshold | # of TPs | # of FNs | # of TNs | # of FPs TPR FPR AUC
DSO0+{DS1} 0.78 885 15 898 2 98.33% | 0.22% | 0.9990
DS0+{GCS} 0.75 881 19 885 15 97.89% | 1.67% | 0.9930
DSO+{AT} 0.77 885 15 898 2 98.33% | 0.22% | 0.9973
Table 5: The testing results of three single-auxiliary-model systems.

System Threshold | # of TPs | # of FNs | # of TNs | # of FPs TPR FPR | Accuracy
DS0+{DsS1} 0.78 223 2 224 1 99.11% | 0.44% | 99.33%
DS0+{GCS} 0.75 222 3 222 3 98.67% | 1.33% | 98.67%

DSO0-+{AT} 0.77 224 1 225 0 99.56% | 0.00% | 99.78%

Table 6: The testing results of four multiple-auxiliary-model systems when different binary classifiers are adopted.

Classifier Performance System
DS0+{DS1,GCS} | DS0+{DsS1,AT} | DSO0+{GCS, AT} | DSO+{DS1, GCS, AT}
Accuracy 4497450 (99.78%) | 449/450 (99.78%) | 448/450 (99.56%) 4497450 (99.78%)
SVM FPR 1/225 (0.44%) 07225 (0.00%) 1/225 (0.44%) 1/225 (0.44%)
FNR 07225 (0.00%) 17225 (0.44%) 17225 (0.44%) 07225 (0.00%)
Accuracy 449/450 (99.78%) | 447/450 (99.33%) | 448/450 (99.56%) 450/450 (100%)
KNN FPR 17225 (0.44%) 17225 (0.44%) 17225 (0.44%) 07225 (0.00%)
FNR 07225 (0.00%) 27225 (0.89%) 17225 (0.44%) 07225 (0.00%)
Accuracy 448/450 (99.56%) | 449/450 (99.78%) | 449/450 (99.78%) 450/450 (100%)
Random Forest FPR 07225 (0.00%) 07225 (0.00%) 07225 (0.00%) 07225 (0.00%)
FNR 2/225 (0.89%) 1/225 (0.44%) 1/225 (0.44%) 0/225 (0.00%)

AT}, and DSO+{GCS, AT}, each of which use DSO as the
target model, and the other included ones as the auxiliary
models. For example, DS0+{DS1, GCS} has two auxiliary
models, DS1 and GCS.

For an multiple-auxiliary-model system with n auxiliary
models, n similarity scores are computed for a given input
audio, which are grouped together as a feature vector. The
feature vector is then fed into a binary classifier (e.g., SVM)
to predict whether the input audio is benign or adversarial.

For each multiple-auxiliary-models system, we train a bi-
nary classifier on all the 1800 feature vectors (900 benign
samples and 900 AE samples), and test it on over 450 test
samples. We use three different binary classifiers, includ-
ing SVM, KNN and Random Forest, and configured each
classifier as follows: (1) SVM use a 3-degree polynomial ker-
nel; (2) KNN use 10 neighbors to vote; and (3) Random
Forest use a seed of 200 as starting random state.

Table 6 shows the results. All the accuracy results are
higher than 99%, and FPR and FNR are lower than 0.5%,
regardless of auxiliary models and binary classifiers. The re-
sults also show that the three-auxiliary-models system out-
performs the two-auxiliary-models systems, probably due to
more information learned by the three-auxiliary-models sys-
tem. As the detection accuracy of the three-auxiliary-models
system is already 100% for KNN and Random Forest, we
stop at three and did not include more auxiliary models.

Table 7: The detection results of unseen-attack AEs for three
single-auxiliary-models.

System Threshold | FPR | FNs | FNR | Defense rate
DSO+{Ds1} 0.88 4.44% | 10 | 0.89% 99.11%
DS0+{GCs} 0.81 453% | 15 | 1.33% 98.67%
DS0+{AT} 0.83 3.73% | 14 | 1.24% 98.76%

Table 8: The detection results of unseen-attack AEs for four
multiple-auxiliary-models.

