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Abstract—Crowdsourcing has become an efficient paradigm 

for performing large scale tasks. Truth discovery and incentive 
mechanism are fundamentally important for the crowdsourcing 
system. Many truth discovery methods and incentive mechanisms 
for crowdsourcing have been proposed. However, most of them 
cannot be applied to dealing with the crowdsourcing with copiers. 
To address the issue, we formulate the problem of maximizing 
the social welfare such that all tasks can be completed with the 
least confidence for truth discovery. We design an incentive 
mechanism consisting of truth discovery stage and reverse 
auction stage. In truth discovery stage, we estimate the truth for 
each task based on both the dependence and accuracy of workers. 
In reverse auction stage, we design a greedy algorithm to select 
the winners and determine the payment. Through both rigorous 
theoretical analysis and extensive simulations, we demonstrate 
that the proposed mechanisms achieve computational efficiency, 
individual rationality, truthfulness, and guaranteed 
approximation. Moreover, our truth discovery method shows 
prominent advantage in terms of precision when there are 
copiers in the crowdsourcing systems. 

Keywords—crowdsourcing; truth discovery; incentive 
mechanism; reverse auction; Bayesian analysis 

I. INTRODUCTION  
Crowdsourcing is a distributed problem-solving model, in 

which a crowd of undefined size is engaged to solve the 
complex problems through an open platform. Wikipedia [1], 
Zhihu [2], Freebase [3], and other knowledge repositories 
were created by workers, who contributed knowledge on a 
wide variety of topics. In recent years, crowdsourcing has 
been widely used in many fields, including video analysis [4], 
knowledge discovery [5], and Smart Citizen [6], conducting 
human-robot interaction studies [7]. With the rapid 
proliferation of smartphones integrated with a variety of 
embedded sensors, mobile crowdsourcing has become an 
efficient approach to data acquisition in large-scale sensing 
applications, such as photo selection [8], public bike trip 
selection [9], and indoor positioning systems [10].  

Many crowdsourcing applications require integrating data 
from multiple workers, each of which provides a set of values 
as "facts". However, "facts and truth really don't have much to 
do with each other" [11]. Different workers may provide 
conflicting values, some being true while some being false. To 
provide data with high accuracy to the requesters, it is critical 
for the truth discovery systems to resolve conflicts and 
discover true values.  

The crowdsourcer aggregates and extracts crowdsourced 
information in order to discover the truth, where the accuracy 
of crowdsourcing data is fundamentally important. In 
crowdsourcing, the accuracy of data can be largely affected by 
the expertise and willingness of individual workers [12, 13]. 
Particularly, the workers with different spatial-temporal 
contexts and personal effort levels usually submit data with 
different accuracy. Furthermore, the rational workers tend to 
strategically minimize their efforts when performing the tasks, 
and thus may degrade the accuracy of data.  

Typically, we often expect the true value provided by more 
workers than any particular false one, so we can apply voting 
[14] and take the value provided by the majority of the 
workers as the truth. The main drawback of this approach is 
that they treat the reliability of each worker equally. 
Unfortunately, the behavior of copying between workers is 
common in practice [15], especially when the crowdsourcing 
tasks are in the form of questionnaire. 

In a variety of domains, there are a huge number of workers 
who provide information, and repetition exists in a large part 
of the provided information. Most of the information is about 
some static aspects of the world, such as the authors and 
publishers of books, directors, actors and actresses of movies, 
and the presidents of a company in past years. In this scenario, 
the workers may copy, crawl, or aggregate data from others, 
and submit the copied data.  

Existence of copiers will invalidate most of the existing 
truth discovery methods [25, 26, 29, 30, 31], since they 
consider that workers are independent of each other. For 
example, as shown in Tab. 1, there are five workers, who 
provide the affiliations of five researchers, and only worker 1 
provides all correct data. However, since the affiliations 
provided by worker 4 and worker 5 are copied from worker 3 
(with certain errors during copying), the naive voting method 
will consider them as the majority, making wrong decisions of 
the truth for Dewitt, Carey, and Halevy.  

