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Abstract— We propose a cooperative, decentralized inference
algorithm allowing sensor networks to learn a joint parameter
best explaining their combined observations. This joint param-
eter is represented via a probability density over a discrete set
of hypotheses. We aim to answer two questions: (i) an agent-
hypothesis assignment problem, balancing estimation quality,
storage and communication constraints in the networks, and
(ii) the design of a provably-correct distributed estimation
algorithm on limited hypothesis sets for agents. We make
the following contributions to the state of the art. First, our
proposed algorithm allows each agent to perform updates on
partial likelihoods and exchange local information on a limited
hypothesis set, as opposed to the entire hypothesis space. For
some of the agents, the limited hypothesis domains may even ex-
clude the true hypothesis. Second, the presented algorithm is the
first to not require step-wise renormalization at all hypotheses,
while still guaranteeing consensus and convergence of sensor
estimates. Third, we also address agent-hypothesis assignment
by formulating it as an integer programming problem, that
matches agent sub-networks to hypotheses based on a diversity
criterion for estimation quality. We provide numerical examples
demonstrating the benefits of these algorithms.

I. INTRODUCTION

Sensor networks have been widely deployed for in situ

data gathering and environment monitoring, enabling the

estimation of relevant parametric models from data. In these

settings, a distributed estimation process overcomes physical

limitations in the communication between interconnected

systems [1], [2], any single-point failures, and privacy con-

cerns on data sharing [3]. A main tool to solve cooperative

estimation problems online is based on (consensus) non-

Bayesian learning algorithms, which are protocols governed

by the recursive interactions of single-hop neighbors. Typ-

ically, these algorithms require agents to exchange infor-

mation on large hypothesis sets, which vastly increases the

communication and storage cost for large sensor networks

and environments. Motivated by the cost issue, we look at

the design of more scalable algorithms that rely on partial

likelihood updates. We have assumed that sensors receive

source measurements infinitely often to infer source state on

a finite discrete space.

Literature review: Distributed consensus algorithms

have been designed continually since the early 70s. The ini-

tial studies were aimed at developing a Bayesian framework

for agreement between two individual sets of information [4].

In the following decade, there were results published on the

We gratefully acknowledge support from NSF NRI CNS-1830399, ONR
N00014-19-1-2471, DARPA Lagrange N660011824027, AFOSR FA9550-
18-1-0158 and ARL DCIST CRA W911NF-17-2-0181.

The authors are with Contextual Robotics Institute, University
of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
{pparitos,natanasov,soniamd}@ucsd.edu

effect of network topology on averaging opinions among

multiple agents [5], [6]. Other aspects such as network error

and bit rate constraints have also been considered in the past

decade [7]. A major improvement appeared in the form of

non-Bayesian updates [8], performed by updating the hyper-

parameters of a probability density function (pdf) instead of

the updating the function itself. The stationary distribution

and convergence rates of this approach have recently been

studied in [9], [10]. Even though recent approaches can

deal with network-level updates, they require maintaining

and communicating each agent’s pdf over the entire set of

hypotheses. Drawing inspiration from the idea of distributed

computation, it is practically useful to consider a distributed

storage scheme, in which agents only maintain and exchange

a partial pdf over the parameter domain.

Partial likelihood updates are predicated on assigning sets

of hypotheses to individual agents. The agent-hypothesis

assignment problem has its roots in classical matching prob-

lems [11]. More recently it has been employed for sensor

network assignment [12]. The assignment problems have

usually been tackled via integer-programming or their convex

relaxations [13]. Since we deal with optimal sub-networks,

the relevant recent works include maximum-weight con-

nected subgraph problems [14], [15] for connected sensor

sub-network selection. While the methodology suffices for

learning a single subgraph, it is insufficient for finding

multiple subgraphs coupled with cardinality constraints on

selected agents as needed for the assignment problem pre-

sented here.

Statement of Contributions: In this manuscript we ad-

dress two complementary problems relevant to the distributed

inference of a joint parameter by a sensor network. First,

we formulate a novel hypothesis assignment problem and

propose integer programming solution, for matching subsets

of connected agents to different hypothesis sets with the

goal of providing good complementary observations while

respecting storage and communication constraints of agents.

Second, we propose and analyze convergence of a coopera-

tive estimation algorithm which, not only is distributed across

one-hop neighborhoods, but also allows agents to maintain

likelihoods over a subset of the hypothesis space. Thus, it

significantly reduces storage and communication costs in

comparison to existing approaches. This algorithm is free of

any network-wide normalization updates present in existing

consensus algorithms based on geometric averaging.

