
Information Filter Occupancy Mapping using Decomposable Radial

Kernels

Siwei Guo and Nikolay A. Atanasov

Abstract— Building occupancy maps of the environment
is a fundamental problem for robot autonomy. A common
assumption in early work was that the occupancy states of
different map elements are independent. Recently, Gaussian
Process (GP) techniques were proposed to capture correlation,
which is important not only for improved accuracy but also for
uncertainty quantification and autonomous exploration based
on the predicted occupancy of nearby unexplored areas. Despite
these desirable properties, current GP mapping techniques are
limited to small maps and slow inference speeds. This paper
proposes an information space formulation of the GP mapping
problem. If a decomposable radial kernel is evaluated over a la-
tent grid of pseudo-input points, the resulting kernel matrix has
a Kronecker-product-of-Toeplitz-matrices structure that allows
very efficient representation of the occupancy distribution. We
utilize this structure to design an information filter occupancy
mapping algorithm with linear time and memory complexity
that still permits continuous space observations and predictions.

I. INTRODUCTION

Modern robots are equipped with sensors able to provide

overwhelming amounts of data within seconds. Interpreting

the data and extracting a concise representation of a robot’s

surroundings is a key problem in robot autonomy. In this

paper, we focus on building large occupancy maps using

point cloud observations from LIDAR or depth camera

sensors. A common approach is to describe the environment

as a collection of volumes, each associated with a binary

variable, indicating whether the volume is occupied or free.

There exist efficient methods for dense occupancy map-

ping, including mesh-based [1]–[3], voxel-based [4]–[6], and

surface-based [7]–[10] techniques. All of these techniques

make the assumption that the occupancy states of different

map elements are independent. A primary objectives of this

work is to model correlation among map elements, not only

to improve accuracy but also to predict the visibility and

geometric structure of nearby unexplored areas, which is

important for autonomous exploration [11]–[13].

Maintaining correlation in occupancy maps has been con-

sidered by several recent works relying on Gaussian Process

(GP) classification and regression [14]–[17]. GP occupancy

mapping approaches rely on a kernel function to model

correlation and allow resolution-free occupancy estimation.

GP classification [18, Ch. 3.3] deals accurately with the hy-

brid nature of the problem, involving discrete measurements

We gratefully acknowledge support from ARL DCIST CRA W911NF-
17-2-0181 and NSF NRI CNS-1830399.

S. Guo is with Brain Corp, San Diego, CA 92093, USA
guo@braincorporation.com. N. Atanasov is with the Depart-
ment of Electrical and Computer Engineering, University of California San
Diego, CA 92093, USA natanasov@ucsd.edu

(occupied or free) and a continuous occupancy function.

However, due to the non-Gaussian measurement likelihood,

the posterior distribution of the occupancy function cannot

be determined analytically and has to be approximated with

an assumed density [19], [20] or iterative methods such as

Laplace approximation [21] or expectation propagation [22].

O’Callaghan et al. [14], [23], [24] recognized that GP

regression can be used to estimate the latent occupancy

function using Gaussian measurements and its posterior can

be squashed to a binary (free-occupied) observation model

only afterwards. The resulting probabilistic least-squares

method is simpler and more efficient than GP classification

with negligible loss in accuracy. Despite this, the computa-

tional complexity of GP mapping scales cubically with the

number of sensor measurements since the matrix of kernel

correlations among different measurement locations needs to

be inverted in the inference process.

Several fundamental techniques [25], [26], involving

sparse kernels and matrix factorization, have been proposed

to enable efficient inversion of the covariance matrix. Spe-

cific to occupancy mapping, Kim and Kim [16], [27], [28]

use a sparse kernel and Bayesian Committee Machines

(BCM) to perform small GP regressions with subsets of the

training data. Similarly, Wang and Englot [17] partition the

measurement data among several GP regressions and use

BCM to fuse the sensor-level regressions into a full map.

Ramos et al. [29] proposed fast kernel approximations to

project the occupancy data into a Hilbert space where a lo-

gistic regression classifier can distinguish occupied and free

space. This idea has been extended to dynamic maps [30]

as well as into a variational autoencoder formulation [31]

that compresses the local spatial information into a latent

low-dimensional feature representation and then decodes it

to infer the occupancy of a scene. These GP techniques have

demonstrated a key ability to propagate a joint occupancy

distribution but still have time and memory complexity limi-

tations when large maps are considered. Variational inference

techniques [32], [33] to choose a sparse set of inducing

points [34], [35] that summarize the full GP model have been

proposed but have not been applied to occupancy mapping.

The main contribution of this paper is an approach for

storing and updating a joint map occupancy distribution in

terms of a Gaussian information vector and information ma-

trix over a latent grid structure of inducing points. Similar to

other GP occupancy mapping techniques, our representation

can be updated from continuous-space occupancy observa-

tions and can predict the occupancy values of continuous-

space query points. In contrast to BCM techniques that

consider independent decompositions of space, our approach

avoids independence assumptions by computing kernel cor-

relations from the inputs and query points to a global

latent grid structure. Maintaining the joint distribution over

a large grid is possible due to two key insights. First,

the kernel matrix, associated with kernels that decompose

across dimensions, and its inverse can be computed over

a grid as the Kronecker product of kernel matrices of

one-dimensional kernels. Second, approximating the latent

occupancy values over a grid using GP regression is exactly

equivalent to information filtering with particularly simple

parameter updates. These observations allow us to design an

Information Filter Occupancy Mapping (IFOM) algorithm

whose memory complexity of storing and time complexity

of updating the information space parameters of the joint oc-

cupancy distribution is linear both in the number of grid cells

and in the number of sensor observations. The structure of

decomposable kernels has recently been exploited by [36]–

[38] to design scalable GP inference but these ideas have

not been applied to occupancy mapping and have not been

associated with information filtering.