TABLE 1: AN EXAMPLE OF CONFLICTING VALUES PROVIDED BY 
CROWDSOURCING WORKERS WITH COPIERS 

       Workers 
Tasks 1 2 3 4 5 

Stonebraker MIT Berkeley MIT MIT MS 
Dewitt MSR MSR UWise UWisc UWisc 

Bernstein MSR MSR MSR MSR MSR 
Carey UCI AT&T BEA BEA BEA 
Halevy Google Google UW UW UW 
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platform calculates the estimated truth 1 2( , , ..., )met et etet     
for each task, the winner set S W , and the payment ip for 
each winner i S . We define the utility of any worker i as 
the difference between the payment and its real cost: 
                                      i i iu p c  .                                   (1) 

Since we consider the workers are selfish and rational 
individuals, each worker can behave strategically by 
submitting a dishonest bid price to maximize its utility.  

The utility of the platform is:   
                                0 ( ) i

i S
u V S p                               (2) 

where ( )V S  is the value of the platform obtained if all of the 
tasks can be completed by the workers in S with accuracy no 
less than the accuracy requirement. 

We define the social welfare as the total utility of the 
platform and all workers: 
                    0 ( )social i i

i W i S
u u u V S c                    (3) 

We consider an incentive mechanism ( )M e, f, p  
consisting of a truth estimation function ( )e , a winner 
selection function ( )f , and a payment function ( )p . The 
function ( )e  estimates the truth et  for all tasks, and returns 
an accuracy matrix { }j

i n mAA , where j
iA is the accuracy of 

worker i for task jt , , ji W t T . The function ( )f  outputs 
the subset of workers S W . The function ( )p returns a 
vector 1 2( , , ..., )np p p  of payments to all winners.  

The objective of our incentive mechanism is maximizing 
the social welfare such that each task in T can be completed 
with accuracy no less than the accuracy requirement.  

Note that the problem of maximizing the social welfare is 
equivalent to the problem of minimizing the social cost (total 
cost of winners) since the value of ( )V S  is constant under the 
accuracy constraint. We refer to this problem as the Social 
Optimization Accuracy Coverage (SOAC) problem, which can 
be formulated as follows: 
   Objective:              Minimize i i

i S
c x                          (4) 

 Subject to:          ,j j
i i j

i W
A x t T                       (5) 

                                 {0,1},ix i W                             (6) 
where ix is the binary variable for each worker i W . Let

1ix if i is a winner; otherwise, 0ix . 

The constraint (5) represents the accuracy coverage for each 
task, which ensures that the total accuracy of all the winners 
for this task is no less than the accuracy requirement.  

B. Dependence Model of Workers 
We define the dependence of workers in Definition 1. 

Definition 1. (Dependence of workers) We say that there 
exists a dependence between any two workers i and i  if they 

derive the same part of their data directly from the other 
worker (can be one of i and i ).  

An independent worker provides all values independently. 
It may provide some erroneous values because of incorrect 
knowledge of the real world, mis-spelling, etc. We use 

'i iW W  to represent that workers i and i  are independent. 

A copier copies a part (or all) of data from other workers 
(independent workers or copiers). Let r be the probability that 
a value provided by a copier is copied. The copier can copy 
from multiple workers by union, intersection, etc. In addition, 
a copier may revise some of the copied values or add 
additional values. Such revised and added values are 
considered as independent contributions of the copier. For any 
two workers i and i , we denote i depending on i  by 'i i , 
and i  depending on i by 'i i , respectively. 

To make the computation tractable, we assume that the 
dependence of workers satisfies the following properties: 

 Independent copying: The dependence of any pair of 
workers is independent of the dependence of any other 
pair of workers. 

 No loop dependence: The dependence relationship 
between workers is non-transitive. 

 Uniform false-value distribution: For each task, there 
are multiple false values, and an independent worker has 
the same probability of providing each of them (we will 
remove this assumption in Section IV). 

C. Desirable Properties 
Our objective is to design an incentive mechanism 

satisfying the following desirable properties: 
 Computational efficiency: An incentive mechanism is 
computationally efficient if the truth estimation , the 
winner set S , and the payment vector  can be computed 
in polynomial time. 
 Individual Rationality: Each winner will have a non-
negative utility while bidding its true cost, i.e. 

