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Abstract— Sampling-based motion planning algorithms pro-
vide a means to adapt the behaviors of autonomous robots
to changing or unknown a priori environmental conditions.
However, as the size of the space over which a sampling-based
approach needs to search is increased (perhaps due to consid-
ering robots with many degree of freedom) the computational
limits necessary for real-time operation are quickly exceeded.
To address this issue, this paper presents a novel sampling-
based approach to locomotion planning for highly-articulated
robots wherein the parameters associated with a class of
locomotive behaviors (e.g., inter-leg coordination, stride length,
etc.) are inferred in real-time using a sample-efficient algorithm.
More specifically, this work presents a data-based approach
wherein offline-learned optimal behaviors, represented using
central pattern generators (CPGs), are used to train a class of
probabilistic graphical models (PGMs). The trained PGMs are
then used to inform a sampling distribution of inferred walking
gaits for legged hexapod robots. Simulated as well as hardware
results are presented to demonstrate the successful application
of the online inference algorithm.

I. INTRODUCTION

Autonomous systems currently suffer from an inability

to safely control, or rather adapt, their behavior to achieve

high-level goals in unstructured environments. In light of

these limitations, one potential means to achieve the level of

adaptation necessary for autonomous systems to successfully

operate in unstructured environments is through sampling-

based planning techniques (this potential is well documented

in the motion planning literature). However, conventional

sampling-based approaches tend to be computationally in-

efficient when sampling in high dimensional spaces, e.g.,

sampling the optimal parameters, relative to some high-level

locomotive objective, for highly-articulated robots moving

through uneven terrains. This work thus presents a new

approach to sampling-based navigation planning for highly-

articulated robots wherein a class of probabilistic graphical

models is used to dramatically limit the effective size of

the search space. More specifically, we show how to encode

sets of features related to the kinematics, task objective, and

environmental context in a PGM that is used within an online

sampling-based inference algorithm to efficiently determine

optimal motion parameters for underactuated robots moving

through nontrivial terrains.

1 Raghu Aditya Chavali and Matthew Travers are with the Biorobotics
Lab, Carnegie Mellon University, 5000 Forbes ave, Pittsburgh, PA 15213,
USA. <rchavali, mtravers> @andrew.cmu.edu

2 Nathan Kent, Michael E. Napoli, and Thomas M. Howard are
with the Robotics and Artificial Intelligence Laboratory, University of
Rochester, Joseph C Wilson Blvd. Rochester, NY 14627, USA.<nkent2,
mnapoli>@cs.rochester.edu, <thoward>@ece.rochester.edu

Fig. 1. Hexapod robot on which the efficient sampling-based planning
framework developed in this work is demonstrated.

The hexapod robot shown in Fig. 1 provides an example

of the class of articulated robots considered in this work.

To determine an “optimal behavior” for such a robot using

a conventional sampling-based planning technique would

require exhaustively searching a very large dimensional space

(at minimum forty-eight dimensions). The resulting planning

algorithm is therefore extremely time consuming and thus not

applicable to online implementations. However, given some a

priori knowledge that determines regions of the search space

are “most relevant” to the hexapod achieving high-level goals

has the potential to dramatically reduce the effective size of

the search space and thus lead to a solution that does run in

real-time.

This work quantifies what regions of the search space for

a highly articulated robot are most relevant to the system

achieving high-level objectives using an offline framework

for generating a library of optimal locomotive behaviors.

The behaviors are represented in terms of parameterized

CPGs that implicitly define cyclic locomotive behaviors, i.e.,

locomotive gaits. For a given high-level objective, the CPG-

based behaviors are learned using a gradient-free, genetic

algorithm that determines the optimal set of CPG parameters

for a given robot in a specific environment.

The main contribution of this work uses the offline-

learned CPG-based behaviors to train a graphical model that

encodes features describing a system’s kinematics, a high-

level objective, and environmental description (this work

manually defines the obstacle dimensions and does not use

an onboard sensor). The trained PGM is then used to learn

how to efficiently sample from the underlying distribution of



CPG parameters during online implementation. We present

experimental results that show the framework developed in

this work outperform traditional sampling-based techniques.