II. PROBLEM FORMULATION

We consider a set of sensors N = {1, . . . , n} whose

communications are modeled via an undirected graph G =



(N , E), with edges E representing the communicating pairs.

Each agent i ∈ N has a corresponding state variable xi ∈
R

dx and receives data zi,t ∈ R
dz at time t. Based on

sensor i’s characteristics and the state variables xi, its

observation model is specified by a pdf pzi(z|θ) defined on

discrete domain Θi with cardinality mi. The network aims

to find the true value of a joint parameter θ ∈ R
dθ in the

finite discrete set Θ ≡ ∪i∈NΘi, which may represent the

possible locations of a data-generating source. This set Θ
is discrete and finite with cardinality |Θ| = m. The true

set of parameter values generating the agent observations

is Θ∗ ⊂ Θ. The set of neighbors for each agent i in the

communication graph G is defined as Ni. Each agent i
maintains the probability pi,t(θ),θ ∈ Θi, denoting agent’s

confidence on the correctness of hypothesis θ at time step t.
The agents use their observations zi,t and neighbor estimates

pj,t(θ), (i, j) ∈ E at hypothesis θ to update their own

probability density pi,t+1(θ) over the values of θ ∈ Θi.

Since agent i tracks and shares inference only over the

subset Θi, the agent’s computational and communications

load is diminished. The coverage of entire hypothesis space is

ensured with the condition ∪i∈NΘi = Θ, in effect assigning

at least one agent for tracking every hypothesis. We denote

the set of agents observing a specific hypothesis v, θv ∈ Θ,

as V(θv) ⊆ N . If the agents in V(θv) form a connected

subgraph Gθv ≡ Gv of G, we assign a corresponding

doubly stochastic communication matrix A(θv) ≡ Av to

the hypothesis θv . The matrix Av is induced from G, fol-

lowing the same sign pattern as the adjacency matrix of the

original graph. The doubly stochastic matrix is selected for

its averaging properties [16] that we use to prove asymptotic

convergence in Section VI. We aim to address the following

questions dealing with the computation and communication

complexity for distributed estimation.

Hypothesis assignment. How should the parameter hy-

potheses be distributed among the agents to balance storage

and communication requirements with estimation quality?

We provide details on the following four modeling criteria

to achieve these requirements,

a) Agent diversity: The diversity requirement assigns

a set of agents V(θ) with diverse observation models at

each hypothesis θ with the goal of augmenting quality

of inferences from observations. This can be realized by

ensuring that the assigned set of agents V(θ) maximize the

symmetric KL divergence metric DKL measuring distance

between among pairs of hypothesis pdf pzi(·|θ), i ∈ V(θ).

F (Gθ) =
∑

i,j∈V(θ)
(i,j)∈E

DKL(pzi(·|θ), pzj(·|θ)) +
∑

i∈V(θ)

H(pzi(·|θ)).

(1)

We induce the diversity criterion with the KL divergence

metric DKL while the entropy H term favors agents with

flatter observation densities pzi. It is worth noting that the

divergence factor depends on the edges (i, j) ∈ E capturing

the synergies of one-hop neighbors.

b) Connectivity: This requires that the subset of agents

V(θ) ∈ N assigned to each hypothesis θ is connected. The

connected sets of agents learn from their neighbors, thus

leading to consistent estimates.

c) Computational load: This is implemented by limit-

ing the cardinality on the hypotheses observed by individual

agents, 0 < |Θi| ≤ mi. This constraint caps the number of

hypotheses tracked by agents at every time step, making the

algorithm scalable in storage and communication.

d) Coverage: This translates into the require-

ment ∪iΘi = Θ, ensuring that every hypothesis is being

tracked by at least one agent.

Thus, our first research question is addressed by means of

an optimization problem over sets of subgraphs Gθ, ∀θ ∈ Θ,

max
{Gθ}θ∈Θ

∑

θ∈Θ

F (Gθ), (2)

Gθ is a connected induced subgraph ofN , ∀θ ∈ Θ, (3)

0 <|Θi| ≤ mi ∀i ∈ N , (4)

∪iΘi = Θ. (5)

In Section III, we develop an approach to solve this

problem of optimal hypothesis assignment offline.