0,  .iu i S  
 Truthfulness: An incentive mechanism is truthful if 
reporting the true cost is a weakly dominant strategy for all 
workers. In other words, no worker can improve its utility 
by submitting a false cost, no matter what others submit. 
 Social Optimization: The objective is minimizing the 
social cost. We attempt to find optimal solution or 
approximation algorithm with low approximation ratio 
when there is no optimal solution terminated in polynomial 
time. For the latter, the approximation ratio is the ratio 
between approximation solution and the optimal solution. 

III. TRUTH DISCOVERY 
In this section, we present our truth discovery algorithm 

DATE, which discovers the true values from conflicting 
information provided by multiple workers. DATE performs the 
following three steps (the details will be shown in subsection 
A, B, and C, respectively) illustrated by Fig.2 iteratively until 
the estimated truth does not change or the number of iteration 
exceed the maximum number of iterations ϕ . 



 
Fig. 2 Workflow of DATE 

A. Dependence Between the Workers 
We consider that there are two types of workers: 

independent workers and copiers. For any pair of workers 
, ' , 'i W i W i i , we apply Bayesian analysis to compute 

the probability that i and i  are dependent given the 
observation of data set D. For this purpose, we need to 
compute the probability of the observed data, conditioned on 
the dependence or independence of these two workers. 

We are interested in three sets of tasks: sT , the set of tasks 
on which i and i  provide the same true value; fT , the set of 
tasks on which they provide the same false values; dT , the set 
of tasks on which they provide different values. The true value 
can be obtained through the voting mechanism on data set D 
for each task initially. In the following iterations, the true 
value will be determined based on the estimated truth et. 

Intuitively, two independent workers providing the same 
false value is a rare event; thus, if we fix s fT TU and dT , the 
more common false values that i and i  provide are, the more 
likely they are to be dependent. On the other hand, if we fix  

sT and fT , the fewer tasks on which i and i  provide different 
values there are, the more likely they are to be dependent. We 
compute conditional probability of D based on this idea. 

We first consider the situation where the two workers i and 
i  are independent. Since there is only one true value, the 
probability that i and i  provide the same true value for task jt , 
denoted by j

sP for convenience, is  

          '( | ')j s j j
s j i iP P t T i i A A                             (7) 

where j
iA  and '

j
iA  are the accuracy of i and i  for task jt  

respectively. We set j
iA ε  for , ji W t T , (0,1)ε  be 

the default values initially, and iteratively refine them by 
computing the estimated values in later rounds of DATE. 

   Based on the assumption of uniform false-value distribution 
made in subsection II-B, any independent worker has the same 
probability of providing each false value of task jt . Thus, the 
probability that any worker i provides one false value for task  

jt  is 1 j
i
j

A
num

. Accordingly, the probability that i and i  provide 

the same false value for task jt , denoted by j
fP , is 

' '

( | ')
1 1 (1 ) (1 )

    

j f
f j

j j j j
j i i i i

j j j

P P t T i i
A A A A

num
num num num

            (8) 

Then, the probability that i and i  provide different values on 
task jt , denoted by j

dP , is  

         ( | ') 1
d

j d j j
j s fP P t T i i P P                           (9) 

Thus, the conditional probability of observing D is 
      ( | ')= s f d

j j j

j j j
s f dt T t T t T

P i i P P PD      (10)   

We next consider the situation where i and i  have the 
dependence relationship. There are two cases where i and i  
provide the same value for the task jt . First, with probability r, 
one copies the value from the other (there assumes i copies 
from i ) and so the value is true with probability '

j
iA   and false 

with probability '1 j
iA . Second, with probability 1 r , the 

two workers provide the value independently, and so the 
probability of being true or false is the same as that in the 
situation where i and i  are independent. Thus, when i copies 
from i  (similar for i  copying from i), we have 
          '( | ') (1 )s j j

j i sP t T i i A r P r                       (11) 

          '( | ') (1 ) (1 ),f j j
j i fP t T i i A r P r               (12) 

Finally, the probability that i and i  provide the different 
values on task jt  is the probability that i provides a value 
independently, and the value differs from that provided by i : 
                ( | ') (1 )d j

j dP t T i i P r                             (13) 

Thus, the conditional probability of observing D is 

'

'

 ( | ')
[ (1 )]

  [(1 ) (1 )] [ (1 )]
s

j

f d
j j

j j
i st T

j j j
i f dt T t T

P i i
A r P r

A r P r P r

D
   (14) 

We compute ( ' | )P i i D  accordingly: 

