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Abstract—The rapid proliferation of sensor-embedded devices
has enabled the mobile crowdsensing (MCS), a new paradigm
which effectively collects sensing data from pervasive users. In
order to identify the true information from the noisy data sub-
mitted by unreliable users, truth discovery algorithms have been
proposed for the MCS systems to aggregate data. However, the
power of truth discovery algorithms will be undermined by the
Sybil attack, in which an attacker can benefit from using multiple
accounts. In addition, an MCS system will be jeopardized unless
it is resistant to the Sybil attack. In this paper, we proposed
a Sybil-resistant truth discovery framework for MCS, which
ensures high accuracy under the Sybil attack. To diminish the
impact of the Sybil attack, we design three account grouping
methods for the framework, which are used in pair with a
truth discovery algorithm. We evaluate the proposed framework
through a real-world experiment. The results show that existing
truth discovery algorithms are vulnerable to the Sybil attack,
and the proposed framework can effectively diminish the impact
of the Sybil attack.

I. INTRODUCTION

With the rapid proliferation of mobile devices equipped with
rich on-board sensors, mobile crowdsensing (MCS) emerges
as a new sensing paradigm, which outsources sensing tasks
to a crowd of ubiquitous participants. The effectiveness of
crowdsensing to collect data enabled numerous MCS applica-
tions, which facilitate our lives in various aspects including
transportation [18], environmental monitoring [23], social net-
works [16], and etc.

A typical MCS system consists of a cloud-based platform
and a crowd of participates. The success of an MCS applica-
tion relies on two factors: 1) a sufficient number of users and
2) the quality of sensing data contributed by individual users.
In recent years, many incentive mechanisms [6, 32, 33, 35]
have been proposed to stimulate users to participate in MCS.
In practice, the quality of users’ sensing data varies due
to many factors, e.g., insufficient skill, poor sensor quality,
environmental noise, and etc. Therefore, the platform needs to
properly aggregate noisy sensing data collected from a variety
of sources to identify the true information (i.e., the truths). It
is ideal for the platform to use a weighted aggregation method,
which assigns higher weights to reliable users. As a result, the
aggregated result towards the data provided by reliable users.
However, the reliability of users is usually unknown to the
platform. Therefore, truth discovery [34] has been proposed
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to address this issue. Without any prior knowledge about
users’ reliability, a truth discovery algorithm iteratively assigns
different weights to users according to the quality of their data
and computes the estimated truth as the weighted average of
all data. This process repeats until it converges.

Although the benefits of truth discovery are well understood,
the aggregation accuracy highly depends on the quality of
input data also raises security concerns. Existing truth discov-
ery algorithms [9–11, 34] assume that most users are reliable.
However, this assumption does not hold in practice, especially
when an MCS system is under the Sybil attack [3]. In an MCS
system, a user could conduct the Sybil attack by submitting
data using multiple accounts for various motives. For example,
a rapacious user may want to receive more rewards without
contributing extra efforts (e.g., by submitting duplicated data
multiple times using different accounts). Whereas, a malicious
user may aim to manipulate the results of the system (e.g.,
by submitting multiple fake data using different accounts as
in [28]). The Sybil attack is easy to conduct (e.g., creating
multiple accounts) but difficult to detect. Therefore, the power
of truth discovery algorithms will be undermined, and the
performance of an MCS system will be jeopardized unless
it is resistant to the Sybil attack.

The impact of the Sybil attack in MCS has been firstly
investigated by Lin et al. [12] from an incentive perspective.
They proposed Sybil-proof incentive mechanisms for both on-
line [13] and off-line [12] scenarios. In their models, the
objective of the Sybil attackers is to maximize its utility which
is the difference between the payment and the cost. These
incentive mechanisms can prevent rapacious users since they
can fundamentally eliminate these users’ motivation to conduct
the Sybil attack. However, they cannot address malicious
attackers since the objective of malicious attackers is to
manipulate the results of the system. In addition, existing truth
discovery algorithms are vulnerable to the Sybil attack (to be
demonstrated in III-C). Although many Sybil attack defense
mechanisms have been proposed in recent years [26]. These
mechanisms do not consider the behaviors of mobile users
in MCS and cannot be applied to MCS directly. Thus, the
problem of designing Sybil-resistant truth discovery algorithms
for MCS remains open.

In this paper, we focus on designing a Sybil-resistant truth
discovery framework for MCS, which diminishes the impact
of the Sybil attack on the aggregated results. We consider two
types of Sybil attacks based on whether a Sybil attacker uses



multiple devices. These two types of attacks are sufficient to
represent the general Sybil attack in MCS. We propose three
account grouping methods to cluster suspicious users. The first
method is based on users’ device fingerprints. This method
can defend against the first type of attacks. To defend against
the second type of attacks, we propose another two methods.
These two methods handle different scenarios. The second
method is based on users’ accomplished task sets. This method
can be used in the scenario where accounts have diverse
accomplished task sets. The third method is based on users’
trajectories. This method can handle the scenario where most
users perform similar tasks. These account grouping methods
are used in pair with a truth discovery algorithm and ensure
high aggregation accuracy.