The remainder of this paper is organized as follows. In

Section II, we present related works with an emphasis on

managing the behaviors of highly-articulated, underactuated

systems. In Section III, we present a high-level overview

of the automated framework for online sampling based in-

ference and the probabilistic inference framework developed

for this approach. Section IV describes the methods applied

for evaluating the performance of the proposed framework.

Section V presents results that show how our framework

compares to traditional sample based techniques for inferring

the motion parameters of articulated robots moving through

semi-complex terrains. Finally, in Section VI, we conclude

with a discussion of the limitations and future scope of the

work presented in this paper.

II. BACKGROUND AND RELATED WORKS

A brief background on the different components that form

the foundation of this work are incorporated to provide

context.

A. Central Pattern Generator

Central Pattern Generators (CPGs) are a tool for control-

ling the motion in highly-articulated systems [2]. CPGs are

defined as a set of coupled ordinary differential equations

that model the interconnected relationship between different

degrees of freedom in such systems. For example, for an n-

legged articulated robot with two rotary shoulder joints per

leg ( as the motions of subsequent joints can be calculated

using forward kinematics), let x(t) = [x1(t), ..., xn(t)] rep-

resent the joint angles of the shoulder joints of each leg in the

axial plane (proximal), and y(t) = [y1(t), ..., yn(t)] represent

the joint angles of the shoulder joints in the sagittal plane

(middle joint). Given these assumptions, the CPG model used

in this work (as presented in [5]) is defined by

ẋi(t) = −ω ∂Hyi + γ(1−H(xi(t), yi(t))) ∂Hxi (1)

ẏi(t) = ω ∂Hxi + γ(1−H(xi(t), yi(t))) ∂Hyi (2)

+ (λΣjKijyj(t))

where ω is the speed of each oscillator’s phase, γ represents

the “forcing” to the CPG cycle, λ represents the strength of

inter-oscillator coupling, and K defines the coupling matrix

that is used to determine the phase relationship between

oscillators. The parameter H here defines a super-elliptical

shape of the oscillator wherein

Hc(x, y) =
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and ∂Hθ = ∂H
∂θ

(xi(t), yi(t)) where θ ∈ xi, yi in Equation

1. Note that, a and b represent the semi-minor and semi-

major axes of the elliptical cycle respectively and n governs

the overall shape of the oscillator trajectory (e.g., n = 2

results in a round elliptical shape and n = 4 a rectangular

shape). An elliptical shape is chosen as this family of limit

Fig. 2. The figure shows three different kinematic configurations of the
simulated hexapod used for learning CPG parameters. The top picture shows
the normal configuration of the hexapod. The middle picture shows an
symmetric hexapod with four long legs and two short legs. The bottom
picture shows the tall configuration of the hexapod.

cycles gives us independent control over step height, step

length and the shape of the cycle by varying the constants in

Equation 3. Lastly, cx and cy are constant offset parameters

that determine the nominal posture of the system for stable

locomotion (As shown in Fig. 1, the front and back legs are

spaced away from the centre of the robot to give it a stable

grip).

Variations of such models are used in the bio-inspired [3]

control of multi-legged robots [4], such as quadrapeds [9],

swimming lamprey [6] and amphibious snake robots [7][8].

Works presented by Sartoretti et. al[5] and Righetti et.al[10]

incorporate the use of sensory and intertial feedbacks for

stabilizing locomotion on legged systems. Though previous

work in the CPG literature does consider augmenting CPG

models to adapt the underlying behavior of a given system,

these prior works have attempted to hand craft methods that

incorporate feedback into CPG models and do not account

for adapting the motion parameters in real time based on

uncertainty. In this work, we develop a novel means to adapt

CPG-based locomotion models through efficient sampling-

based methods made available by leveraging novel PGMs.

B. Probabilistic Graphical Models

For robots to reliably perform difficult tasks in unstruc-

tured environments they need to be able to reason about many



different forms of uncertainty. PGMs permeate nearly all

aspects of robotic intelligence and serve as one of the primary

means to make autonomous decisions under uncertainty.