'

| | 1

'

( ' | )
( | ') ( ')=

( | ') ( ')+ ( | ') ( ')
1-=[1+( )

(1 )
1 ( ) ]

1(1 ) (1 )

s
j

d

f
j

j
s

j jt T
i s
j

f T
j jt T

i f

P i i
P i i P i i

P i i P i i P i i P i i
P

A r P r
P

rA r P r

α
α

D
D

D D

           

(15) 

where ( ')P i i  is the a priori probability that worker i and i  
are dependent. Let ( ') , ( ') (1 ),0 1P i i P i iα α α  
be the default values for every pair of workers initially, and 
iteratively refine them by computing the estimated values in 
later rounds of DATE. 

Note that the probability of i and i  providing the same true 
or false value is different with different directions of 
dependence. By applying the Bayesian rule, we can compute 
the probabilities of 'i i , 'i i , and 'i i  for any pair of 
workers i and i . 

B. Probability of Providing the Value Independently 
We have described how to detect the dependence of any 

pair of workers. However, it is possible that a copier provides 
some of the values independently, and it will be inappropriate 

N
o



to ignore the contribution of these values. Thus, we describe 
how to obtain the probability that any worker provides the 
value independently in this subsection. 

Note that the probability of dependence calculated by 
formula (15) is based on the whole data collected. To estimate 
the truth for each task, we should calculate the probability of 
providing each possible value independently. Obviously, it 
would take exponential time to enumerate all possible 
dependence for each value between all pairs of workers.  

To make the calculation scalable, we need a polynomial 
time algorithm. The basic idea is calculating the probability of 
providing each possible value v by considering the worker one 
by one for every task. For convenience, let jD  be the set of 
values of any task jt T . Let j

vW  be the set of workers who 
provide value v for any task jt T . The goal is to calculate 
the probability of any worker i to provide each possible value 
v of any task jt independently, denoted as ( )j

vI i . 

For each task jt T  and jv D , we denote an ordered set 
j

vW , and put the workers in j
vW  into j

vW  one by one. For each 

worker ,j j
v vi W i W , we compute the probability for i based 

on the dependence on the workers in j
vW . This method is not 

precise because if any worker i depends only on workers in 
\j j

v vW W  but some of those workers in \j j
v vW W depend on the 

workers in j
vW , our estimation still considers that the worker i 

provides the value independently.  

To minimize such error, we hope that both the probability 
that worker i depends on the workers in \j j

v vW W and the 

probability that the workers in \j j
v vW W  depend on the 

workers in j
vW  be the lowest. Thus, we take advantage of the 

greedy algorithm and consider workers in such order: In the 
first round, we select a worker 0

j
vi W that is associated with 

the highest dependence probability, and make the worker as 
the first one in ordered set j

vW ; In the later rounds, we select 
the worker that has the maximal dependence probability on 
one of the previously selected workers. This process ends 
when all workers are considered. 

Thus the probability that the worker 0i  provides value v of 
task jt  independently is 

0 0'
( ) (1 ( ' | ))j

v

j
v i W

I i r P i i D            (16) 

C. Accuracy and Truth Estimation 
We next consider how to compute the accuracy of a worker. 

A straightforward way is to compute the fraction of true 
values provided by the worker. However, we do not know 
which the true values are exactly. We instead compute the 
accuracy of a worker as the average probability of its values 
for any task jt T  being true. 

 

Algorithm 1: DATE 
Input: worker set W , task set T , data set D , copy 
probability r , initial accuracy ε , priori probability of 
dependence α , maximum number of iterations ϕ   
Output: estimated truth et, accuracy matrix A 
1:  for each i W  do 
2:      for each jt T  do ;j

iA ε  
3:      for each ' , . . 'i W s t i i   do  
4:         ( ') , ( ') (1 )P i i P i iα α ; 
5:      end for 
6:  end 
7:  0 ; 
8:  while et et'  and ϕ  do 
9:        for each jt T  do 

10:          for each  jv D  do j
zW ; 

11:      end for 
12:      et et' ; 

//Step1: Calculate the probability of dependence 
13:  calculate ( ' | )P i i D  for every pair of workers 

, ' , 'i i W i i  through formula (15) with et and A; 
           // Step2: Calculate the probability to provide a value 

independently 
14:      for each jt T  do 
15:          for each jv D  do 
16:             0