The main contributions of this paper are as follows:

• To the best of our knowledge, we are the first to study
the problem of the truth discovery under the Sybil attack
for MCS. We characterize two types of Sybil attacks and
demonstrate that existing truth discovery algorithms are
vulnerable to the Sybil attack.

• To the diminish the impact of the Sybil attack, we
propose a Sybil-resistant truth discovery framework to
ensure high aggregation accuracy in MCS systems. Note
that compared with existing truth discovery algorithms,
we do not assume that most users are reliable. As an
important component of the framework, we design three
effective account grouping methods. Each method groups
the accounts that are likely from the same Sybil attacker.

• We evaluate the proposed framework through a real-world
experiment. The results show that existing truth discovery
algorithms are vulnerable to the Sybil attack, and the
proposed framework can effectively diminish the impact
of the Sybil attack.

The remainder of this paper is organized as follows. In
Section II, we review the related work. In Section III, we
introduce the preliminaries. In Section IV, we present the
details of the proposed Sybil-resistant truth discovery frame-
work. Performance evaluations are presented in Section V. We
conclude this paper in Section VI.

II. RELATED WORK

In MCS systems, sensing data are collected from individual
users with different qualities. Truth discovery, which aims to
identify the true information (i.e., the truth) out of all collected
data, has received considerable attention in both industry and
academia. Truth discovery refers to a family of algorithms [9–
11, 34] that aim to discover the truth from a crowd of users’
noisy data. Recently, Jin et al. [7] took into consideration the
users’ strategic behaviors and proposed a payment mechanism
to incentivize high-effort sensing from users. Tang et al. [25]
considered the privacy issue in truth discovery and proposed a
non-interactive privacy-preserving truth discovery system for
MCS. Zhu et al. [36] proposed to use interactive filtering
truth discovery to provide reliable crowdsensing services in
connected vehicular cloud computing. However, none of these

works considered the Sybil attack, and thus may yield unsat-
isfactory results due to the vulnerability to the Sybil attack.

Lin et al. [12] firstly formalized the Sybil attack in MCS
and demonstrated that previous incentive mechanisms for
MCS are all vulnerable to the Sybil attack. Two Sybil-proof
incentive mechanisms are proposed for both on-line [13] and
off-line [12] scenarios, respectively. Jiang et al. [5] considered
the time-sensitive and proposed time-sensitive and Sybil-proof
incentive mechanisms for MCS. Although these Sybil-proof
incentive mechanisms can fundamentally eliminate rapacious
users’ motivation to conduct the Sybil attack according to their
model, malicious users who aim to manipulate the aggregated
data through the Sybil attack cannot be addressed by these
mechanisms. This is because they only considered rapacious
users in their model.

In recent years, the impact of the Sybil attack has been
widely analyzed in a variety of domains, e.g., social net-
works [27], crowdsourced mobile apps [28], virtual machine
instance allocation [29], and Wireless sensor networks [22].
However, the problem of designing Sybil-resistant truth dis-
covery algorithms for MCS is still open. All existing truth dis-
covery algorithms are vulnerable to the Sybil attack. We will
show their vulnerabilities to the Sybil attack in Section III-C.

III. PRELIMINARIES

In this section, we first introduce the system model, truth
discovery, and the adversary models. At last, we introduce
the device fingerprinting, which is used to design our Sybil-
resistant framework.

A. System Model

We consider an MCS system consisting of a cloud-based
platform and a crowd of n mobile users U = {1, 2, · · · , n}.
The platform first publicizes a set T = {τ1, τ2, · · · , τm}
sensing tasks. Each sensing task can be a task to sense a
particular object, event or local phenomenon in a specific sens-
ing region. Then, each user performs sensing tasks Ti ⊆ T .
Let Di = {(dij , tij)|τj ∈ Ti} denote user i’s accomplished
task set, where dij is the sensing data for task τj in the form
of numerical values, e.g., cellular signal strength [19], noise
level measurements [23], and Wi-Fi signal strength [30], and
tij is the corresponding timestamp. Each user i submits Di
to the platform. Meanwhile, the platform collects the sensor
data from i’s device for device fingerprinting (to be elaborated
in III-D). Note that, this sensor data is independent of the
sensing data dij . Once the sensing data D = {Di|i ∈ U}
from all users has been collected, the platform calculates an
aggregated result dj for each task τj as an estimate for the
truth, which is unknown to either the platform or the users.
In practice, the quality of sensing data from different users
varies. In addition, the users’ data quality is unknown to the
platform. Therefore, it is common for a platform to utilize a
truth discovery algorithm to aggregate data, which calculates
users’ weights and estimates the truths in a joint manner.



B. Truth Discovery

A general truth discovery algorithm involves iterative esti-
mations of weights and truth in a joint manner as summarized
in Algorithm 1, which can be divided into two phases: weight
estimation and truth estimation.

At first, the algorithm randomly guesses each task’s truth,
and then iteratively updates each user’s weight and the esti-
mated truth until it convergences. Note that the convergence
criterion is based on applications. For example, the conver-
gence criterion is the maximum number of iterations in [10].

Weight estimation: Let Uj = {i|i ∈ U , τj ∈ Ti} denote the
set of users who submit sensing data for task τj . In this step,
given the estimated truth dj for any task τj , and the weight
wi of each user i ∈ Uj is calculated as

wi =W(
∑
τj∈Ti

D(dij , dj)), (1)

where W(·) is a monotonically decreasing function, and D(·)
is the distance function measuring the difference between the
user’s data and the estimated truth.