For example, in various motion planning algorithms PGMs

span sampling-based techniques for representing the state-

action space [14], to those that explicitly reason about the

uncertainty of transitions [15] and observations [16] for

localization [17] and mapping[18] [19] tasks.

Since PGMs can be used to efficiently perform infer-

ence by naturally exploiting conditional independence to

limit underlying complexity, this basic concept has divers

application in the context of Natural Language Process-

ing (NLP). Methods such as Generalized Grounding Graph

[13], Distributed Correspondence Graph [1], Hierarchical

Distributed Correspondence Graph [11] and Adaptive Dis-

tributed Correspondence Graph [12] build graphical models

that independently infer distributions of symbols that rep-

resent objects, spatial relationships, constraints, trajectories,

etc. for individual phrases forming the natural language

statement. The distributed corresponding graph assumes con-

ditional independence across constituents of the symbolic

representation to efficiently infer distributions of symbols. In

this work, we draw inspiration from [1], [11] in recognizing

that the mathematical framework for efficiently inferring

distributions of symbols for natural language understanding

can be applied to the problem of inferring CPG parameters

for locomotive behaviors of highly articulated robots moving

through complex terrains.

A type of graphical model that is closely related to this

work is Partially Observable Markov Decision Processes

(POMDPs) serve as a useful framework for decision-making

tasks under uncertainity. However, they tend to be computa-

tionally infeasible to solve directly. Joelle Pineau et. al [25],

Sreenath et.al[28] and Simbro et. al [27] present POMDP

based approaches to large-scale problems, but restrict its

useage as a high level planner due to its computational

cost, requiring a low level non probabilistic planner for

robot control. Fuko et.al, [26] presents a novel hierarchical

POMDP algorithm for autonomous robot nagivation in real

time. However, the authors do not discuss how these methods

generalize across systems with different configurations, one

of the problems that is directly addressed in this work.

III. TECHNICAL APPROACH

Figure 3 highlights the different components of the frame-

work for inferring locomotive behaviors for articulated robots

developed in this work. First, an offline data set consisting of

CPG-based behaviors training collected across robots with

varying kinematics in different environments. Specifically,

we learn in an offline framework the constant values a (the

step height), b (the sweep) and coupling matrix K for each

of the legs of the platform considered using a state genetic

learning algorithm [22]. To evaluate an individual in the

population, the CPG parameters (a,b,K) were simulated for

a short time, with the reward being calculated as

Reward(xdist, ydist) = ydist − 0.5
√

|xdist| (4)

where xdist and ydist are the distance travelled in the X

and Y directions in the world frame. This reward function

rewards forward progress whilst penalizing weaning off

course. However, It should be noted that the magnitude of

reward is greater than the penalty. The collection of training

data forms the offline behavior library. This data is then used

to train the graphical model used to reduce the complexity of

online, sampling-based inference. The PGM training process

involves encoding sets of features containing the behavior

parameters for the different kinematic configurations of the

hexapod robot, the environment and the end goal into a factor

graph. These encoded feature sets allow the graphical model

to learn how to sample from the otherwise high dimensional

search space during run-time.

Leveraging recent work in probabilistic graphical models

for natural language understanding of robot instructions [24],

[23], we propose a factor graph to infer a set of CPG param-

eters (P) from a space of CPG parameters P conditioned on

random variables that represent behavior (B), environment

(E), and model (M). The distribution over behaviors repre-

sents uncertainty in what activity should be performed from a

task planning framework. The distribution over environments

models the sensor noise and state estimation inaccuracy. The

distribution over models represents the uncertainty in internal

parameters or structure of the robot model (e.g., range of

motion of joints, motor performance), i.e.,

P∗ = argmax
P∈P

p (P|B, E ,M) (5)

We model this distribution as a factor graph with known

binary correspondence (φ), behavior, environment, and task

variables and unknown parameter variables. As described

[24], a binary correspondence variable with a “true” logic

value models the probability of a symbol in the context of

the other random variables. We reformulate the expression

described in Equation 5 as a factor graph with known binary

correspondence variables, i.e.,

P∗ = argmax
P∈P

p (φ = true|P,B, E ,M) (6)