II. PROBLEM FORMULATION

Let X (d) := [x(d), x̄(d)] be a closed interval in R and

let X := X (1) × · · · × X (D) ⊂ R
D be a closed rectangle

in D-dimensional Euclidean space that we are interested in

mapping. The occupancy of a location x ∈ X is specified

by a latent function f : X → R that assigns a free label

y = −1 or an occupied label y = 1 according to a Bernoulli

probability mass function (pmf):

p(y | f(x)) = Φ

(

yf(x)

σ

)

, y ∈ {−1, 1} (1)

where Φ(z) is the probit function, i.e., the cumulative dis-

tribution function of a standard Gaussian, and σ is a scaling

parameter. The probit1 serves to squash the continuous range

of f(x) into a range [0, 1] representing a valid pmf.

Problem (Occupancy Mapping). Given a set of occupancy

measurements, D := {(x(t), y(t)) | x(t) ∈ X , y(t) ∈
{−1, 1}, t = 1, . . . , T}, generated from the observation

model (1), construct an approximation f̂ : X → R of the

latent occupancy function f .

III. BACKGROUND

Consider a linear model f(x) := ω
Tx, where ω ∈ R

D is

a vector parameterizing f . The occupancy y∗ ∈ {−1, 1} of

an arbitrary location x∗ ∈ X can be predicted based on the

available observations D via:

p(y∗ | x∗,D) =

∫

p(y∗ | x∗,ω)p(ω | D)dω, (2)

1Another usual choice of a squashing function is the sigmoid
(

1 + e−z
)

−1
. We chose the probit Φ(z) because it allows us to establish

a clear connection between classification and regression in Sec. III and
to compute integrals

∫

Φ(z)φ(z)dz with respect to the Gaussian density
function in closed form.

where p(y∗|x∗,ω) = Φ(y∗ω
Tx∗/σ) based on (1).

Thus, the classification problem reduces to approxi-

mating the posterior parameter distribution p(ω|D) ∝
∏T

t=1 Φ(y(t)ω
Tx(t)/σ)p(ω) based on the data D and a

given (usually Gaussian) prior p(ω) over the parameters.

Instead of a linear model, state-of-the-art classification

techniques use more complex models for f such as neural

networks [39] or Gaussian processes [18]. In this paper,

we focus on GP models, which use a kernel function k :
X × X → R to capture correlation among the environment

locations. A common kernel choice is the Gaussian radial

basis function:

kRBF (x,x
′) := b exp

(

−
1

2
(x− x′)TS−1(x− x′)

)

(3)

with hyperparameters b ∈ R>0 and diagonal positive-

semidefinite S ∈ R
D×D controlling the amplitude and

wiggliness. Other kernel choices include Matérn kernels, γ-

exponential kernels, piecewise polynomial kernels, etc. [18,

Ch. 4.2]. The kernel is used to place a GP prior on the

latent occupancy function f ∼ GP(0, k), which means that

its values f := [f(x(1)) · · · f(x(T))]T over the training

set, before taking the observations y := [y(1) · · · y(T)]T

into account, have a Gaussian distribution p(f) = φ(f ;0,K)
with mean 0 and covariance matrix K ∈ R

T×T with

elements Kij := k(x(i),x(j)). As in the linear model

case, since the observation model (1) is non-Gaussian, the

main challenge is to compute the posterior distribution

p(f |D) ∝
∏T

t=1 p(y(t) | f(x(t)))p(f) and subsequently the

integral in (2). The posterior is usually approximated via a

Gaussian distribution using Laplace approximation [21] or

expectation propagation [22] and, in turn, the integral in (2)

can be computed in closed form (see eq. (15)). While GP

classification uses a theoretically sound model and leads to

accurate results, the posterior approximation may be very

computationally demanding for large training sets.

Several authors [14], [16], [17], [28] proposed the use of

GP regression instead of GP classification in the context of

occupancy mapping. This can be justified by interpreting the

observation model (1) as follows:

y = sgn(f(x) + ǫ), ǫ ∼ N (0,σ2) (4)

where sgn is the sign function. This model is equivalent to

the model in (1) since:

P(y = 1 | f(x)) = P(ǫ > −f(x)) = Φ(f(x)/σ). (5)

Hence, instead of using classification, one can pretend that

the occupancy measurements y(t) are direct observations of

f(x(t)) perturbed by Gaussian noise ǫ, apply GP regression

to estimate f , and squash its value to Φ(f(x∗)/σ) only after

the inference process. More precisely, for an arbitrary query

x∗(1), . . . ,x∗(M) ∈ X , the joint distribution of y and f∗ :=
[f(x∗(1)) · · · f∗(x(M))]T is:

[

y

f∗

]

∼ N

(

0,

[

K + σ2I K∗

KT
∗

K∗∗

])

(6)

where K∗ ∈ R
M×T is a matrix with elements [K∗]ij :=

k(x∗(i),x(j)) and K∗∗ ∈ R
M×M is a matrix with elements

[K∗∗]ij := k(x∗(i),x∗(j)) [18]. The posterior computed via

GP regression is the distribution of f∗ conditioned on y and

can be obtained from (6) via Schur complementation:

f∗|D ∼ N
(

K∗(K + σ2I)−1y,K∗∗ −K∗(K + σ2I)−1KT
∗

)

.