Truth estimation: In this step, given users’ weights for task
τj , the estimated truth of task τj is calculated as

dj =

∑
i∈Uj wid

i
j∑

i∈Uj wi
. (2)

Although existing truth discovery algorithms [9–11, 34]
differ in their ways to update users’ weights and the estimated
truth, they all follow the same principles: 1) the users whose
data are closer to the estimated truth are assigned higher
weights; 2) the aggregated result relies more on the users with
higher weights.

Algorithm 1: Truth Discovery Algorithm
Input: Users’ data D;
Output: Estimated truths {dj |τj ∈ T };

1 Randomly initialize the estimated truth for each task;
2 repeat

// Weight estimation
3 foreach i ∈ Uj do
4 Update the weight wi based on (1);
5 end

// Truth estimation
6 foreach τj ∈ T do
7 Update the estimated truth dj based on (2);
8 end
9 until Convergence criterion is satisfied;

10 return Estimated truths {dj |τj ∈ T }.

C. Adversary Models

An MCS system can recruit users in various channels
such as Aamazon Mechanical Turk. Each user performs a
task by submitting timestamped sensing data via an app
to the platform. In this paper, we assume that users could
conduct the Sybil attack but cannot tamper with the device.

Fabricated mobile sensor data through tampering attacks can
be identified by evaluating the authenticity of the data [21].
A Sybil attacker is a user who performs a task once but
submits data multiple times under different accounts (possibly
after simple modification). We also assume that an attacker
can submit fake sensing data, but the timestamps cannot be
fabricated. Fabricated timestamps can be detected using the
method in [31]. We consider the following two scenarios
depending on whether a Sybil attacker uses multiple devices.
Note that these two scenarios are sufficient to represent the
general Sybil attack in MCS.

Attack-I: single device and multiple accounts. In this
attack, an attacker i has only one device. Therefore, it can only
conduct the Sybil attack by creating multiple accounts. For
example, attacker i performs the sensing task τj and submits
the sensing data di

′

j at ti
′

j using account i′. Then it switches to
account i′′ and submits di

′′

j (could be fabricated) at ti
′′

j , which
could be a copy of di

′

j without sensing effort. Note that, ti
′

j

and ti
′′

j are different due to switching accounts, and the device
fingerprints associated with i′ and i′′ are supposed to be the
same since they are from the same device.

Attack-II: multiple devices and multiple accounts. In
this attack, an attacker i has multiple devices. Therefore, it
can conduct the Sybil attack by using multiple accounts on
different devices. For example, attacker i performs the sensing
task τj and submits the sensing data di

′

j (could be fabricated)
at ti

′

j using account i′ on one device. Then i uses another
device with account i′′ and submits data di

′′

j at ti
′′

j , which
could be a copy of di

′

j without sensing effort. Note that, tτji′ and
t
τj
i′′ are different due to the switching device, and the device

fingerprints associated with i′ and i′′ could be different since
they are from different devices.

Next, we use an example shown in Table I to demonstrate
that existing truth discovery algorithms [9–11, 34] are vul-
nerable to the Sybil attack. Consider an MCS system with 4
tasks and 4 users. Each task is measuring the Wi-Fi signal
strength (dBm) at a specific location. Each account is allowed
to submit at most one data for one task. For each task, the
system aggregates data submitted by users to identify the Wi-
Fi signal strength at the associated location. Assume that User
4 is a Sybil attacker who has one device and three accounts
(Attack-I), i.e., 4′, 4′′, and 4′′′. The objective of the attacker
is to mislead the system to decide that the Wi-Fi signals in
locations of Task 1, 3, and 4 are strong. Therefore, User 4 will
use 3 accounts to submit fabricated data (−50 dBm), which
represents a strong Wi-Fi signal strength. We use CRH [10],
a widely adopted truth discovery (TD) algorithm, to aggregate
the data in the cases without and with Sybil attacker 4,
respectively. Note that CRH is sufficient to represent existing
truth discovery algorithms since they have the same procedure
as Algorithm 1. According to the result, we see that the Sybil
attack has a significant impact on the aggregated results for
Task 1, 3, and 4. This example can be extended to any MCS
systems where the sensing data for each task is in the form of
numerical values. Therefore, it is urgent to design effective



Sybil-resistant truth discovery algorithms for the MCS to
diminish the impact of the Sybil attack.