: , ' , '
arg min ( ' | ) ( ' | )

j
vi i i W i i

i P i i P i iD D ; 

17:             0{ }j
vW i ; 

18:             while | | | |j j
v vW W  do 

19:                 0
: \ , ' ,

arg max ( ' | )
j j j

v v vi i W W i W i i

i P i i D ; 

20:                 0 0'
( ) (1 ( ' | ))j

v

j
v i W

I i r P i i D ; 

21:                  0{ }j j
v vW W iU ; 

22:             end while 
                  // Step3: Estimate the accuracy and the truth 

23:            

'
'

1
( )

1

j
v

j
vj

j j
i

ji W
j i

j j
i

ji W
v D i

num A
A

P v
num A

A
 24:          end for               

25:          for each , . . j ii W s t t T  do 

26:               
( )

| |
j

i

j
v Dj

i j
i

P v
A

D
; 

27:          end for 

28:         ( )j
j v

j j j
i vi Wv D

et arg max A I i ; 

29:     end for 
30:     1 ; 
31: end while 



 Let j
iD  be the set of values of any task jt T  provided by 

worker i. For each j
iv D , we denote ( )jP v as the probability 

that v is true for any task jt T . We compute j
iA as follows: 

                         
( )

.
| |

j
i

j
v Dj

i j
i

P v
A

D
                                  (17) 

 Now we need a way to compute ( )jP v . Intuitively, the 
computation should consider both how many workers provide 
the value and the accuracies of those workers. We apply a 
Bayesian analysis again. 

We start with the case where all workers are independent. 
Consider a task jt T , for the observation jD  provided by 
each worker ji W , where jW is the set of workers who 
perform task jt , we first compute the probability of  jD
conditioned on z  being true. This probability represents that 
the workers in j

vW  provide the true value and the other 
workers in jW  provide one of the false values. 

          
\

1
( | ) j j j

v v

j
j j i

i ji W i W W

A
P D v is true A

num
            (18)  

Among the values in jD , there is one and only one true value. 
Applying the a-priori belief of each value being true is the 
same, denoted by β . We then have 

\

1
( ) ( )j j j

v vj

j
j j i

i ji W i W W
v D

A
P D A

num
β             (19) 

Applying the Bayesian rule, we have 

'
'

( | ) ( )( ) ( | )
( )

1

1

j
v

j
vj

j
j j

j

j j
i

ji W
i
j j

i
ji W

v D i

P D v is true P v is trueP v P v is true D
P D

num A
A

num A
A

   

                             
 (20) 

For the truth discovery, if a worker i copies a value v from 
other workers, we should ignore i when considering v as the 
truth. Thus, we adopt ( )j

v

j j
i vi W

A I i  as the support counts 

of value v for any task jt T , and find the value with the 
maximal support counts in jD . In the last round of DATE, the 
value with highest support counts is the final estimated truth.  

The whole process of DATE is illustrated in Algorithm 1. 

IV. TRUTH DISCOVERY FOR GENERAL CASES 

A. Discover the Truth with Multiple Presentations 
In some scenarios, part of workers may submit certain 

values in abbreviations, missing or incorrect spelling. These 
values mean the same thing, but without distinction, they will 
be treated as different values. For example, we should treat IT 
and Information Technology as the same value.  

We need a method to calculate the similarities between 
different values. For any task jt T , if any value ' jv D  is 

similar to  another value jv D , Intuitively, the workers that 
support for 'v  also implicitly support for v. Formally, we 
denote the similarity between v  and 'v  as ( , ') [0,1]sim v v , 
which can be converted to the similarity of  word vectors, and 
computed by Euclidean Distance, Pearson Correlation, 
Asymmetric Similarity, and Cosine Similarity,  etc.  

After computing the support counts of each value for any 
task jt T , we adjust it by considering the similarities 
between them as follows: 

'
' , ' ' \

( ) ( ') ( , ')
j j j j

v v

j j j j
i v i v

i W v D v v i W W

A I i A I i sim v vρ
  
(21)  

where [0,1]ρ  is a parameter controlling the influence of 
similar values. We then use the adjusted support counts for 
truth estimation (line 28 of Algorithm 1).   