IV. TECHNICAL APPROACH

GP regression is a non-parametric method and inference

requires storing all training data D as seen in the expression

for f∗|D above. We propose the following steps to make

the inference in occupancy mapping problems significantly

less computationally and memory demanding with negligible

accuracy loss. First, instead of storing all training data D,

we introduce a latent finite grid C ⊂ X and only keep

a distribution over the N values f# ∈ R
N of the grid

points x# ∈ C. This is similar to the idea of pseudo-

inputs in sparse GP regression [40] but instead of opti-

mizing the pseudo-input positions we keep a fixed grid. A

latent grid is well-suited for mapping because the kernel

matrix resulting from a decomposable radial kernel evaluated

over the grid C has a special Kronecker-product-of-Toeplitz-

matrices structure (Sec. IV-A). This allows very efficient

storage of the map distribution even for large environments.

Second, approximating the finite set of values f# using GP

regression is equivalent to Kalman filtering and, in turn,

to information filtering [41]. Hence, one can propagate the

latent function distribution in information form, which is

exact, memory and computationally efficient, and can still

be updated from continuous-space measurements (Sec. IV-

B). The trade-off is that to compute the predictive pmf in (2),

one needs to recover the latent mean and covariance of f#,

which is the main computational challenge for our approach.

Our motivation is that recovering the whole map mean and

covariance is not necessary during online mapping because

map uncertainty can be evaluated using the information

matrix, while collision checking can be performed locally

by only recovering small portions of the mean (Sec. IV-C).

These observations leads to our IFOM algorithm (Sec. IV-D).

A. Kronecker and Toeplitz kernel structure

To motivate the choice of a latent pseudo-point grid C, we

analyze the structure of the kernel matrix that arises when

a decomposable radial kernel is evaluated over the grid. We

make the following assumption throughout the paper.

Assumption 1. The kernel function is decomposable into a

product of one-dimensional kernels,

k(x,x′) =
D
∏

d=1

k(d)
(

x(d),x′(d)
)

, (7)

and each k(d)
(

x(d),x′(d)
)

is radial, i.e., its value depends

only on the distance |x(d) − x′(d)| between its inputs.

This assumption means that the correlation between the

occupancy of two points in X is independent along the

axes in 3-D space, while the per-axis correlation depends

only on distance. This is a weak assumption that only states

that strong correlation along one direction does not imply

correlation along another direction. It is general enough to

capture correlations along different orientations of structures

in the environment but one set of kernel hyperparameters

might not capture different parts of the environment well

(e.g., vertical hallways vs diagonal hallways). Many com-

monly used kernels satisfy this assumption. For example,

the Gaussian kernel in (3) with b =
∏D

d=1 b
(d) and S =

diag
(

s(1), . . . , s(D)
)

is radial and decomposable:

kRBF (x,x
′) =

D
∏

d=1

b(d) exp

(

−

(

x(d) − x′(d)
)2

2s(d)s(d)

)

. (8)

Remark. We emphasize that Assumption 1 does not preclude

the use of automatic relevance determination [18] for opti-

mization of the kernel hyperparameters. For example, it per-

mits the use of a Gaussian kernel with ellipsoidal covariance.

Rather than hyperparameter optimization, this paper focuses

on efficient online training, storage, and inference.

Let X (d) be discretized into a finite grid ∪n
(d)

k=1[x
(d) +

(k − 1)r(d),x(d) + kr(d)] with n(d) cells and resolution

r(d) := (x̄(d) − x(d))/n(d). Let C(d) := {c
(d)
k | c

(d)
k =

x(d) + r(d)(k − 1/2), k = 1, . . . ,n(d)} be the set of cell

centers. Finally, let C := C(1) × · · · × C(D) = {xi | x
(d)
i =

c
(d)
s(i,d), d = 1, . . . D} be the set of voxel centers in R

D,

where the function s(i, d) maps an index i ∈ {1, . . . , N}
with N :=

∏D
d=1 n

(d) to subindices in each dimension. Due

to Assumption 1, the matrix K## ∈ R
N×N resulting from

evaluating a decomposable kernel k over all pairs of grid

points x#,x
′

∈ C has a Kronecker product structure:

K## =

D
⊗

d=1

K
(d)
##, i.e., [K##]ij =

D
∏

d=1

[

K
(d)
##

]

s(i,d),s(j,d)

(9)

where K
(d)
##∈R

n
d×n

d

is the matrix associated with k(d). This

observation has been exploited by [36], [37], [42] to design

GP learning and inference algorithms with O(DN1+1/D)
time and O(DN2/D) memory complexity. The Kronecker

structure of K## carries over to LDLT and eigendecom-

positions2 and hence K−1
=

⊗D
d=1

(

K
(d)
##

)

−1

. If in

addition k(d) is radial, the matrices K
(d)
are Toeplitz

with constant diagonals, [K
(d)
##]ij = [K

(d)
##]i+1,j+1. The

Toeplitz structure can be exploited for GP inference [43],

[44] with O(n(d) logn(d)) computational complexity. For

our purposes, it allows efficient storage and inversion of

K
(d)
##. A symmetric Toeplitz matrix and its inverse are also

persymmetric (symmetric with respect to the northeast-to-

southwest diagonal) and hence only 1
4n

(d)n(d) elements

need to be stored. Also, a symmetric Toeplitz matrix can

be inverted using 2n(d)n(d) operations via the Trench al-

gorithm [45]. For a Gaussian kernel matrix, this can be

improved to 1
2n

(d)n(d) operations [46].