Distributed inference on limited hypothesis sets. How

can communicating agents merge their observations on a

limited set of hypotheses to achieve a consistent inference

on the probability density of true source parameter? To

answer this question, we aim to develop a distributed learning

algorithm by which agents merge their partial likelihoods

with neighboring agents’ beliefs to find the true hypothesis.

That is, through such algorithm agents will merge their

estimates only on their assigned subset Θi ⊂ Θ, and not

over the complete Θ. To arrive at a network-wide consensus

on true hypothesis at time T , each agent i will make use of

data zi,1:T relative to Θi. Thus, each agent is tasked with

arriving at the values of a probability mass function pi,T (θ)
over only the hypotheses θ ∈ Θi at time T using neighbor

estimates and data zi,1:T (for the values θ ∈ Θ \Θi at time

T the agent will collectively assign a complementary mass

value,
∑

θ∈Θ\Θi
pi,T (θ) = 1−

∑

θ∈Θi
pi,T (θ)). As T → ∞,

the algorithm should converge to a common distribution

p∞(θ) that assigns mass to only the true hypothesis set

Θ∗ = argmaxθ p(θ|z1:n,1:T ) and which best explains the

observations of all agents. To achieve consistent estimates,

the probabilities estimated by agents at any shared hypothesis

should converge to the same value i.e. limt→∞ pi,t(θ) =
p∞(θ), ∀i ∈ {1, . . . , n}. Further, p∞(θ) = 0, ∀θ /∈ Θ∗.

In Section IV, we present a distributed consensus algo-

rithm for agents to merge inferences using partial space

likelihood models.

III. DEFINING THE AGENT NETWORK

This section addresses the Hypothesis Assignment ques-

tion of Section II. We start by analyzing the properties of the

objective function encoding diversity as defined in Eqn. (2).

We have mentioned existing solutions to relaxed versions

of the assignment problem, followed with a novel Integer

programming formulation to assign agent subgraphs to each

hypothesis and simulations illustrating its performance on

small and large scale networks.



A. Properties of the optimization problem

We first show that the diversity function satisfies the

property of increasing marginal returns, or supermodularity.

Supermodularity on discrete spaces is analogous to concavity

in continuous spaces.

Definition 1 (Set function characteristics). Consider a non-

negative function F : 2X → R≥0 defined over a discrete

set X . Let X1, X2 ⊆ X . The function F is supermodular if

F (X1 ∩X2) + F (X1 ∪X2) ≥ F (X1) + F (X2).

Proposition 1. The diversity function F in Eqn. (1) is

supermodular over the input subgraph set.

Proof. With node sets X1 ⊆ X2 ⊆ N with element j ∈ N \
X2, we can state an equivalent definition of supermodularity,

F (X2 ∪ {j})− F (X2) ≥ F (X1 ∪ {j})− F (X1). (6)

The supermodularity of objective function defined in Eqn. (1)

follows trivially from this definition.

We provide examples of the connectivity and cardinality

requirements on assignments for hypotheses and agents,

respectively. Consider a set of agents {a, b, c, d} and hy-

potheses {1, . . . , 9}, illustrated in Fig. (1). An example of

the cardinality constraint in Eqn. (4) is that agent a does not

track more than 4 hypotheses, e.g. {1, 3, 5, 9}. An example

of the connectivity requirement is hypothesis 2 being tracked

by a connected subgraph consisting of {b, c, d}.

1 2 3
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7 8 9
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Fig. 1. Group of agents (left) performing inference over a set of hypotheses
(right). Cardinality constraint on a as |Θa| ≤ 4. Connectivity constraints
on hypothesis 2 requires corresponding observing agents to be connected
{b, c, d} in communication graph.

Subgraph selection for hypotheses: Next, we study how

to select connected subgraphs from the original network for

maximizing diversity function under cardinality constraints

imposed on hypothesis sets at each node. First, it is clear that

a feasible solution exists if
∑

i∈N mi ≥ |Θ|. Even though

the optimization problem in Eqn. (2-5) has a supermodular

objective function, the agent subset connectivity constraints

in Eqn. (3) render the optimization NP-hard.

There are existing solutions in the literature for two

relaxed versions of the optimization problem in Eqn. (2).

Relaxing the connectivity constraints, the problem simplifies

to the maximization of a supermodular objective under cardi-

nality constraints. It can be solved either as an integer linear

program or via Lovász’s extension [17] of supermodular

objective function in continuous space via polynomial time

algorithms [18]. Whereas if we relax the cardinality and

coverage constraints while keeping the connected subgraph

constraints, the network level optimization problem becomes

a hypothesis separable problem. It is same as the generalized

maximum-weight connected subgraph problem [15]. A sim-

pler version of this problem was first mentioned in the list

of NP-complete problems [19].