TABLE I
EXAMPLE SHOWING THE SYBIL ATTACK IN MCS

T1 T2 T3 T4

1 −84.48 −82.11 −75.16 −72.71
2 x −72.27 −77.21 x
3 −72.41 −91.49 x −73.55
4′ −50 x −50 −50
4′′ −50 x −50 −50
4′′′ −50 x −50 −50

TD without the Sybil attack −84.23 −82.01 −75.22 −72.72
TD with the Sybil attack −56.06 −86.17 −53.29 −55.35

D. Device Fingerprinting

Device fingerprinting refers to finding characteristics that
can help identify an individual device. It has been exploited
to track a user across multiple visits to websites [2]. Modern
mobile devices (e.g., smartphones) are equipped with rich
sensors, e.g., accelerometers and gyroscopes, that are available
to apps. In recent years, these sensors are fully invested
and have been used to uniquely identify a smartphone by
measuring anomalies in their produced signals, which are the
result of manufacturing imperfections. The accelerometer and
gyroscope sensors in smartphones are based on Micro Electro
Mechanical Systems (MEMS) as shown in Fig. 1. When an
accelerometer is subjected to a linear acceleration along its
sensitive axis, the seismic mass will shift closer to one of the
fixed electrodes causing a change in the generated capacitance.
During the manufacturing process, there might be a slight
gap difference between these electrodes for different chips,
which may cause a difference in the generated capacitance
for the same acceleration. A gyroscope measures the rate of
rotation based on the Coriolis effect. The angular velocity
is computed from the Coriolis force, which is sensed by a
capacitive sensing structure. A change in the vibration of
the proof mass causes a change in capacitance. Similar to
the accelerometers, the imperfection in the electro-mechanical
structure may cause a difference in the generated capacitance
for the same Coriolis force across chips. In this paper, we
exploit both accelerometer and gyroscope for device finger-
printing. The fingerprints generated from these two sensors
can uniquely identify a mobile device.

(a) Accelerometer (b) Gyroscope

Fig. 1. MEMS-based accelerometer and gyroscope

IV. SYBIL-RESISTANT TRUTH DISCOVERY FRAMEWORK

In this section, we design a truth discovery framework for
MCS, which is resistant to Sybil attack. Note that we use
accounts instead of users throughout the rest of this paper
since a Sybil attacker can have multiple accounts.

A. Design Rationale

The key idea of the framework is to identify the data sub-
mitted by suspicious accounts and diminish the impact of these
data on the MCS system. The following three methods can be
used to identify these data: 1) In an MCS system, users usually
collect and submit sensing data using their mobile devices
(e.g., smartphones). Therefore, if multiple data submitted by
different accounts can be identified to be submitted by the
same device, these data should be assigned less weight in
truth discovery since they might be from a Sybil attacker.
2) In order to manipulate the aggregated results for multiple
tasks, a Sybil attacker ought to submit data for each task using
different accounts (as the example in III-C). Therefore, the
data submitted by accounts with highly similar task set are
likely from a Sybil attacker. 3) Similarly, the trajectories of a
Sybil attacker’s accounts should have a similar pattern since
they belong to the same user. Therefore, the data submitted
by accounts with highly similar trajectories are likely from
a Sybil attacker. In order to diminish the impact of the data
submitted by Sybil attackers, we group the accounts potentially
from Sybil attackers and assign low weights to their data in
the truth discovery algorithm. Note that we do not directly
eliminate the data submitted by suspicious accounts since there
might be false-positives in the identifying process.

B. Design of Framework

We now describe the details of the framework, which is
illustrated in Algorithm 2. It takes as inputs the users’ data
for each task and their associated device fingerprints. The
framework first groups all accounts (to be elaborated in IV-C).
Let G = {g1, g2, · · · , gl} denote the account grouping result,
where gi ∩ gj = ∅ and ∪gi∈Ggi = U . Each group gk ∈ G
represents a set of accounts likely used by the same user.
Let T̃k = ∪i∈gkTi denote the set of tasks performed by the
accounts in group gk. Then the framework groups data as
follows. For each task τj , we first aggregate the data within
each group gk ∈ Gj , where Gj = {gk|gk ∈ G, τj ∈ T̃k},
according to

d̃kj =

∑
i∈gk(dij − d̄kj )dij∑
i∈gk(dij − d̄kj )

, (3)

where d̄kj is the arithmetic mean of data submitted by accounts
in gk. The weight of each group gk ∈ Gj is calculated as

w̃k = 1− |gk|
|Uj |

, (4)

where |gk| denotes the number of accounts in group gk, and
|Uj | is the number of accounts who submit data for task τj .
Note that using one data for each group could diminish the
impact of the Sybil attack.



Algorithm 2: Sybil-resistant Truth Discovery Framework
Input: Users’ data D and device fingerprints F;
Output: Estimated truths {dj |τj ∈ T };
// Account grouping

1 G ← AG(D, F);
// Data grouping

2 foreach τj ∈ T do
3 Group sensing data for τj based on G;
4 Aggregate the data in each group gk ∈ Gj by (3);
5 Calculate the weight w̃k of each group by (4);
6 end
7 Initialize the estimated truth for each task by (5);
8 repeat

// Group weight estimation
9 foreach gk ∈ G do

10 Update the weight w̃k using
w̃k =W(

∑
τj∈T̃k D(d̃kj , dj)), where

T̃k = ∪i∈gkTi;
11 end

// Truth estimation
12 foreach τj ∈ T do
13 Update the estimated truth using

dj =

∑
gk∈Gj

w̃kd̃
k
j∑

gk∈Gj
w̃k

;

14 end
15 until Convergence criterion is satisfied;
16 return Estimated truths {dj |τj ∈ T }.