2One can compute K## = QV QT by combining the eigendecomposi-

tions of the small K
(d)
via Q =

⊗D
d=1 Q

(d) and V =
⊗D

d=1 V
(d).

Finally, we note that for a radial and monotone decreasing

kernel, such as the Gaussian RBF, the correlation, k(x,x#),
between a query point x ∈ X and a grid point x# ∈ C is

approximately zero when ‖x−x#‖ is larger than a threshold.

In this case, both the vector kT
:= [k(x,x1), . . . , k(x,xN)]

for xi ∈ C and the matrix K## can be assumed sparse.

B. Equivalence between Gaussian Processes and Kalman

filtering on finite spaces

The special structure of the kernel matrix for a radial

decomposable kernel discussed in Sec. IV-A, motivates an

occupancy mapping approach which uses the continuous-

space online observations (x(t), y(t)) to efficiently update

and store a distribution over the latent grid values f# and

subsequently predict the labels y∗ of continuous-space query

points x∗(1), . . . ,x∗(M) based on f#. Consider the relation-

ship between an observation (x, y) and f#. Since f(x) and

f# are jointly Gaussian with zero mean and covariance given

by the kernel matrix:

p(y | x, f#) =

∫

p(y | f(x))p(f(x) | f#)df(x)

=

∫

Φ

(

yf

σ

)

φ
(

f ;kT
#K

−1
##f#, k(x,x)− kT

#K
−1
##k#

)

df

= Φ





ykT
#K

−1
##f#

√

k(x,x)− kT
#K

−1
##k# + σ2



 . (10)

Using the interpretation in (4), we can pretend that the label

y is a direct observations of the latent values:

y = kT
#K

−1
##f# + ǫ(x) ǫ(x) ∼ N (0,λ(x) + σ2) (11)

where λ(x) := k(x,x) − kT
#K

−1
##k#. Then, GP regression

and Kalman filtering are equivalent.

Proposition 1. Suppose that the observations (x(t), y(t)) ∈
D are obtained according to the observation model in (11).

Then, the posterior distribution p(f# | D) of the latent values

over the grid points x# ∈ C computed via GP regression with

zero prior mean and kernel k is exactly equal to the posterior

distribution computed by a Kalman filter with prior mean 0

and prior covariance K## ∈ R
N×N .

Proof. The joint distribution of y and f# is:
[

y

f#

]

∼ N

(

0,

[

K + Λ+ σ2I K#

KT
K##

])

(12)

where K# ∈ R
T×N is a matrix with elements [K#]t,j :=

k(x(t),x#(j)) and Λ ∈ R
T×T is a diagonal matrix with

Λtt := λ(x(t)). The distribution of f#|D computed via GP

regression is obtained via Schur complementation:

N
(

K#(K + Λ+ σ2I)−1y,K## −K#(K + Λ+ σ2I)−1KT
#

)

.

Let H ∈ R
T×N be a matrix whose t-th row is kT

#K
−1
##.

Given observations y = Hf# + ǫ with noise ǫ ∼ N (0,Λ+
σ2I), the Kalman filter posterior over f# is:

f# | D ∼ N (Gy,K## −GHK##) (13)

where G := K##H
T
(

HK##H
T + Λ+ σ2I

)

−1
is the

Kalman gain. Note that K = HK##H
T and K# =

K##H
T , which shows that (13) is equivalent to the GP

posterior.

Since Kalman filtering is also equivalent to information

filtering, Prop. 1 allows us to maintain the latent function

distribution in information form f#|D ∼ N (Ω−1
ν,Ω−1):

ν = K−1
##K

T
#(Λ+ σ2I)−1y

Ω = K−1
+K−1

##K
T
#(Λ+ σ2I)−1K#K

−1
##.

(14)

Once the parameters ν, Ω of the posterior of f# are computed

based on the data D, we can predict the label y∗ at an

arbitrary continuous-space location x∗ ∈ X , as follows:

p(y∗ | x∗,D) =

∫

p(y∗ | x∗, f#)p(f# | D)df#

=

∫

Φ

(

y∗k
T
#K

−1
##f#

√

λ(x∗) + σ2

)

φ
(

f#;Ω
−1

ν,Ω−1
)

df#

= Φ





y∗k
T
#K

−1
##Ω

−1
ν

√

λ(x∗) + σ2 + kT
#K

−1
##Ω

−1K−1
##k#





(15)

Close inspection of (14) and (15) reveals that it is sufficient to

represent the distribution of f#|D using simpler parameters:

γ := KT
#(Λ+ σ2I)−1y

Γ := KT
#(Λ+ σ2I)−1K#

(16)

whose relationship to the information space parameters ν,

Ω, the regular parameters µ, Σ, and the pmf p(y∗|x∗,D) is:

ν = K−1
##γ Ω = K−1

(K## + Γ)K−1
##

µ = K## (K## + Γ)
−1

γ Σ = K## (K## + Γ)
−1

K##

p(y∗ | x∗,D) = Φ





y∗k
T
(K## + Γ)

−1
γ

√

λ(x∗) + σ2 + kT
(K## + Γ)

−1
k#





Instead of a batch update with all measurements at once, the

γ and Γ parameters can be updated sequentially:

γt+1 = γt +
k#,ty(t)