System Defense rate
Black-box AEs | White-box AEs
DS0+{DS1, GCs} 100.00% 98.63%
DSO+{DS1, AT} 100.00% 98.63%
DS0+{GCS, AT} 100.00% 98.34%
DS0+{DS1, GCS, AT} 100.00% 98.54%

5.7 Robustness against Unseen Attack Methods

The last experiment aims to examine whether a system
trained on AEs generated by a particular attack method
is able to detect AEs generated by other kinds of attack
methods—such an AE is called an unseen-attack AE. We
use the defense rate, defined as the ratio of the number of
successfully detected AEs among the total number of AEs,
to measure the robustness. The higher the defense rate, the
better robustness of the system.

Single-auxiliary-model systems. We first examine the
three single-auxiliary-model systems. We train each system

using only the benign samples, and test each one on all the
1125 AEs (see Table 2). All the AEs can be considered as
unseen-attack AEs. The results are presented in Table 7.

For each system, the threshold is determined by maximiz-
ing FPR under an upper-bounded constraint, which is set as
5%. We can see that the lowest defense rate is 98.67% for the
DS0+{GCS} system. We further try different upper bound
values for FPR, including 4%, 3% and 2%. The defense rate
slightly drops with 2% as the upper-bound value, and the
DS0+{GCS} system has the lowest defense rate of 98.49%.

Multiple-auxiliary-model systems. We next examine the
four multiple-auxiliary-model systems. As presented in Sec-
tion 5.2, two different methods are used to generate the AEs:
the white-box approach and black-box approach. There are
totally 100 black-box AEs and 1025 white-box AEs.

We conduct two different experiments to evaluate each
of the four multiple-auxiliary-model systems. (1) We first
use all the 1025 white-box AEs and 1025 benign samples
to train each system, and use all the black-box AEs to test
each trained system. The results are showed in the second
column in Table 8. It can be observed that the defense rates
of all the systems are 100%—all the black-box AEs can be
successfully detected. (2) We next use all the 100 black-box
AEs and 100 benign samples to train each system, and use
all the white-box AEs to test each trained system. The results
are showed in the third column in Table 8. We can see that
all the systems perform very well, and the lowest defense
rate is 98.34% for the DSO+{GCS, AT} system.

Therefore, we can conclude that our detection method is
very robust against unseen-attack AEs.

6 Related Work

The emergence of adversarial examples that exploit the vul-
nerability of DNNs has attracted researchers to study its de-
fense strategies. Many studies on detecting image AEs have
been reported (Carlini and Wagner 2017; Zuo, Luo, and
Zeng 2018), while only a few are presented to cope with
audio AEs, probably because techniques for crafting audio
AE:s just surfaced in the past two years. Carlini et al. (Carlini
et al. 2016) trained a logistic regression classifier with a mix
of benign and Hidden-Voice-Command (HVC) audios. But
the classifier requires knowing details of HVC generation
technology to create so-called mid-term features based on
short-term features (Carlini et al. 2016). Yang et al. (Yang et
al. 2018) introduced a new idea to identify audio AEs based
on the assumption that audio AEs need complete audio in-
formation to resolve temporal dependence. An audio input
is first cut into two sections, which are then transcribed sep-
arately; if the input is an AE, the result obtained by splicing
the two sectional results will be very different from the re-
sult if the input is transcribed as a whole. However, as admit-
ted by the authors, this method cannot handle “adaptive at-
tacks”, which evade the detection by embedding a malicious
command into one section alone. Rajaratnam et al. (Rajarat-
nam, Shah, and Kalita 2018) proposed a detector by combin-
ing various audio pre-processing methods. But an attacker
can take the pre-processing effect into account when gen-
erating AEs, which has been well demonstrated in (Carlini

and Wagner 2017). An effective and robust audio AEdetec-
tion method is missing.

7 Discussion and Future Work

If the malicious command embedded in an AE and the host
transcription are very similar, our method will probably fail
as their similarity score is high. But note that, prior to our
work, all the existing AE generation methods claim that any
host audio can be used to embed a malicious command (Car-
lini and Wagner 2018; Taori et al. 2018). Our detection
method dramatically reduces this attack flexibility, in that
the attack cannot succeed unless the host transcription is
similar to the malicious command.