B. Proposed optimization strategy

To solve the original problem in Eqn. (2-5), we first formu-

late the problem by relaxing the connectivity constraint via

binary variables representing inclusion of nodes and edges

in the optimal subgraph. The integer programming approach

presented here is a novel formulation for finding optimal

connected subgraphs with cardinality constraints limiting

the count on selection of nodes across optimal subgraphs.

Consider yv = [y1v, . . . , ynv]
⊤ ≡ [yiv]

n
i=1 ∈ {0, 1}m, where

yiv = 1 implies that agent i tracks probabilities for hypoth-

esis v. Consider another variable bv = [bij1,v, . . . bijℓ,v] ∈
{0, 1}ℓ, where with a slight abuse of notation we denote one

of the ℓ = |E| edges in the agent network as ijl ≡ (i, j)l ∈ E ,

l ∈ {1, . . . , ℓ}, and we use the shorthand bij,v to refer to a

generic entry of bv . Now, exploiting the separability of the

problem, we focus on the reformulation of the assignment

of agents to each single hypothesis θv , as explained next.

The objective function can be written in terms of the KL-

divergence between communicating agents. This function is

linear in terms of the new node and edge binary variables.

The cardinality constraint for agent i is expressed in terms of

the nodal variables yiv . The coverage constraint is satisfied

if each hypothesis θv is observed by at least one agent. This

results into the following linear program,
m
∑

v=1

[

max
yv,bv

∑

(i,j)∈E

bij,v DKL(pzi(z|θv), pzj(z|θv))

+
n
∑

i=1

yiv H(pzi(z|θv))
]

(7)

m
∑

v=1

yiv ≤ mi, ∀i ∈ {1, . . . , n}, (Cardinality)

n
∑

i=1

yiv ≥ 1, ∀v ∈ {1, . . . ,m}. (Coverage)

Now, we can enforce graph connectivity on trees by adding

a set of constraints on the edges as in Eqn. (8-9). From

Eqn. (9), we can note that nodes i, j defining a selected

edge (i, j) with bij,v = 1 are automatically selected, i.e.

yiv, yjv = 1. If
∑n

i=1 yiv = 2, then
∑

ij∈E bij,v = 1 imply-

ing selection of exactly one edge and the two nodes defining

it.

∑

ij∈E

bij,v =
n
∑

i=1

yiv − 1, ∀v ∈ {1, . . . ,m}, (8)

bij,v ≤ yiv, yjv, ∀(i, j) ∈ E , ∀v ∈ {1, . . . ,m}. (9)

Proposition 2. In an acyclic connected graph, the con-

straints connecting node and edge variables in Eqn. (8)

and (9) lead to the selection of a connected subgraph.

Proof. The difference between number of selected nodes and

edges can not be larger than one due to Eqn. (8). And since

the constraints will yield some collection of connected trees

of G each with difference between edges and nodes being

one, it leads to selection of one connected acyclic graph at

each hypothesis.

Based on Proposition (2), a possible algorithm to assign



agents to hypotheses consists of first obtaining a span-

ning tree out of the connected graph and then solving the

assignment linear programming problem with constraints

given in Eqn. (7-9). Other than this, for graphs containing

cycles, there are two alternative ways to enforce connectivity,

namely average node degree and a,b-separation [20].

Average node degree: The average node degree of a

network is defined as the average over all node degrees

in the network. If each edge assigns a value of 1 to its

corresponding nodes, then as per [21], the maximum average

degree of a tree of k vertices is 2 − 2/k. If there is a

cycle in the graph, the maximum average degree is ≥ 2.

Therefore, we can introduce flow variables f i
ij , f

j
ij ∈ {0, 1}

on each edge (i, j) ∈ E with f i
ij + f j

ij = 2, and add a

constraint on the average degree of the optimal subgraph to

guarantee connectivity. However, the average node degree

method introduces quadratic constraints. The flow variables

are expressed for each hypothesis θv in a similar fashion

to bv as fv = [f i
ij1,v

, f j
ij1,v

, . . . f i
ijℓ,v

, f j
ijℓ,v

] ∈ {0, 1}2ℓ with

ℓ = |E|. Therefore, these constraints are expressed as

f i
ij,v + f j

ij,v = 2, ∀(i, j) ∈ E ,θv ∈ Θ (10)
∑

j∈Ni

f j
ij,v ≤ 2−

2
∑n

i=1 yiv
∀i ∈ N ,θv ∈ Θ

The constraints in Eqn. (10) can be expressed as a linear

and quadratic constraint. In our solution, these are used

in conjunction with Eqn. (7- 9) to find the optimal graph

structures. One can employ a,b-separation presented in [20]

for finding optimal connected graphs instead of trees. This

formulation introduces n2ml variables in comparison to 2ml
variables in the formulation based on average node degree

in the network.