λ(x(t)) + σ2

Γt+1 = Γt +
k#,tk

T
#,t

λ(x(t)) + σ2

for t = 1, . . . , T (17)

with γ1 = 0 ∈ R
N and Γ1 = 0 ∈ R

N×N . We emphasize that

γt and Γt can be stored and updated with linear complexity

in T and N as long as the kernel function k is decomposable,

radial, and monotone decreasing. In detail, k#,t is sparse as

mentioned in Sec. IV-A and can be computed in O(1) by

looking up the grid cells within a distance threshold from

x(t). The inverse kernel matrix satisfies:

[

K−1
##

]

ij
=

D
∏

d=1

[

(

K
(d)
##

)

−1
]

s(i,d),s(j,d)

(18)

and λ(x(t)) can be computed in O(1) by precomputing the

small kernel matrices
(

K
(d)
##

)

−1

. Hence, computing γT+1

and ΓT+1 has time complexity O(T). Storing γt and Γt has

memory complexity O(N) because Γt has the same sparisty

structure as K## for a radial, monotone decreasing kernel.

Storing the inverse kernel matrices
(

K
(d)
##

)

−1

has complex-

ity O(maxd n
d) which is dominated by O(N). Thus, storing

and updating the distribution of f# in terms of γt and Γt

has linear memory complexity in the number of grid cells N
and linear time complexity in the number of observations T .

C. Occupancy prediction

If predicted occupancy values are needed, the expression

for p(y∗|x∗,D) above needs to be evaluated. This is the main

computational challenge for our method since it requires

computing (K## + Γ)
−1

γ and (K## + Γ)
−1

k#. While

(K##+Γ) is sparse it may be giant for large maps and using

Cholesky or QR factorization is not feasible. Instead, we

use the conjugate gradient (CG) method [47] – an iterative

algorithm for solving linear systems defined by symmetric

positive-definite matrices. The advantage of CG is that it

maintains only matrix-vector products during its iterations,

making it scalable to very large systems. The main CG

computation is repeated multiplication of (K##+Γ) with a

conjugate direction vector p, which may be computed effi-

ciently due to the sparsity of (K##+Γ). For completeness,

we include the CG method in Alg. 1.

If instead of the occupancy likelihood p(y∗|x∗,D), it is

only necessary to tell if a query point x∗ is occupied, i.e.,

if p(1|x∗,D) > 1
2 , then it is sufficient to compute only

(K## + Γ)
−1

γ because Φ(x) > 1
2 ⇔ x > 0 and since the

denominator in the expression for p(y∗|x∗,D) is positive:

y∗ = 1 ⇔ kT
(K## + Γ)

−1
γ > 0 (19)

As a result, a complete occupancy grid map at an arbitrary

resolution can be obtained by a single call to Alg. 1 to

compute (K## + Γ)
−1

γ. Given γ ∈ R
N , Γ ∈ R

N×N ,

due to the sparsity of (K## + Γ), obtaining a map with M
elements via the CG algorithm has complexity O(LMN)
where L is the number of CG iterations. Computing the

occupancy likelihood p(y∗|x∗,D) requires a second call to

Alg. 1 to obtain kT
(K## + Γ)

−1
k# but due to sparsity in

k#, a much smaller matrix and vector can be provided.

Predicting occupancy values over the whole latent grid

is much more computationally demanding than propagating

the information space distribution of f#. Our motivation for

using an information space representation is that recovering

the occupancy values of the whole map is not necessary

during online mapping. Instead, only the occupancy values

of a small set of query points may be needed for collision

checking, while the complete map can be recovered offline.

We propose an approximation to K∗#(K## + Γ)−1γ that

may be used to predict a subset of the occupancy values for

the purpose of collision checking much more efficiently than

CG. Exploiting the kernel matrix sparsity, suppose that the

points in the query set x∗(1), . . . ,x∗(M) are close only to

a small subset A of the latent grid C, while the remaining

grid points B ⊂ C are far enough that k(x∗(i),x#) ≈ 0 for

Algorithm 1 Conjugate Gradient Method

1: Input: symmetric positive-definite A ∈ R
N×N , b ∈ R

N

2: Output: µ = A−1b ∈ R
N

3: µ = 0, r = p = b

4: loop

5: q = Ap, ρ = rT r, α = ρ

pT q

6: µ = µ+ αp, r = r− αq, p = r+ rT r
ρ

p

i ∈ {1, . . . ,M} and x# ∈ B. Let A := (K## + Γ) and

decompose µ := A−1
γ as follows:

[

µA

µB

]

=

[

AA,A AA,B

AT
A,B AB,B

]−1 [
γA

γB

]

. (20)

We only need µA to predict the occupancy values of the

query set. Using the block matrix inversion lemma:

µA =
(

AA,A −AA,BA
−1
B,BAA,B

)

−1 (

γA −AA,BA
−1
B,BγB

)

Assuming that A is a small subset of C, the above expression

can be computed efficiently as long as A−1
B,B is available. We

use a diagonal-matrix approximation to A−1
B,B.

Proposition 2. Let A be a symmetric positive definite

matrix. The diagonal matrix D that best approximates A−1

according to the Frobenius norm (minD ‖AD−I‖2F) satisfies

Dii =
Aii∑

M
j=1 A2

ij

.

Proof. Taking the gradient of and equating it to 0 leads to:

0 = ∇Λ tr
(

(AD − I)(AD − I)T
)

= 2 tr(A2D +A)

which is satisfied as long as Dii =
Aii∑

M
j=1 A2

ij

.

Based on Prop. 2, we can check the occupancy of a query

point x∗ approximately via:

kT
AµA ≈ kT

A (AA,A −AA,BDB,BAA,B)
−1

(γA −AA,BDB,BγB)

where kA is a vector with elements k(x∗,x#) for x# ∈ A.