Although how to generate transferable AEs is still an open
question currently, in future it may become reality. Our fu-
ture work is to proactively prepare our detection system to
detect them. The main difficulty is to get a training dataset
of transferable AEs, which do not exist. However, a unique
advantage of our design is that the binary classifier takes
similarity scores as inputs, rather than real AEs. Thus, we
can generate similarity scores that simulate the effect of hy-
pothesized highly-transferable AEs to train the model.

8 Conclusion

Work on handling audio AEs is still very limited. Consid-
ering that ASRs are widely deployed in smart homes, smart
phones and cars, how to detect audio AEs is an important
problem. Inspired by Multiversion Programming, we pro-
pose to run multiple different ASR systems in parallel, and
an audio input is determined as adversarial if the multiple
ASRs generate very dissimilar transcriptions. Detection sys-
tems with one single auxiliary ASR achieve accuracies over
98.6%, while designs with more than one ASR achieve even
higher accuracies as more features are provided to the clas-
sifier. Moreover, the research results invalidate the widely-
believed claim that an adversary can embed a malicious
command to any host audio.

Acknowledgement

The authors would like to thank the anonymous review-
ers for their constructive comments and feedback. This
project was supported by NSF CNS-1815144 and NSF
CNS-1856380.

References

Abdel-Hamid, O.; Deng, L.; and Yu, D. 2013. Explor-
ing convolutional neural network structures and optimiza-
tion techniques for speech recognition. In INTERSPEECH,
3366-3370. ISCA.

Alzantot, M.; Balaji, B.; and Srivastava, M. 2018. Did you
hear that? adversarial examples against automatic speech
recognition. arXiv preprint arXiv:1801.00554.

2018. Amazon transcribe homepage. https://aws.
amazon.com/transcribe.

Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J;

Battenberg, E.; Case, C.; Casper, J.; Catanzaro, B.; Cheng,
Q.; Chen, G.; et al. 2016. Deep speech 2: End-to-end speech

recognition in english and mandarin. In International Con-
ference on Machine Learning, 173—182.

Carlini, N., and Wagner, D. 2017. Adversarial examples
are not easily detected: Bypassing ten detection methods. In
Proceedings of the 10th ACM Workshop on Artificial Intelli-
gence and Security, 3—14. ACM.

Carlini, N., and Wagner, D. A. 2018. Audio adversarial
examples: Targeted attacks on speech-to-text. In IEEE Sym-
posium on Security and Privacy Workshops, 1-7. 1IEEE.
Carlini, N.; Mishra, P.; Vaidya, T.; Zhang, Y.; Sherr, M.;
Shields, C.; Wagner, D. A.; and Zhou, W. 2016. Hidden
voice commands. In USENIX Security Symposium.

2018. Download page for common voice dataset. https:
//voice.mozilla.org/en/data.

2018. Deepspeech github repository. https://github.
com/mozilla/DeepSpeech.

Goodfellow, 1. J.; Shlens, J.; and Szegedy, C. 2014.
Explaining and harnessing adversarial examples. CoRR
abs/1412.6572.

2015. Google ai blog: The neural networks behind google
voice transcription. https://ai.googleblog.
com/2015/08/the-neural-networks-behind-

google-voice.html.

2018. Google cloud speech homepage. https://cloud.
google.com/speech-to-text.

Graves, A.; Mohamed, A.; and Hinton, G. E. 2013. Speech
recognition with deep recurrent neural networks. In ICASSP,
6645-6649. IEEE.

Hannun, A. Y.; Case, C.; Casper, J.; Catanzaro, B.; Di-
amos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.;
Coates, A.; and Ng, A. Y. 2014. Deep speech: Scaling up
end-to-end speech recognition. CoRR abs/1412.5567.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput. 9(8):1735-1780.

2017. Microsoft hopes skype sets its smart speaker apart.
https://goo.gl/YfKmyb5.

2018. Jaccard index. https://en.wikipedia.org/
wiki/Jaccard_index.

2018. Jarowinkler distance. https://en.wikipedia.
org/wiki/Jaro%$E2%80%93Winkler_distance.

Lang, K. J.; Waibel, A.; and Hinton, G. E. 1990. A time-
delay neural network architecture for isolated word recogni-
tion. Neural Networks 3(1):23-43.