C. Defining hypothesis-specific communication matrices

The hypothesis assignment optimization matches each

hypothesis θv to a set of connected agents V(θv). A doubly

stochastic communication matrix A(θv) ≡ Av is assigned to

the induced subgraph Gθv
. One popular method to generate

doubly stochastic matrices is via iterative normalization

along rows and columns of a matrix respecting the under-

lying connectivity [22]. Let the number of agents tracking

probability at hypothesis θv be nv = |V(θv)|. Also, define a

vector of ones as 1nv
∈ R

nv . As per [16], the ergodicity of

the assigned doubly stochastic matrix A(θv) with positive di-

agonal elements ensures that limt→∞ A(θv)
t = 1

nv
1nv

1⊤
nv

.

This introduces the averaging properties needed for designing

the likelihood averaging algorithm in the next section.

IV. DISTRIBUTED CONSENSUS ON PARTIAL HYPOTHESES

In this section, we propose and analyze a network-wide

inference algorithm that can be performed with partial ob-

servation likelihoods for each agent. The main property

of this algorithm is that it does not require group-wide

renormalization, yet it has performance guarantees. This lack

of renormalization allows for a distributed and more efficient

implementation of the algorithm.

For this section, we assume that sets of hypotheses Θi

tracked by agent i are computed offline. The sets can be

computed with the approach presented in Section III. Each

agent i thus knows the weights {A(θv)ij |∀j ∈ V(θv)∪{i}}
placed on beliefs at each θv ∈ Θi. As stated in Section II,

each agent aims to reach a consensus on the probability dis-

tribution on every hypothesis limt→∞ pi,t(θ) = p∞(θ),θ ∈
Θi, ∀i ∈ {1, . . . , n}.

In the state of the art, distributed estimation algorithms are

an analogue to Bayesian updates. This type of learning rule

can be seen in [10]. The rule can be decomposed in three

steps. At each hypothesis, the agent first performs opinion

pooling via geometric averaging of its neighbor probabilities

as a prior followed by a product with the agent’s observation

likelihood. The third step is normalization w.r.t. the sum of

estimate across all hypotheses Θ as observed by the network.

Selecting the weights at the opinion pooling step to form a

row or doubly stochastic matrix A ensures convergence to

the expectation of network wide weighted average and exact

average, respectively [16]. That is in [10],

pi,t+1(θ) =
1

Zi,t+1
pi(zi,t+1|θ)

n
∏

j=1

pj,t(θ)
[A]ij , ∀θ ∈ Θ,

Zi,t+1 =
∑

θ∈Θ



pi(zi,t+1|θ)
n
∏

j=1

pj,t(θ)
[A]ij



 . (11)

We note that, in this algorithm, the updates are defined on

the entire hypotheses space Θ and that each agent computes

its normalization factor at every time step. Directly using

the algorithm in [10] over partial space Θi would require

extensive bookkeeping, making the step extremely costly to

perform. Therefore, we develop a methodology to perform

this computation without computing the normalization factor.

A. Partial likelihood estimation algorithm

We propose Algorithm 1 for probability updates with

partial likelihoods. The updates for an agent i require the data

received at each time, neighbor estimates on assigned hy-

potheses and stochastic weights specifying their interaction

with neighbors at each hypothesis. The algorithm performs

the first two steps of opinion pooling and likelihood product,

but delays normalization until the very final time step T . In

this sense, we can characterize the proposed algorithm as

‘Update then Normalize’ type in contrast to existing ‘Update

and Normalize’ updates. The lack of normalization step in

intermediate time steps has enabled the agents to perform

distributed updates without relying on information from

agents on unobserved hypotheses in Θ\Θi. Our contribution

lies in proving that the normalization free updates lead to

almost sure asymptotic convergence as shown in Section VI.