D. Information filter occupancy mapping

In this section, we use the main results to design an

information filter occupancy mapping algorithm (Alg. 2).

Given the grid discretization and the kernel hyperparameters,

the algorithm is initialized by precomputing the Toeplitz ma-

trices K(d) and their inverses (line 3). Online, the distribution

of the latent function f# is propagated in information form

by accumulating occupancy measurements (line 4). When the

occupancy states of query points x∗ need to be recovered,

the the CG method is used to compute the latent mean µ

(Alg. 1) and to obtain the label y∗ according to (19) (line

7). As mentioned earlier, if p(y∗|x∗,D) is desired another

call to Alg. 1 or an approximation based on Prop. 2 is

needed to compute kT
#(K## + Γ)−1k#. As discussed in

Sec. IV-C, the occupancy state and likelihood computations

can be approximated efficiently if the query set is small and

localized in the same portion of the map, as it is the case for

collision checking. As discussed at the end of Sec. IV-B, as

long as the kernel k is decomposable, radial, and monotone

decreasing, the overall memory and time complexities of

Alg. 2 are O(N) and O(LMN+T), where T is the number

Algorithm 2 Information Filter Occupancy Mapping

1: Input: latent grid size n ∈ R
D and resolution r ∈ R

D , RBF kernel
amplitudes b ∈ R

D and standard dev. s ∈ R
D , observation noise

standard dev. σ ∈ R, occupancy observations D = {x(t), y(t)}Tt=1
2: Output: occupancy states {y∗(i)} for a set {x∗(i)} of M query points

3:
{

K##,
(

K
(d)
##

)

−1}

= INITIALIZE(n, r, b, s)

4: γ, Γ = ADDOBSERVATIONS(D, σ)
5: µ = CONJUGATEGRADIENTMETHOD(K## + Γ, γ) ⊲ Alg. 1
6: for i = 1, . . . ,M do

7: y∗(i) = PREDICTOCCUPANCY(µ, x∗)

8: return {y∗(i)}
9:

10: function INITIALIZE(n, r, b, s)
11: for d = 1, . . . , D do

12: a(d) := exp
(

−r(d)r(d)

2s(d)s(d)

)

13: Compute K
(d)
and

(

K
(d)
##

)

−1

14: K## =
⊗D

d=1 K
(d)
⊲ sparse matrix

15: function ADDOBSERVATIONS(D, σ)
16: γ1 = 0, Γ1 = 0

17: for t = 1, . . . , T do

18: γt+1 = γt +
k#,ty(t)

λ(x(t))+σ2

19: Γt+1 = Γt +
k#,tk

T
#,t

λ(x(t))+σ2

20: function PREDICTOCCUPANCY(µ, x∗)
21: Compute k# with elements k(x∗,x#) for x# ∈ C
22: return 1 if kT

#µ > 0 and −1 otherwise

of observations, N is the number of latent grid cells, L
is the number of CG iterations for occupancy prediction,

and M is the number of query points. In the worst case, if

the occupancy states of the whole map are needed at each

iteration, the overall time complexity would be O(LMNT),
which is similar to GP regression with pseudo-inputs [40].

The latent grid of IFOM allows it to scale to large maps while

maintaining correlation efficiently. In the best case, when

only small sets of query points need to be evaluated in local

regions, IFOM allows very efficient predictive inference.

V. EVALUATION

Our experiments compare the performance of IFOM

(Alg. 2) and the GPOctoMap method of [17] using simulated

data from a 2-D LIDAR and real data from a Microsoft

Kinect depth camera. In both cases and for both methods, the

Gaussian RBF kernel (3) was used. The sensor motion was

assumed known and the focus was on building an occupancy

map. To convert the range measurements collected by the

LIDAR and depth camera to occupancy measurements y(t) ∈
{−1, 1} at continuous-space points x(t) ∈ X , the endpoint

of each sensor ray was taken as occupied, while free points

were sampled using a Poisson distribution along each ray.

Simulated LIDAR data: The first set of experiments was

carried out using a simulated 2-D Hokuyo LIDAR to obtain

range measurements of a Gazebo environment, represented

as a 3-D mesh in STL format. A ground truth occupancy grid

was obtained from the mesh and is shown in Fig. 1a. The map

had dimensons 85.5m× 31.5m× 6.5m and was discretized

with resolution r(d) = 0.5m in each dimension, creating

a grid with size n = [171, 63, 13]T and a total number of

cells of N = 140049. We collected 5443 LIDAR scans, each

providing roughly 556 occupancy measurements for a total

of T = 3.0×106 measurements. The kernel hyperparameters

were s = [0.1, 0.1, 0.3]T and b = 1.16, the scaling

parameter was σ = 0.1. The occupancy maps recovered

by GPOctoMap and IFOM are shown in Fig. 1. The time

taken to obtain these results is shown in Table I. The table

also shows the accuracy of the reconstructed maps evaluated

with respect to the ground truth via acc = 1
M

∑M
i=1 1{qi=q̂i},

where qi and q̂i are the true and estimated occupancy states

of cell i, respectively. When calculating accuracy, unobserved

cells were considered free. The results show that our method

is slower than GPOctoMap but results in higher accuracy.

Note that the provided observations did not cover the whole

map, so it was impossible to obtain a 100% accuracy. Our

implementation is not yet optimized and we expect that the

timing results can be improved. Recovering the whole map

takes additional time for our method.