B. Nonuniform false-value distribution 
So far, we have estimated the truth with the assumption of 

uniform false-value distribution made in subsection II-B. 
However, the false values of a task may not be uniformly 
distributed. For example, in the minds of most people, the 
capital of Australia is Sydney, but in fact, Canberra is its 
capital. The probability of false value of Sydney will be larger 
than other false values. 

We define ( ), [0,1],f h h as the percentage of false values 

whose distribution probability is h ; thus, 
1

0
( ) 1.f h dh Then, 

the probability that two false-value providers provide the same 

value is 
1 2

0
( )h f h dh instead of 21 1( ) j

j jnum
num num

. 

Accordingly, we revise formula (8) as 
1 2

0
( | ') (1 ) (1 ) ( )j f j j

f j i iP P t T i i A A h f h dh  (22) 
Similarly, we need to revise formula (18) as follows: 

1

0
ln ( ) | \ |

\

( | )

(1 )
j j

v

j j j
v v

j

df h W Wj j
i ii W i W W

P D v is true

A A e

   
            (23) 

V. REVERSE AUCTION DESIGN 
First, we attempt to find an optimal algorithm for the SOAC 

problem presented in equation (2) (4). Unfortunately, as the 
following theorem shows, the SOAC problem is NP-hard. 

Theorem 1. The SOAC problem is NP-hard. 
Proof: We consider a special case of SOAC problem, where 

the accuracy requirements for all tasks in T are the same. Let 
j  be sufficiently close to zero jt T . This means that, in 

this special case, any task jt T  can be completed upon there 

is any worker i W  with 0j
iA . In this way, the problem 

can be simplified as selecting a subset S W with minimum 
total cost such that the workers in S can perform every task in 
T. Since each worker can bid for a subset of T with a cost, this 
special problem is actually an instance of the Weighted Set 
Cover (WSC) problem. Since the WSC problem is a well-
known NP-hard problem, the SOTD problem is NP-hard.      ■ 



Since the SOAC problem is NP-hard, it is impossible to 
compute the winner set with minimum social cost in 
polynomial time unless P=NP. In fact, there is no (1 ) ln nε
approximate polynomial time algorithm for WSC problem [21]. 
In addition, we cannot use the off-the-shelf VCG mechanism 
[22] since the truthfulness of VCG mechanism requires that 
the social cost is exactly minimized. We design our reverse 
auction, which follows a greedy approach. Illustrated in 
Algorithm 2, our reverse auction consists of winner selection 
phase and payment determination phase.  

In the winner selection phase, the workers are sorted 
according to the effective accuracy unit cost, which is defined 

as
min{ ', }

j i

i
j j

it T

b
A

 

for any worker i W . In each iteration 

of the winner selection phase, we select the worker with 
minimum effective accuracy unit cost over the unselected 
worker set \W S  as the winner until the winners’ accuracy 
can cover the accuracy requirement for each task in T . 

Algorithm 2:Reverse Auction 
Input: task set T , bid profile B , worker set W ,  
accuracy requirement profile , accuracy matrix A 
Output: winner set S, payment p 
//Winner Selection Phase 
1:  , ' ;S  
2:  while ' 0

j

j
t T

do 

3:     \arg min
min{ ', }

j k

k
k W S j j

kt T

b
i

A
; 

4:    { }S S iU ; 
5:    for each j it T do 
6:        ' ' min{ ', }j j j j

iA ; 
7:    end for 
8:  end while 
//Payment Determination Phase 
9:  for each i W do 0ip ; 
10:for each i S do 
11:   ' \{ }, ' , ''W W i S ; 
12:   while '' 0

j

j
t T

do 

13:       '\ 'arg min
min{ '', }

j k

k
k k W S j j

kt T

b
i

A
; 

14:      ' ' { }kS S iU ; 

15:      
min{ '', }

max{ , }
min{ '', }

j i

k

kj ik

j j
it T

i i ij j
it T

A
p p b

A
; 

16:       for each
kj it T do 

17:          '' '' min{ '', }
k

j j j j
iA ; 

18:      end for 
19:   end while 
20:end for 

In payment determination phase, for each winner Si , we 
execute the winner selection phase over \{ }W i , and denote 
the winner set as 'S . We compute the maximum price that 
worker i  can be selected instead of each worker in 'S . We 
will prove that this price is a critical value for worker i  later. 

