
Multi-threading Semantics for Highly
Heterogeneous Systems Using Mobile Threads

Peter M. Kogge
Dept. of Computer Sciene and Engr.

Univ. of Notre Dame
Notre Dame, IN USA

kogge@nd.edu

Abstract—Heterogeneous architectures are becoming the norm.
The results are nodes that are not only multi-threaded, but
simultaneously multi-threaded across several different instruction
sets and core designs. Unfortunately, programming models for
such systems are still evolving, and are nowhere near adequate
as we move into an era of extreme heterogeneity with many
new accelerator designs. This paper discusses the current range
of multi-threading models and what features are liable to be
needed for such future architectures. In addition, we suggest the
potential value of using a new threading model, termed migrating
threads, that may be an excellent match for a common “glue”
to efficiently combine all the emerging heterogeneity.

Index Terms—Fine-Grain Parallelism and Architectures, HPC
Architectures for Mobility, Instruction-, Thread- and Memory-
Level Parallelism, Programming Languages

I. INTRODUCTION

The 2008 DARPA-sponsored Exascale technology report
[28] projected that systems with exascale capabilities will of
necessity have to support billions of concurrent threads run-
ning on cores that individually are not much faster than today.
To reach these levels, recent years have seen the emergence of
heterogeneous systems employing a mix of high-end server
and GPGPU chips that support large numbers of threads. Such
systems employ multiple core microarchitectures, meaning
that different parts of a program that uses multiple core types
must be compiled differently, with code required to bridge the
gaps. Followup reports [25]–[27], [29] have confirmed that
heterogeneity is in fact the dominant trend. Looking forward
we see continued heterogeneity as new technology accelerators
come into play. The explosion in neural nets and machine
learning is just one example.

Today the dominant memory model is also increasingly
heterogeneous. Within a single node there is a large main
memory space with hardware-enforced coherency between
the general purpose cores and their increasingly deep cache
hierarchies. However, the memory used by the GPUs is both
physically and logically separate from that main memory.
Explicit transfers must be made to move data between them. In
contrast, the memory spaces between nodes are totally disjoint,
with relatively complex software protocols needed to commu-
nicate between them, either for data transfers or to signal a
remote computation. For the dense, regular computations of
the past, this has been sufficient. However, recent apps are

exhibiting much more sparsity and irregularity where today’s
deep cache hierarchies are of little use for programs within
a node (cf. HPCG [15], [34]), and the software-based inter-
node messaging protocols often swamp the computation time
for multi-node algorithms (cf. [40]).

Looking forward, the emergence of 3D stacked memory
[41] has suggested positioning cores on the bottom of indi-
vidual memory columns within that stack, and then coupling
those stacks together in a “sea of stacks”, each of which is
a “node” [35], [36], [42]. Different stacks may have different
types of cores simply by swapping out the processing die, This
will implement heterogeneity at a much finer level.

The major issue is the need for a program to explicitly
handle references to data that is “here” vs “there,” and to be
able to start new threads where they have most easy access to
the required data and/or have a processing core most attuned
to the needed work. Underlying software (as in the UPC
language [18]) and/or hardware (as in HPE’s “The Machine”
1) is needed to maintain the illusion of a shared space. This,
however, does not address the heterogeneity in processing that
we see at the same time.

A common attribute of virtually all of today’s models is
that threads are largely “stationary.” Once started on a core,
they seldom move. There is ”invisible” migration of threads
between cores of the same type for such things as load-
balancing, power-moderation, and wear-leveling [7], but that
is all managed by software. Techniques like RDMA2 support
data access and “active messages” [50] for a remote function
spawn, but again need expensive software implementations
such as SHMEM [11] and GASNet [4].

Providing a thread of computation the ability to “migrate”
much more freely to different execution sites may very well
help solve both problems. Reducing the need to distinguish be-
tween “here” and “there” both drastically reduces a program’s
complexity and possibly improves performance. This is even
more true when the “migration” can cross an ISA boundary
as in a heterogeneous processing system. Architectures have
been proposed to implement such capabilities both in multi-
node systems and in cores integrated very near or inside the

1https://www.labs.hpe.com/the-machine
2Remote Direct Memory Access

281978-1-7281-4484-9/19/$31.00 ©2019 IEEE



memory hierarchy, but to date have not addressed the “cross-
ISA”/“cross-core type” issues.

This paper makes a first attempt at defining more completely
the dimensions found across all threading models, and inte-
grating them into a common framework, where both PGAS
considerations, multiple core types, and potential mobility of
threads are considered. Section II provides some definitions.
Section III goes through a brief history of architectures with
migrational features. Section IV defines the different dimen-
sions under discussion. Section V then suggests a common
paradigm. Section VI discusses what must happen when
various types of code invocations are made in such systems.
Section VII suggests a possible model, with language features,
that incorporates all the above. Section VIII concludes.