Real depth camera data: The algorithms were also

evaluated on three sequences, fr1/teddy, fr3/cabinet and

fr3/large cabinet, of the TUM RGBD dataset [48] using only

depth images. The depth images were filtered and downsam-

pled after conversion to 3-D pointclouds to reduce noise.

Both GPOctoMap and IFOM used the same preprocessed

pointclouds. The maps had dimensions listed in Table I. Each

was discretized with resolution r(d) = 0.1m in each dimen-

sion, creating a latent grid with size n = [105, 105, 65]T

for fr1/teddy, n = [93, 77, 9]T for fr3/cabinet, and n =
[145, 169, 45]T for fr3/large cabinet. This resulted in a total

number of N = 7.2×105, N = 6.4×104, and N = 1.1×106

cells, respectively. The datasets contain about 5000 RGBD

images published at 30 Hz. A depth measurement was used

to update the map distribution only when the camera pose

changed significantly (0.1m position and 0.2 rad axis-angle

change). About 220 pointclouds each providing roughly

46500 occupancy measurements were used for a total of T =
11.5× 106 measurements. The kernel hyperparameters were

s(d) = 0.15 and b = 1.09, the scaling parameter was σ = 0.1.

The estimated occupancy maps are shown in Fig. 2, while

the computation time is shown in Table I. Fig. 2 also shows

the information vector and information matrix maintained by

IFOM in each case. While recovering a complete occupancy

map using IFOM is slow, the information matrix can be

maintained efficiently and provides a measure of uncertainty

that can be used to generate sensing trajectories in the context

of autonomous exploration and mapping. The figures show

that the middle areas of the maps, where many observations

are made, have high certainty, while frindge areas would

benefit from additional observations.

VI. CONCLUSION

We showed that GP regression with a grid of pseudo

inputs is equivalent to information filtering and that ker-

nel matrices corresponding to decomposable radial kernels

evaluated over the grid can be computed and stored as

Kronecker products of Toeplitz matrices. These observations

were used to design IFOM, an efficient Bayesian occupancy

mapping algorithm. Using both simulated and real data, we

demonstrated that IFOM has equivalent accuracy to state-of-

the-art GP occupancy mapping techniques while providing

computational and storage advantages when recovering the

whole occupancy map online is not necessary. Future work

will focus on map representations with adaptive and hier-

archical structure and on estimating a signed distance field

instead of occupancy values.

REFERENCES

[1] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“KinectFusion: Real-time 3D Reconstruction and Interaction Using a
Moving Depth Camera,” in ACM Sym. on User Interface Software and

Technology (UIST), 2011, pp. 559–568.

[2] L. Teixeira and M. Chli, “Real-time mesh-based scene estimation for
aerial inspection,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2016, pp. 4863–4869.

[3] E. Piazza, A. Romanoni, and M. Matteucci, “Real-time cpu-based
large-scale three-dimensional mesh reconstruction,” IEEE Robotics

and Automation Letters, vol. 3, no. 3, pp. 1584–1591, 2018.

[4] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press
Cambridge, 2005.

[6] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: an efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[7] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using Kinect-style depth cameras for dense 3D modeling of
indoor environments,” The International Journal of Robotics Research

(IJRR), vol. 31, no. 5, pp. 647–663, 2012.

[8] T. Whelan, R. Salas-Moreno, B. Glocker, A. Davison, and S. Leuteneg-
ger, “ElasticFusion: Real-Time Dense SLAM and Light Source Es-
timation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

[9] R. Newcombe, “Dense Visual SLAM,” Ph.D. dissertation, Imperial
College London, 2012.

[10] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in European Conference on Computer Vision

(ECCV), 2014.

[11] M. Ghaffari Jadidi, J. Valls Miro, and G. Dissanayake, “Gaussian
Process Autonomous Mapping and Exploration for Range Sensing
Mobile Robots,” ArXiv: 1605.00335, 2016.

[12] N. Atanasov, “Active Information Acquisition with Mobile Robots,”
Ph.D. dissertation, University of Pennsylvania, 2015.

[13] B. Charrow, “Information-Theoretic Active Perception for Multi-Robot
Teams,” Ph.D. dissertation, University of Pennsylvania, 2015.

[14] S. O’Callaghan and F. Ramos, “Gaussian process occupancy maps,”
The International Journal of Robotics Research, vol. 31, no. 1, pp.
42–62, 2012.

[15] C. Vido and F. Ramos, “From grids to continuous occupancy maps
through area kernels,” in IEEE Int. Conf. on Robotics and Automation

(ICRA), 2016, pp. 1043–1048.

[16] S. Kim and J. Kim, GPmap: A Unified Framework for Robotic

Mapping Based on Sparse Gaussian Processes. Springer International
Publishing, 2015, pp. 319–332.

[17] J. Wang and B. Englot, “Fast, accurate gaussian process occupancy
maps via test-data octrees and nested bayesian fusion,” in IEEE Int.

Conf. on Robotics and Automation (ICRA), 2016, pp. 1003–1010.

[18] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for

Machine Learning. MIT Press, 2006.

[19] M. Opper and O. Winther, “A Bayesian Approach to On-line Learn-
ing,” in On-line Learning in Neural Networks, 1998, pp. 363–378.

[20] K. Sun, K. Saulnier, N. Atanasov, G. Pappas, and V. Kumar, “Dense 3-
d mapping with spatial correlation via gaussian filtering,” in American

Control Conference (ACC), 2018.