At last, the framework estimates the truth for each task
similar to Algorithm 1. Different from Algorithm 1, we treat
the accounts in one group as a whole, and thus we use d̃kj
for group gk. In addition, instead of randomly initializing the
estimated truth for each task, we initialize the estimated truth
of each task τj as follows

dj =

∑
gk∈Gj

w̃kd̃
k
j∑

gk∈Gj
w̃k

. (5)

C. Account Grouping

As an important component in the framework, account
grouping is used to group accounts that are likely from the
same Sybil attacker. Specifically, we design three account
grouping methods.

Account Grouping by Device Fingerprint (AG-FP). In-
spired by a recent work on device fingerprinting [2], we design
an account grouping method that exploits both accelerometer
and gyroscope to produce device fingerprints. The device
fingerprint can be used to identify the sensing data from
different accounts but the same device.

We treat the data from accelerometer and gyroscope as
two streams of timestamped real values. Given a timestamp
t, the platform collects values from accelerometer and gyro-
scope along three axes in the form of −→a (t) = (ax, ay, az)
and −→w (t) = (wx, wy, wz), respectively. The platform starts
collecting these sensor data from the moment an account i

signs in the system for T seconds and stores these data in
Fi = ((−→a (1),−→a (2), · · · ,−→a (T )), (−→w (1),−→w (2), · · · ,−→w (T ))).
Once all accounts’ device fingerprints F = {Fi|i ∈ U}
have been collected, the platform converts the acceleration
data at each timestamp into a scalar by taking its magnitude
(i.e., |−→a (t)| =

√
a2x + a2y + a2z ) such that the accelerom-

eter data is independent of the device orientation. For the
gyroscope, we consider data from each axis as a separate
stream. Therefore, each account i’s device fingerprint will
be considered as four sensor data streams in the form of
{|−→a (t)|, wx(t), wy(t), wz(t)}. To characterize a sensor data
stream, we use both temporal and spectral features as sum-
marized in Table II, including 9 temporal and 11 spectral
features. All of these features are widely used and have been
well analyzed in the literature [2, 20].

After extracting features from the sensor data, the platform
groups device fingerprints using k-Means [15], which is a
widely used clustering method in machine learning. The
cluster number k is the number of devices in our case. Note
that the platform does not know the exact number of devices in
practice. Therefore, we use the elbow method [8] to estimate
the value of k. The idea of the elbow method is to run k-
Means on all the device fingerprints for a range of values
of k (e.g., k from 1 to n) and calculate the sum of squared
errors (SSE) for each value of k. Note that the SSE tends to
decrease toward 0 with the increase of k. At last, we choose
the value of k at which SSE starts to diminish. It is worth
mentioning that the time complexity of k-Means is O(nkdi),
where n is the number of d-dimensional vectors, k is the
number of clusters and i is the number of iterations needed
until convergence. In addition, we also see that the running
time of the elbow method is linear in the number of users.
In an MCS system, the number of selected users for each
task is usually limited and smaller than the total number of
users [14]. Therefore, AG-FP is efficient in practice. Note
that the device fingerprint grouping result is the result of
account grouping since each account is associated with one
fingerprint. As an example, we use 3 smartphones of different
models, each collecting 5 fingerprint data. Fig. 2(a) shows the
distribution of the fingerprints of these 3 smartphones in the
first two principal components’ feature space (denoted by PC1
and PC2, respectively). Fig. 2(b) shows the grouping result by
k-Means when k = 3. We see that Smartphone 2 has a stable
fingerprint (i.e., its 5 fingerprints are close together), and thus
it can be easily differentiated from the other two smartphones.
However, there are three fingerprints from Smartphone 1 that
have been wrongly grouped with Smartphone 3. These are the
false-positives of this grouping method.

AG-FP can be used to defend against Attack-I since it can
diminish the impact of multiple data from different accounts
but the same Sybil attacker using the same device. However,
a Sybil attacker can use multiple devices in Attack-II. To
effectively defend against Attack-II, we propose the following
two account grouping methods.

Account Grouping by Task Set (AG-TS). As mentioned



TABLE II
TEMPORAL AND SPECTRAL FEATURES

# Domain Feature Description

1

Time

Mean The arithmetic mean of the signal strength at different timestamps
2 Standard Deviation Standard deviation of the signal strength
3 Skewness Measure of asymmetry about mean
4 Kurtosis Measure of the flatness or spikiness of a distribution
5 RMS Square root of the arithmetic mean of the squares of the signal strength at various timestamps
6 Max Maximum signal strength
7 Min Minimum signal strength
8 ZCR The rate at which the signal changes sign from positive to negative or back
9 Non-Negative count Number of non-negative values
10

Frequency

Spectral Centroid The center of mass of a spectral power distribution
11 Spectral Spread The dispersion of the spectrum around its centroid
12 Spectral Skewness The coefficient of skewness of a spectrum
13 Spectral Kurtosis Measure of the flatness or spikiness of a distribution relative to a normal distribution
14 Spectral Flatness Measures how energy is spread across the spectrum
15 Spectral Irregularity The degree of variation of the successive peaks of a spectrum
16 Spectral Entropy The peaks of a spectrum and their locations
17 Spectral Rolloff The frequency below which 85% of the distribution magnitude is concentrated
18 Spectral Brightness Amount of spectral energy corresponding to frequencies higher than a given cut-off threshold
19 Spectral RMS Square root of the arithmetic mean of the squares of the signal strength at various frequencies
20 Spectral Roughness Average of all the dissonance between all possible pairs of peaks in a spectrum