II. DEFINITIONS

For this paper, a thread is a set of state information that is
sufficient to guide a path of execution through a program. This
state may include register values, a call history stack, or heap
memory allocated to the thread. A thread is spawned when
its state is first assembled and given to a core for execution.
A thread execution is the updating of the thread state as the
thread performs the actions called out by the thread’s program.
The lifetime of a thread is the time from its spawning until
the time when it gives up its state and terminates.

A core is the logic that can advance the state for a thread’s
execution. A locale is the memory and core(s) that are pack-
aged together so that threads running in the locale’s core(s)
can access the locale’s memory more easily than the memory
associated with some other locale. An ISA (Instruction Set
Architecture) is the set of instructions a core recognizes.

A PGAS (Partitioned Global Address Space) system is
one where the memory is physically partitioned into locales,
but where it is all in the same address space, so that an address
prepared by a thread anywhere can be uniquely associated with
the physical memory holding the associated memory.

A distributed address space is one where are multiple
physical locales, and a thread running in one cannot directly
generate an address to the memory in another.

A locale’s cores thus have an affinity to the locale’s
memory, as does any thread executing on those cores. Further,
a particular thread may have two kinds of affinity: affinity of
creation as to which locale it was spawned (and thus calls
home), and an affinity of execution: the locale(s) where it
actually executes. These need not be the same. In particular, for
this paper, a stationary thread is one whose site of execution
in terms of locales never changes from where it was spawned.
A mobile thread is one whose execution site may change
one or more times in its lifetime. A migration occurs when
a mobile thread switches its locale of execution.

An AMO (atomic memory operation) is typically when
one thread performs a sequence of operations against some
memory location(s) in a way that appears to be “instantaneous”
to any other thread attempting to access the same location(s).

There are also variations in how threads monitor the
progress of other threads. The term barrier denotes an opera-

tion that is executed at some point by a group of threads, with
no thread permitted to advance until all threads have checked
in, at which all threads continue again. A sync operation is
subtly different in that it is typically used by a parent thread
to determine when a group of child threads it has spawned
have completed their execution. The term fence is similar, and
used typically when the child “threads” are very short, very
transient, operations such as accessing memory remotely.

An active message [50] involves the specification of some
function to be run against the data associated with some locale
other than the current one. Such spawns look like conventional
calls but semantically are non-blocking where the calling
thread need not wait for the called computations to complete.
The ”called” function thus may run as a separate thread in a
target locale specified by the caller. A reply capability allows
such a function, when it has completed execution at its remote
location, to return something to the calling node, where the
results are returned to the caller’s space back into the caller’s
memory and/or synchronize with the parent thread.

III. THREADING ARCHITECTURES

There is a standard taxonomy of core microarchitecture that
support multi-threading in hardware [49]. Real microarchitec-
tures that support multi-threading in some form date back to
the CDC-6600’s I/O Processor [47]. The Denelcor HEP [21]
carried this into a general-purpose framework, and the later
Tera MTA [45] and Cray XMT [31] went further to provide a
PGAS environment where any thread on any node could make
load/store access to any memory location.

Typical GPUs such as from Nvidia support a dual level of
multi-threading: thread blocks execute on stream processors
that in turn host a large number of worker threads that follow
instructions issued by the stream processor.

The idea of imbuing threads with a sense of “mobility,”
where at least a large part of its state can move between cores,
is beginning to become more serious. Hardware-supported
spawning and migration for small pre-defined operations such
as remote atomic memory operations go back decades, such as
in the Cray T3D [12], [23]. The J-Machine [13], [14] provided
each core with hardware support for something akin to active
messages, where one core could explicitly send a function
spawn to another node. Architectures have been proposed to
implement thread mobility in cores integrated very near or
inside the memory hierarchy [6], [19], [24], [32], [37], and
some have actually been demonstrated mobility in prototype
hardware [5], [48].

More advanced in terms of mobility is the Emu Context
Flow Architecture [16], Fig. 1. Here the unit of parallelism
is a small locale-like unit called a nodelet: a single memory
channel, its controller, and multi-threaded core-like logic to
execute migrating threads. All memory in the system is in
a common address space. What distinguishes this from a
conventional multi-core shared memory system is that threads
are not stationary. Instead whenever a thread executing on a
nodelet tries to access a memory location not on the nodelet,
the hardware suspends the thread, packages its state, and ships

282



Emu: A Migrational Architecture 
Focused on Memory

Memory
Channel

Memory

Memory
Front End

ECE

Memory

Memory
Front End

ECE

Memory

Memory
Front End

ECE

Memory

Memory
Front End

ECE

Memory

Memory
Front End

ECE

Memory

Memory
Front End

ECE

Network

Nodelet: New unit of parallelism

Threads execute in Multi‐Threaded Emu Compute Elements (ECE)

Until they make a non‐local reference
And then moved to correct nodelet

. . .