[21] T. Minka, “A family of algorithms for approximate Bayesian infer-
ence,” Ph.D. dissertation, Massachusetts Institute of Technology, 2001.

[22] C. Williams and D. Barber, “Bayesian classification with Gaussian
processes,” IEEE Trans. on Pattern Analysis and Machine Intelligence

(PAMI), vol. 20, no. 12, pp. 1342–1351, 1998.

[23] S. O’Callaghan, F. Ramos, and H. Durrant-Whyte, “Contextual occu-
pancy maps using gaussian processes,” in IEEE Int. Conf. on Robotics

and Automation (ICRA), 2009, pp. 1054–1060.
[24] S. O’Callaghan and F. Ramos, “Continuous Occupancy Mapping with

Integral Kernels,” in AAAI Conference on Artificial Intelligence, 2011.
[25] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg, and

M. O’Neil, “Fast direct methods for gaussian processes,” IEEE Trans.

Pattern Anal. Mach. Intell, vol. 38, no. 2, pp. 252–265, 2016.
[26] S. Anderson, T. Barfoot, C. H. Tong, and S. Särkkä, “Batch nonlin-

ear continuous-time trajectory estimation as exactly sparse gaussian
process regression,” Autonomous Robots, vol. 39, no. 3, 2015.

[27] S. Kim and J. Kim, “Recursive Bayesian Updates for Occupancy
Mapping and Surface Reconstruction,” in Australasian Conference on

Robotics and Automation (ACRA), 2014.
[28] S. Kim and J. Kim, “Occupancy Mapping and Surface Reconstruction

Using Local Gaussian Processes With Kinect Sensors,” IEEE Trans-

actions on Cybernetics, vol. 43, no. 5, pp. 1335–1346, 2013.
[29] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy

mapping with stochastic gradient descent,” The International Journal

of Robotics Research, vol. 35, no. 14, pp. 1717–1730, 2016.
[30] R. Senanayake and F. Ramos, “Bayesian Hilbert Maps for Continu-

ous Occupancy Mapping in Dynamic Environments,” in Conference

on Robot Learning (CoRL), ser. Proceedings of Machine Learning
Research, vol. 78, 2017, pp. 458–471.

[31] V. Guizilini and F. Ramos, “Learning to Reconstruct 3D Structures
for Occupancy Mapping,” in Robotics: Science and Systems, 2017.

[32] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian Processes for Big
Data,” in Conference on Uncertainty in Artificial Intelligence, 2013.

[33] C. Cheng and B. Boots, “Variational inference for gaussian process
models with linear complexity,” in Advances in Neural Information

Processing Systems, 2017.
[34] C. E. R. Joaquin Quiñonero-Candela, “A Unifying View of Sparse

Approximate Gaussian Process Regression,” Journal of Machine

Learning Research (JMLR), vol. 6, no. Dec, pp. 1939–1959, 2005.
[35] M. Titsias, “Variational Learning of Inducing Variables in Sparse

Gaussian Processes,” in Int. Conf. on Artificial Intelligence and Statis-

tics, ser. Proc. of ML Research, vol. 5, 2009, pp. 567–574.
[36] Y. Saatci, “Scalable Inference for Structured Gaussian Process Mod-

els,” Ph.D. dissertation, University of Cambridge, 2011.
[37] A. G. Wilson, C. Dann, and H. Nickisch, “Thoughts on Massively

Scalable Gaussian Processes,” arXiv, vol. 1511.01870, 2015.
[38] T. Evans and P. Nair, “Scalable Gaussian Processes with Grid-

Structured Eigenfunctions (GP-GRIEF),” in International Conference

on Machine Learning, 2018, pp. 1417–1426.
[39] Y. Gal, “Uncertainty in Deep Learning,” Ph.D. dissertation, University

of Cambridge, 2016.
[40] E. Snelson and Z. Ghahramani, “Sparse Gaussian Processes using

Pseudo-inputs,” in Advances in Neural Information Processing Systems

18, Y. Weiss, B. Schölkopf, and J. C. Platt, Eds., 2006, pp. 1257–1264.
[41] S. Reece and S. Roberts, “An Introduction to Gaussian Processes for

the Kalman Filter Expert,” in Conference on Information Fusion, 2010.
[42] A. G. Wilson, E. Gilboa, A. Nehorai, and J. P. Cunningham, “Fast

Kernel Learning for Multidimensional Pattern Extrapolation,” in Ad-

vances in Neural Information Processing Systems (NIPS), 2014.
[43] Y. Zhang, W. E. Leithead, and D. J. Leith, “Time-series Gaussian

Process Regression Based on Toeplitz Computation of O(N2) Op-
erations and O(N)-level Storage,” in IEEE Conference on Decision

and Control (CDC), 2005, pp. 3711–3716.
[44] J. P. Cunningham, K. V. Shenoy, and M. Sahani, “Fast gaussian pro-

cess methods for point process intensity estimation,” in International

Conference on Machine Learning (ICML), 2008, pp. 192–199.
[45] S. Zohar, “Toeplitz Matrix Inversion: The Algorithm of W. F. Trench,”

Journal of the ACM, vol. 16, no. 4, pp. 592–601, 1969.
[46] M. Gover, “Properties of the Inverse of the Gaussian Matrix,” SIAM

Journal on Matrix Analysis and Applications, vol. 12, no. 3, 1991.
[47] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for

Solving Linear Systems,” Journal of Research of the National Bureau

of Standards, vol. 49, no. 6, 1952.
[48] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,

“A Benchmark for the Evaluation of RGB-D SLAM Systems,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012.