The primary issue with this formulation is that we are

sampling parameters from a distribution IRn, where n is the

number of free parameters in the CPGs that describe the

motion of the underactuated system. Using the insight made

available by Distributed Correspondence Graphs [23] for

approximating models with large symbolic representations,

we assume conditional independence across constituents of

the symbolic representation to make inference tractable, i.e.,

P∗ = argmax
p1...pn∈P

|N|
∏

i=1

p (φi = true|pi,B, E ,M) (7)

As in [24], [23] we model the expressions for conditional

probability distributions using log-linear models that learn

features weights from a set of annotated examples (envi-

ronment, behavior, model, and learned parameters) obtained

from the genetic algorithm. A graphical representation of the

factor graph is illustrated in Figure 4. We approximate the
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Fig. 4. A representation of the factor graph used for probabilistic
inference of CPG parameters. The model exploits conditional independence
across constituents of the parameterization to infer a distribution of CPG
parameters (P) using random variables that represent environment (E),
behavior (B), and model (M).

inferred distribution of CPG parameters from this model at

run-time using beam search and use the most likely param-

eters to inform our sampling of candidate CPG parameters

for performing the given task. This is done by modeling the

conditional probability in Equation 7 as a learned function,

i.e.,

P∗ = argmax
p1...pn∈P

|N|
∏

i=1

f (φi = true, pi,B, E ,M) (8)

IV. EXPERIMENTAL DESIGN

To evaluate the performance of the proposed model for

inferring CPG parameters, we follow the procedure outlined

in Figure 3 and vary parameters of the kinematic model and

environment. The genetic algorithm-based training procedure

varied the obstacle step height from 0m to 0.05m in incre-

ments of 0.01m. The procedure also varied the kinematic

parameters 0.05m < Lx1 < 0.1m, 0.0191m < Lx2 <

0.03m, and 0.1206m < Lx3 < 0.24m, where Lxi represents

the ith joint of the xth leg. The training procedure produced

twenty-seven learned sets of CPG parameters. Among these

sets thirteen examples were symmetric and had Lx1, Lx2, and

Lx3 values of 0.05m, 0.0191m, and 0.1206m respectively.

We will refer to this model as the “normal” model which is il-

lustrated in Figure 1 . Seven of the examples had models that

were symmetric and had longer Lx1, Lx2, and Lx3 values of

0.1m, 0.03m, and 0.24m respectively. We will refer to this

model as the “tall” model. Five more of these models were

based on the longer configuration but had shorter middle

legs with Lx1, Lx2, and Lx3 values of 0.05m, 0.0191m,

and 0.1206m respectively. The final two configurations were

based on the first (symmetric) configuration with long middle

legs with Lx1, Lx2, and Lx3 values of 0.1m, 0.03m, and

0.24m and an asymmetric configuration with three normal

length legs of Lx1, Lx2, and Lx3 values of 0.05m, 0.0191m,

and 0.1206m and three long length legs of 0.1m, 0.03m,

and 0.24m. A behavior describing a locomotion tasks was

assumed for all examples. The genetic algorithm training

assumed population sizes that ranged from 50 to 100 and

trained of 10 to 40 generations.

From these learned parameter values we define a search

space of twenty-one uniformly sampled values of forty-eight

CPG parameters (one a, one b, and six k parameters for each

of the six legs, as defined in Equations 1 and 3) across the

ranges 0.0 ≤ ai ≤ 4.5, 0.0 ≤ bi ≤ 2.5, and −3.5 ≤ kij ≤
3.5. For each example we label the sampled CPG parameter

with the value that is closest to the trained model as a “true”

correspondence and all others as a “false” correspondence.

From these twenty-seven trained CPG parameter values we

accrue 27,216 training examples that we use to train a log-

linear model with 2,280,960 weighted features. As in [24],

[23], the feature vector is generated by a Cartesian product

of 362 binary features divided into four groups composed

of two correspondence features, 180 CPG parameter value

features, 48 CPG parameter property features, and 132 model

and environment property features.