As it can be observed, agent i depends on neighbor esti-

mates µj,t(θ), ∀j ∈ V(θ), ∀θ ∈ Θi. The scalar term A(θ)ij
describes the weight assigned by agent i to the belief received

from agent j at hypothesis θ. Each agent only computes

pi,T (θ) over the set Θi and depends on other agents for

providing pi,T (θ) for θ ∈ Θ\Θi. At the final time step T ,

other agent estimates are used to obtain the probability values

at hypothesis θ ∈ Θ\Θi for computing normalization factor

Zi,T . The update rules can also be expressed as a logarithm

of the agent estimates at each discrete hypothesis θv , given

as qi,t(θv) = log(µi,t(θv)); qzi,t(θv) = log(pzi(zi,t|θv)).







model fi(·) of the agent observation models pzi(·|θv):

E [log(pzi(z|θv))] =

∫

fi(z) log

(

pzi(z|θv)
fi(z)

fi(z)

)

dz

= −DKL(fi(·)|| pzi(·|θv))−H(fi(·)). (15)

We use the notation [ ]i to denote the entry in a vector

corresponding to agent i. Based on Lemma 1, eq. (15),

and limt→∞ A(θv)
T = 1

nv
1nv

1⊤
nv

, thus averaging the prior

likelihood as T → ∞, we have:

lim
T→∞

1

T

[

A(θv)
T log(p0(θv)) +

T
∑

t=1

A(θv)
T−t qzt(θv)

]

i

= lim
T→∞

1

T

[

T
∑

t=1

A(θv)
T−t qzt(θv)

]

i

, (16)

=
1

nv





∑

j∈V(θv)

−DKL(fj(·)|| pzj(·|θv))−H(fj(·))



 .

Finally, we prove convergence of the estimates maintained

by agent i at hypotheses in Θi to a density function with

non-zero mass only over Θ∗. We rely on the difference in

the convergence rates of the likelihood pi,t(·) evaluated at a

true hypothesis θw ∈ Θ∗ versus a false hypothesis θv /∈
Θ∗. Showing that the probability ratio, pi,t(θv)/pi,t(θw),
converges to zero is enough to guarantee that the probability

mass at an incorrect hypothesis, θv , is asymptotically zero.

Let the log probability ratio of θv and θw for agent i be:

φi,T+1(θv,θw) = log
µi,T+1(θv)/Zi,T+1

µi,T+1(θw)/Zi,T+1
,

= log

∏

j∈V(θv)
pj,T (θv)

A(θv)ij pzi(zi,T+1|θv)
∏

j∈V(θw) pj,T (θw)
A(θw)ij pzi(zi,T+1|θw)

,

=

[

T
∑

t=1

A(θv)
T−t qzt(θv) +A(θv)

tq0(θv)

]

i

−

[

T
∑

t=1

A(θw)
T−t qzt(θw) +A(θw)

tq0(θw)

]

i

.

(17)

Distributed inference algorithms based on Bayesian up-

dates with normalization [24] optimize an objective function:

C(θv) =
1

nv

∑

j∈V(θv)

(

DKL(fj(·)|| pzj(·|θv)) + H(fj(·))
)

Following Eqn. (16), the individual terms exist in the

time-averaged asymptotic value, limT→∞
1
T
φi,T+1(θv,θw),

lim
T→∞

1

T
φi,T+1(θv,θw) = C(θw)− C(θv) (18)

This is related to (16) since for θv /∈ Θ∗ and θw ∈ Θ∗,

lim
T→∞

1

T
φi,T+1(θv,θw) = C∗ − C(θv) < 0. (19)

Therefore, the value of φi,t(θv,θw) → −∞ almost surely.

Also since pi,t(θv) ≤ exp(φi,t(θv,θw)), ∀i ∈ V(θv) ∩
V(θw), we have pi,t(θv) → 0. Therefore, the likelihood of

an incorrect hypothesis is asymptotically almost surely zero.

VII. CONCLUSION

In this paper, we have proposed a distributed inference al-

gorithm to allow sensor networks to learn source distribution

while maintaining partial observation likelihoods. This leads

to significant savings in the number of message exchanged

across neighbors. The devised algorithms has proven conver-

gence guarantees in the absence of normalization factors at

each update step, thus allowing a significant speed up of the

algorithm. As the distributed estimation algorithm depends

on hypothesis agent matching, we have also devised a novel

integer programming formulation for assigning connected

subgraphs of agents to each hypothesis. The results of

asymptotic convergence of the algorithm for fixed graphs

can also be extended to the cases of asynchronous infinite-

often communications and time-varying graphs with global

connectivity over certain fixed time steps.
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