(a) Fingerprints of smartphones

(b) Grouping result

Fig. 2. Example of AG-FP

before, there should be a consistency in the accomplished task
sets of the accounts from the same Sybil attacker. Inspired
by [22], we design an account grouping method, which groups
accounts by calculating the affinity between two accounts ac-
cording to their accomplished task sets. The grouping method
involves the following steps:

1) Let Ti,j denote the number of tasks both accounts i and
j have done. Let Li,j denote the number of tasks either
i or j has done alone. Then the affinity between i and
j, denoted as Ai,j , is calculated as

Ai,j = (Ti,j − 2Li,j)
Ti,j + Li,j

m
, (6)

where m is the number of tasks. Note that the larger the
affinity value, the more similar the accomplished task
sets of two accounts.

2) An undirected graph is constructed, where accounts are
the nodes and the undirected edge between i and j is

weighted with their affinity values Ai,j . Note that only
edges that are greater than a threshold ρ are included.

3) Connected components are discovered using Depth First
Search (DFS) algorithm. Each component represents a
set of accounts who have done a similar set of tasks.

4) Each component is a group, and the account that is not
in any component will be treated as a separate group.

To illustrate the process of this grouping method, we use
the example in Table III. This example has the same setting
as the example in Table I, whereas the values in the table are
the timestamps for the corresponding tasks.

TABLE III
EXAMPLE SHOWING SYBIL ATTACK IN MCS

T1 T2 T3 T4

1 10:00:35 a.m. 10:02:42 a.m. 10:10:22 a.m. 10:13:41 a.m.
2 x 10:04:15 a.m. 10:06:01 a.m. x
3 10:01:21 a.m. 10:04:05 a.m. x 10:08:28 a.m.
4’ 10:01:10 a.m. x 10:15:24 a.m. 10:20:06 a.m.
4” 10:01:34 a.m. x 10:16:08 a.m. 10:21:25 a.m.
4”’ 10:02:35 a.m. x 10:17:35 a.m. 10:22:02 a.m.

Fig. 3 shows the procedure of AG-TS. The adjacency matrix
in Fig. 3(a) shows the number of tasks both i and j have
done. The adjacency matrix in Fig. 3(b) shows the number of
tasks either i or j has done alone. Fig. 3(c) shows the affinity
value of i with respect to j. We set the threshold ρ = 1, and
thus an undirected graph is drawn as shown in Fig. 3(d). We
see that one component is constructed in this example, i.e.,
{1, 4′, 4′′, 4′′}. Accounts 2 and 3 are not in the component,
and thus each of them is treated as a group. Therefore, the
grouping result of this example consists of three groups, i.e.,
{1, 4′, 4′′, 4′′}, {2}, and {3}. Note that AG-TS groups account
1 with the accounts used by Sybil attacker in the same group,
and thus this is a false-positive.



GP-TS can be used in the scenario where accounts have
diverse accomplished task sets. To handle the scenario where
most accounts have similar accomplished task sets, we propose
the following grouping method.

(a) Ti,j (b) Li,j

(c) Ai,j (d) Undirected graph with Ai,j > 1

Fig. 3. Example of AG-TS

Account Grouping by Trajectory (AG-TR). The sensing
data Di = {(dτji , t

τj
i )|τj ∈ Ti} submitted by account i for

task τj can be regarded as two time series data, i.e., task
series Xi and timestamp series Yi. These two time series data
together can be regarded as the trajectory of an account. We
design an account grouping method, which groups accounts by
calculating the dissimilarity between two accounts according
to their task series and timestamp series. This method relies
on the principle that the accounts belonging to a Sybil attacker
ought to perform similar set of tasks in a similar time pattern.

We use Dynamic Time Warping (DTW) [1] to measure the
distance between two time series since it does not require
two series to be the same length. Given two time series, A =
a1, a2, · · · , am and B = b1, b2, · · · , bn, we construct an m-by-
n matrix, where each element (i, j) of the matrix is the squared
distance, i.e., (ai − bj)2, representing the alignment between
points ai and bj . The warping path W = ω1, ω2, · · · , ωK is
a contiguous set of matrix elements that defines a mapping
between A and B, where max(m,n) ≤ K < m+n− 1. The
basic idea of DTW is to find out the warping path between
two time series that minimizes the warping cost. We define
the DTW distance as in [24]:

DTW (A,B) = min{

√√√√ K∑
k=1

ωk/K}. (7)

This can be calculated using dynamic programming. Let r(i, j)
denote the cumulative distance, which is calculated as the
distance dist(ai, bj) found in the current cell and the minimum
of the cumulative distances of the adjacent elements: r(i, j) =
dist(ai, bj) + min{r(i− 1, j − 1), r(i− 1, j), r(i, j − 1)}.

Based on the DTW distance between accounts’ task series
and time series, we propose an account grouping method,
which involves the following steps:

1) The dissimilarity between accounts i and j, denoted as
Di,j , is calculated as

Di,j = DTW (Xi, Xj) +DTW (Yi, Yj), (8)

where DTW (Xi, Xj) is DTW distance between the
task series of i and j, and DTW (Yi, Yj) is the DTW
distance between the timestamp series of i and j. Note
that the less the dissimilarity value, the more similar the
trajectories of two accounts.