Li, X., and Wu, X. 2014. Constructing long short-term mem-
ory based deep recurrent neural networks for large vocabu-
lary speech recognition. CoRR abs/1410.4281.

2015. LibriSpeech ASR corpus. http://www.
openslr.org/12.

Liming Chen, A. A. 1995. N-version programming: A
fault-tolerance approach to reliability of software operation.
In Twenty-Fifth International Symposium on Fault-Tolerant
Computing. IEEE.

Liu, Y.; Chen, X.; Liu, C.; and Song, D. 2016. Delv-
ing into transferable adversarial examples and black-box at-
tacks. CoRR abs/1611.02770.

Monteiro, J.; Akhtar, Z.; and Falk, T. H. 2018. Generalizable
adversarial examples detection based on bi-model decision
mismatch. arXiv preprint arXiv:1802.07770.

Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik,
Z.B.; and Swami, A. 2016. The limitations of deep learning
in adversarial settings. In EuroS&P.

Papernot, N.; McDaniel, P.; and Goodfellow, I. 2016.
Transferability in machine learning: from phenomena to
black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277.

2017. Wikipage of phonetic algorithm. https://en.
wikipedia.org/wiki/Phonetic_algorithm.

Rajaratnam, K.; Shah, K.; and Kalita, J. 2018. Isolated and
ensemble audio preprocessing methods for detecting adver-
sarial examples against automatic speech recognition. arXiv
preprint arXiv:1809.04397.

Sak, H.; Senior, A.; and Beaufays, F. 2014. Long short-term
memory recurrent neural network architectures for large
scale acoustic modeling. In Fifteenth annual conference of
the international speech communication association.

Sercu, T., and Goel, V. 2016. Dense prediction on se-
quences with time-dilated convolutions for speech recogni-
tion. CoRR abs/1611.09288.

Szegedy, C.; Zaremba, W.; Sutskever, 1.; Bruna, J.; Erhan,
D.; Goodfellow, I. J.; and Fergus, R. 2013. Intriguing prop-
erties of neural networks. CoRR abs/1312.6199.

Taori, R.; Kamsetty, A.; Chu, B.; and Vemuri, N. 2018.
Targeted adversarial examples for black box audio systems.
CoRR abs/1805.07820.

T6th, L. 2015. Modeling long temporal contexts in convolu-
tional neural network-based phone recognition. In /CASSP.

Tramer, F.; Papernot, N.; Goodfellow, I.; Boneh, D.; and Mc-
Daniel, P. 2017. The space of transferable adversarial ex-
amples. arXiv preprint arXiv:1704.03453.

Yang, Z.; Li, B.; Chen, P.-Y.; and Song, D. 2018. To-
wards mitigating audio adversarial perturbations. https:
//openreview.net/forum?id=SyZ2nKJDz.

Yu, D., and Deng, L. 2015. Automatic Speech Recognition:
A Deep Learning Approach. Signals and Communication
Technology. London: Springer-Verlag London, 2nd. edition.

Yu, D., and Li, J. 2017. Recent progresses in deep learning
based acoustic models. IEEE/CAA Journal of Automatica
Sinica 4(3):396-409.

Yuan, X.; Chen, Y.; Zhao, Y.; Long, Y.; Liu, X.; Chen, K.;
Zhang, S.; Huang, H.; Wang, X.; and Gunter, C. A. 2018.
Commandersong: A systematic approach for practical ad-
versarial voice recognition. In USENIX Security Symposium.
Zeng, Q.; Su, J.; Fu, C.; Kayas, G.; and Luo, L. 2018. Test-
ing CommanderSong AEs over iFLYTECK, Google Cloud
Speech and Kaldi. https://goo.gl/oWTXUS8.

Zuo, F; Luo, L.; and Zeng, Q. 2018. Countermeasures

against [y adversarial examples using image processing and
siamese networks. arXiv.