To analyze the performance of the graphical model, the

CPG parameters were inferred for two simulated variations

of the hexapod kinematic chain. In these experiments the

“normal” and “tall” configurations were evaluated. The CPGs

were inferred by searching the factor graph using beam

search with a beam width of 8, resulting in the 8 samples

with the highest approximated log-likelihood. For each of



Fig. 5. Performance of nominal hexapod locomotion using the three
baseline approaches and graphical model to select CPG parameters. The
error bars represent 95% confidence intervals around the median. Both
factors (CPG generation method, obstacle height) and their interaction were
found to be statistically significant (p < 0.01) using an N-way Analysis of
Variances (ANOVA).

the 8 beam samples, 8 simulations were conducted and the

reward function from Equation 4 was evaluated. The median

of the 8 resulting reward values for each beam sample was

calculated and the beam sample with the highest median was

chosen as the best inferred solution for that combination of

kinematic chain and obstacle height.

Three baseline CPG approaches were used for comparison

with the graphical model. The first baseline is the set of

CPG parameters obtained by the genetic algorithm for each

combination of kinematic chain and obstacle height, which

is essentially the training data used to learn the graphical

model. The second baseline is set of CPG parameters ob-

tained by the genetic algorithm for the appropriate kinematic

chain, but trained in an obstacle free environment. This

explores the effectiveness of CPGs learned in free space

when they are applied to a world with obstacles. The third

baseline is a randomly generated set of CPG parameters

sampled from a multivariate uniform distribution with ranges

that span the values obtained by the genetic algorithm for

each parameter. This baseline illustrates the difficulty of

the sampling space and represents an uninformed sampling

method applied to the CPG parameter distribution. During

the random sampling procedure, the coupling matrix was

constrained to be symmetric with all diagonal elements equal

to 0. Obstacles heights were varied using the set of val-

ues 0.0m, 0.005m, 0.01m, 0.02m, 0.03m, 0.04m, 0.05m and

both the normal and tall kinematic chains were used. For

each baseline, 8 simulations were performed for each com-

bination of obstacle height and kinematic chain. To analyze

the randomly generated CPGs consistently with the graphical

model, 8 random CPGs were generated and 8 simulations

were performed. The random CPG set with the highest

median reward was chosen as the best randomly generated

solution.

Fig. 6. Performance of the “tall hexapod” locomotion using the three
baseline approaches and graphical model to select CPG parameters. The
error bars represent 95% confidence intervals around the median. Both
factors (CPG generation method, obstacle height) and their interaction were
found to be statistically significant (p < 0.01) using an N-way Analysis of
Variances (ANOVA).

V. EXPERIMENTAL RESULTS

This section presents the experimental results of this work.

Figure 5 presents our initial results where the red line shows

the locomotion of the hexapod using the CPG parameters

trained on flat ground tested on different obstacle heights,

and the blue line corresponds to the hexapod’s locomotion

using the CPG parameters trained on the appropriate obstacle

height. These results indicate that factors corresponding to

choosing the appropriate CPG parameters and the obstacle

height are statistically significant.

Figure 8 shows the hardware results of the hexapod trying

to cross obstacles of height 5cm using the CPG parameters

for navigating on flat ground. As expected, the robot fails

in achieving its task. Figure 9 shows the hardware results of

the hexapod trying to cross obstacles of height 5cm using the

learned CPG parameters corresponding to the object height.

Here we see that the hexapod is easily able to maneuver past

the obstacles in the same environment. Figure 5 and Figure

9 motivate learning CPG parameters for a world model.

Figure 7 show the hardware results of the hexapod try-

ing to locomote on flat ground using the CPG parameters

obtained from the graphical model inference described in

section III. The results show that the motion of the hexapod

is subpar compared to the learned CPG parameters for the

same task. However, the experimental results exhibits a new,

never before seen gait for locomotion on flat ground.

In the experiments we also explored the run-time perfor-

mance of beam search in the probabilistic graphical model

used to infer CPG parameters. Assuming a beam width of

eight and the trained features set and search space described

in IV, we observed an average run-time of 0.075 seconds for

probabilistic inference across the environments, kinematic

models, and behaviors explored in the twenty-seven train-

ing examples generated from the genetic algorithm training

procedure.
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