2) An undirected graph is constructed, where accounts are
the nodes and the undirected edge between i and j is
weighted with their dissimilarity values Di,j . Only edges
that are less than a threshold φ are included.

3) Connected components are constructed using Depth First
Search (DFS) algorithm. Each component represents a
set of accounts with similar trajectories.

4) Each component is a group, and the account that is not
in any component will be treated as a separate group.

(a) DTW (Xi, Xj) (b) DTW (Yi, Yj)

(c) Di,j (d) Undirected graph with Di,j < 1

Fig. 4. Example of AG-TR

Next, we still use the example in Table III to illustrate
the process of this grouping method. We use two adjacency
matrices in Fig. 4(a) and Fig. 4(b) to show the DTW difference
between i and j in terms of the task series and timestamp



series, respectively. The adjacency matrix in Fig. 4(c) shows
the dissimilarity value of i with respect to j. We set the
threshold φ = 1, and thus an undirected graph is drawn as
shown in Fig. 4(d). We see that one component is constructed
in this example, i.e., {4′, 4′′, 4′′}. Accounts 1, 2, and 3 are
not in the component, and thus each of them is treated as
a group. Therefore, the grouping result includes four groups,
i.e., {4′, 4′′, 4′′}, {1}, {2}, and {3}. Comparing with the result
of AG-TS, AG-TR has less false-positive since it correctly
groups all the accounts used by the Sybil attacker in one group.
The better performance of AG-TR relies on that it not only
considers the similarities in accounts’ accomplished tasks as
in AG-TS but also considers the similarities in the associated
timestamps of these tasks.

Remarks: In this paper, the aforementioned three account
grouping methods are used independently in the framework.
We leave the combination of them for our future work. The
thresholds ρ in AG-TS and φ in AG-TR depend on the tasks
in an MCS system. A higher value of ρ means that accounts
are more likely have common accomplished tasks. A lower
value of φ means that accounts are more likely have similar
trajectories. Note that AG-TS and AG-TR may result in false-
positive where two legitimate users with similar accomplished
tasks and similar trajectories are considered as accounts from
a Sybil attacker. This problem can be alleviated when the
system uses existing incentive mechanisms [32, 33, 35] to
incentivize and select users. This is because one of them is less
likely selected by the incentive mechanism due to its marginal
contribution if the other is selected.

V. EXPERIMENT

Since there is no public dataset with Sybil attackers’ be-
haviors for MCS, we evaluate our framework by conducting
experiments instead of large-scale simulations. In this section,
we first describe our experimental setup. Then, we evaluate
three account grouping methods. At last, we implement the
framework with a truth discovery algorithm that is similar
to CRH [10] and compare the aggregation accuracy of our
proposed framework with CRH. As in [7], we use the mean
absolute error (MAE) as the metric to measure aggregation
accuracy, which is defined as 1

m

∑m
j=1 |dj − d∗j |, where m

is the number of tasks, and dj and d∗j are the estimated
truth and ground truth for task τj , respectively. The lower
the MAE value, the higher accuracy for the data aggregation.
Note that we only compared our framework with CRH since
it is sufficient to represent existing truth discovery algorithms
as discussed before.

A. Experimental Setup

In our experiment, we consider an MCS system in which
the tasks are measuring the Wi-Fi signal strength at 10 Point of
Interest (POIs) as shown in Fig 5. We recruited 10 volunteers
in our system, among them 8 acted as legitimate users and 2
acted as Sybil attackers. Each legitimate user has one account
and uses one smartphone to perform tasks. Each of the two
Sybil attackers has 5 accounts. One of the Sybil attacker

Fig. 5. POIs for Wi-Fi signal strength measurement

conduct Attack-I with one smartphone, and the other conduct
Attack-II with two smartphones of different models. Each
account is only allowed to submit one sensing data at one POI.
Therefore, a Sybil attacker can submit at most 5 data for one
task using 5 accounts. We assume that the objective of each
Sybil attacker is to mislead the system, and thus both Sybil
attackers will fabricate the sensing data. Note that although we
only have 2 Sybil attackers in our experiment, the experimental
results can still represent the scenario when an MCS system is
under a large scale of the Sybil attack since the percentage of
the Sybil accounts is larger than that of the legitimate users.
We collect the Wi-Fi signal strength at each POI multiple
times and calculate the average as ground truth. To measure
the activeness of each account, we define

αi =
|Ti|
m
, (9)

where |Ti| is the number of tasks performed by i and m is
the total number of tasks. In our experiment, each account
has to perform at least two task, and thus αi ∈ [0.2, 1]. To
some extent, the activeness is a good indicator to measure the
contribution of legitimate accounts to the system. However,
the more damages can be made by Sybil attackers with higher
activeness. In our experiment, each user performs tasks ac-
cording its own preference with according activeness. At last,
we collect 54 walking traces in total. We use 11 smartphones
in our experiment, and the distribution of these smartphones is
listed in Table IV. One iPhone 6S is used to conduct Attack-I
and one iPhone SE and one Nexus 6P are used to conduct
Attack-II. As in [2], we collect device fingerprint through
the browser by using a Javascript to access accelerometer
and gyroscope. We use MIRtoolbox [17] to extract spectral
features. Since AG-FP depends on the inherent imperfections
of motion sensors to generate fingerprint, we need to keep the
smartphone stationary while collecting sensor data. Therefore,
we ask users to hold the smartphones in hand for 6 seconds
when they sign in the system. Note that the Sybil attackers do
this process again when they change accounts.