VI. MECHANISM ANALYSIS 
In the following, we present the theoretical analysis, 

demonstrating that IMC2 can achieve the desired properties. 

Lemma 1. IMC2 is computationally efficient. 
Proof: The running time of Algorithm 1 is dominated by the 

while loop for sorting the workers in j
zW  (line 18-22), which 

takes  2( )O n  since there are at most n workers in  j
zW . Since 

DATE executes the sorting for each value of each task, and the 
maximal number iteration is ϕ , DATE is bounded by

2

1,2,...,
( max { })j

j m
O n m numϕ . 

For Algorithm 2, finding the worker with minimum 
effective accuracy unit cost takes ( )O nm , where computing 
the value of min{ ', }

j k

j j
kt T

A  takes ( )O m . Hence, the 

while-loop (line 2-8) takes 2( )O n m . In each iteration of the 
for-loop (line 10-20), a process similar to line 2-8 is executed. 
Hence the time complexity of the whole reverse auction is 
dominated by this for-loop, which is bounded by 3( )O n m .     ■ 

Lemma 2. IMC2 is individually rational. 
Proof: Let ik be worker i’s replacement which appears in 

the ith place in the sorting over \{ }W i . Since worker ik would 
not be at ith place if i is considered, we have

min{ ', } min{ ', }
k

kj i j ik

ii
j j j j

i it T t T

bb
A A

. Hence 

min{ ', } min{ '', }

min{ ', } min{ '', }
j i j i

k k

k kj i j ik k

j j j j
i it T t T

i i ij j j j
i it T t T

A A
b b b

A A
,  

where the equality relies on the observation that ' ''j j  
for every k i, which is due to the fact that 'S S  for every k i. 
This is sufficient to guarantee

\ '

min{ '', }
max

min{ '', }
j i

k W S k

kj ik

j j
it T

i i ij j
it T

A
b b p

A
                             ■ 

Before analyzing the truthfulness of IMC2, we first 
introduce the Myerson’s Theorem [23]. 

Theorem 2. ([24, Theorem 2.1]) An auction mechanism is 
truthful if and only if: 

 The selection rule is monotone: If worker i wins the 
auction by bidding bi, it also wins by bidding 'i ib b ; 
 Each winner is paid the critical value: Worker i would 

not win the auction if it bids higher than this value. 

Lemma 3. IMC2 is truthful. 
Proof: Based on Theorem 2, it suffices to prove that the 

selection rule of IMC2 is monotone and the payment pi for 
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incentive to the workers. Jin et al. propose an integrated 
framework for multi-requester mobile crowdsourcing, 
CENTURION [29], consisting of a truth discovery mechanism 
and an incentive mechanism. However, they don’t consider 
the crowdsourcing systems with copiers.  

B. Quality-aware Incentive Mechanims in Crowdsourcing 
Various quality-aware incentive mechanisms have been 

proposed for crowdsourcing systems. Jin et al. propose 
INCEPTION [16], a system framework that integrates the 
incentive, data aggregation, and data perturbation. Wang et al. 
study the problem of measuring workers’ long-term quality, 
and they propose MELODY [17]. Wen et al. propose an 
incentive mechanism based on a Quality Driven Auction [18], 
where the worker is paid off based on the quality of sensed 
data instead of working time. Jin et al. design an incentive 
mechanisms based on reverse combinatorial auctions, and 
incorporate the Quality of Information (QoI) of workers into 
the incentive mechanism [19]. However, none of these studies 
considers the dependence of workers.  

Overall, there is no off-the-shelf mechanism in the literature, 
which considers both dependence and accuracy of workers. 

IX. CONCLUSION 
In this paper, we have designed a two-stage incentive 

mechanism for truth discovery in crowdsourcing with copiers. 
In truth discovery stage, we calculate the dependence for each 
pair of workers based on the Bayesian analysis, and estimate 
the truth for each task based on both the dependence and 
accuracy of workers. In reverse auction stage, we develop a 
greedy algorithm to maximize the social welfare such that all 
tasks can be completed with the least confidence for truth 
discovery. We have demonstrated that the proposed incentive 
mechanisms achieve computational efficiency, individual 
rationality, truthfulness, and guaranteed approximation. 
Moreover, our truth discovery method shows prominent 
advantage in terms of precision. 
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