B. Evaluation of Account Grouping

In this part, we first show the performance of AG-FP, and
then we compare the performance of the proposed three group-
ing methods in terms of the Adjusted Rand Index (ARI) [4],
a widely used metric in machine learning to evaluate the



(a) Legitimate accounts’ α = 0.2 (b) Legitimate accounts’ α = 0.5 (c) Legitimate accounts’ α = 1

Fig. 6. ARI comparison

(a) Legitimate accounts’ α = 0.2 (b) Legitimate accounts’ α = 0.5 (c) Legitimate accounts’ α = 1

Fig. 7. MAE comparison

TABLE IV
MODELS OF SMARTPHONES USED IN THE EXPERIMENT

OS Model Quantity

iOS

iPhone SE∗∗ 1
iPhone 6 1

iPhone 6S∗ 2
iPhone 7 1
iPhone X 1

Android

Nexus 6P∗∗ 3
LG G5 1
Nexus 5 1

Total 11
∗ Used to conduct Attack-I. ∗∗ Used to conduct Attack-II.

performance of clustering. The value of ARI lies in the range
[−1, 1], and the larger the value the better grouping result.

Fig. 8 shows the distribution of the center of all 11 smart-
phones in the space of the first two principal components.
We see that the centers of the smartphones of the same

Fig. 8. Smartphone fingerprints in the first two principal components’ space

model are very close, and thus it is hard to differentiate
them. Actually, the smartphones of the same model are usually
grouped together in our experiment. Therefore, the impact
of Attack-I can be effectively diminished since multiple data
submitted by a Sybil attacker for one task will be treated as a

single data. However, there are false-positives in this method.
The smartphone used by a legitimate user might be grouped
with other smartphones either from legitimate users or from
Sybil attackers. For the first case, the truth discovery result
will not be effected since the aggregated data for the group is
calculated based on data submitted by legitimate users. For the
second case, the aggregated data for the group will be closed
to the average of the data submitted by both legitimate users
and Sybil attackers according to (3), and thus the impact of
the Sybil attack will be diminished.

Fig. 6 shows the ARI value of the three proposed grouping
methods in different settings. In each setting, we fix the
activeness of legitimate users and vary the activeness of Sybil
attackers. Specifically, we consider three settings, i.e., α = 0.2,
0.5 and 1. In Fig. 6, we see that the ARI of AG-FP decreases
as the activeness increases. This is because, with more users
in the system, there might be more smartphones of the same
model, causing more false-positives. We also see that the ARI
value of both AG-TS and AG-TR increase with the increase
of activeness. This is because, more information (i.e., more
accomplished tasks and longer trajectory) can be used to
differentiate accounts when accounts have higher activeness.
In addition, we see that the performance of AG-TR is better
than AG-TS. This is because, AG-TR can still differentiate
accounts according to their timestamp series when they have
similar accomplished task sets.

C. Evaluation of Accuracy

We now use MAE as a metric to measure the accuracy of the
proposed framework and compare it with CRH. We implement
the framework with aforementioned three account grouping
methods independently, denoted as TD-FP, TD-TS, and TD-
TR, respectively. Fig. 7 shows the MAE of our framework
and CRH in different settings. In each setting, we still fix the
activeness of legitimate users and vary the activeness of Sybil
attackers. We see that the MAE values of the four methods



decrease with the increase of the activeness of legitimate users.
This is because, with more data from legitimate users, it is
harder for a Sybil attacker to manipulate the aggregated results.
We also see that, fixing the activeness of legitimate users,
the MAE increases with the increase of activeness of Sybil
attackers. This demonstrate the impact of the Sybil attack on
the aggregated results. The reason for this is that a larger
activeness value of a Sybil attacker implies more false data,
which may be a majority for a task causing the manipulation
of the aggregated result. As shown in Fig. 7(c), the MAE of
CRH is still large even the with a high activeness of legitimate
users. On the contrary, the MAE of our proposed framework is
always lower than CRH no matter which grouping method is
used. This is because our framework can diminish the impact
of the Sybil attack by grouping data from suspicious accounts.
The performance of TD-TR is the better than TD-FP since it
can address both Attack-I and Attack-II. Meanwhile, TD-TR
is better than TD-TS since it has less false-positive in account
grouping as discussed before.

VI. CONCLUSION

In this paper, we first analyzed the impact of the Sybil
attack on existing truth discovery algorithms for MCS. We
demonstrated that they are vulnerable to the Sybil attack. Then,
we proposed a truth discovery framework, which is resistant
to the Sybil attack and ensures high aggregation accuracy.
Specifically, we designed three account grouping methods,
which are used in pair with a truth discovery algorithm in
the framework. These methods can effectively group accounts
that are likely from the same Sybil attacker. We evaluated
the proposed framework through a real-world experiment.
The results show the vulnerability of existing truth discovery
algorithm to the Sybil attack and the effectiveness of the
proposed framework in diminishing the impact of the Sybil
attack.
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