And they are free to spawn
independent children

All memory in single
global address space

Smart Memory 
Controllers
that also do atomics

11/02/2018 Breakthrough for HP Data Analytics 22
Fig. 1. The Emu Context Flow Architecture.

Memory

Memory
Front End

ECE

Network

11/02/2018 Breakthrough for HP Data Analytics 23

Attached
Core(s)

System
I/O

Thread spawn (both directions)

Private
Memory

Fig. 2. A Hybrid Nodelet.

it to the correct nodelet and restarted on a local core, with no
knowledge that it had moved. In the Emu case, the state that
is migrated are a set of hardware registers akin to those in any
conventional system. Most of these registers hold arguments
and working data; others hold pointers back to larger parts of
the thread’s state, such as the call stack. In addition, a thread
can spawn, with as little as a single instruction, a child thread
that is free to pursue its own execution path. The compute logic
on each nodelet is multi-threaded so that with sufficient threads
there is always one that is ready to access local memory, and
thus keep the local memory channel busy. There is a rich set
of AMO instructions that are executed directly in the memory
controller without any of the complexity or performance hits
found with conventional architectures. A thread may also
spawn an even lighter weight thread to perform remote AMOs.
Applications well-suited for such an architecture include those
that are memory intensive, irregular in access, or highly sparse,
such as in big data or big graph problems [30].

Not shown in Fig. 1 are conventional cores with interfaces
into a nodelet, as approximated in Fig. 2. Today these con-
ventional cores can transfer data between nodelet memory and
either their own memory or file systems. They can also inject
threads into the nodelet system to initialize computation.

Looking ahead, there is nothing to prevent the spawning
of a thread to “go the other way,” particularly when the
attached core is a GPU or accelerator of some kind that
can perform specialized computations on the local memory.
A mobile thread that lands on some nodelet because of a
reference to the memory in that nodelet could decide to spawn
a child thread, but that child could be a thread for the attached
core. The attached core may then use the arguments in the

mobile thread’s state as parameters to tell it what to do. The
mobile thread could then either continue execution or wait at
the attached core’s interface for it to finish. In the latter case,
at completion of the spawned function, the attached core could
return results to the waiting mobile thread and release it.

This technique could greatly simplify programming large
heterogeneous systems with many cores of a variety of types.
A common mobile thread infrastructure provides a standard-
ized “glue” to stitch together all the disparate compute ele-
ments. Different attached core types could have their process-
ing defined as libraries of functions annotated as callable from
a mobile thread spawn. Thus different functions on different
nodelets could be called by a mobile thread representing the
main flow of an application. The local cores need never know
how their computation is tied into a bigger stage.

IV. THREADING DIMENSIONS AND CURRENT MODELS

Following is a list of different threading characteristics:
• when may new threads be spawned in a program,
• how many such threads may be spawned at a time,
• what is the lifetime of a thread relative to its program,
• are threads “named,” and if so to whom is the name visible,
• what is the affinity of a thread when it is spawned,
• what parts of the system’s memory are visible to a thread,
• how mobile is a thread during its execution,
• how does a thread interact with shared memory,
• how do threads interact, especially with parents.

The following subsections overview three distinct classes of
such models. Table I summarizes some key characteristics of
a cross-section of real languages and libraries for each class.
These examples were chosen for either historical or feature
set reasons. We use the term “package” to refer to either
a complete language with threading features “built in,” or a
library used with a conventional language.

A. The SPMD Threading Model

The SPMD (Single Program Multiple Data) model has mul-
tiple threads started at the beginning of a program execution,
with each thread running the same code but on a distinct region
of memory. Such threads are long-lived - for the lifetime of
the program, are “stationary” on a locale established on their
creation, and typically do not spawn child threads.

Packages in this class separate into two groups depending
on whether or not the memory associated with one locale is
addressable by a thread in another. The primary package today
supporting SPMD distributed memory models is MPI [20].
Libraries such as SHMEM (and more recently OpenSHMEM
[11] and ARMCI [39]) support a PGAS-like memory model
where some memory in each locale has been contributed to
a larger pool against which a variety of access operations
is available via library calls. Most implementations invoke
remote threads on the target locales to perform the operation,
that in turn invoke another transient thread on the requesting
locale to return the data back to the requestor’s data structures.

UPC [18] is an SPMD language with explicit PGAS sup-
port. The original UPC memory model assumed one thread

283



TABLE I
SOME RELEVANT PROGRAMMING LANGUAGE AND LIBRARY CHARACTERISTICS.

Thread Class Type Lifetime Coordinations Atomic Operations

L
an

gu
ag

e

SP
M

D

Te
am

A
sy

nc
hr

on
ou

s

St
at

io
na

ry

M
ob

ile

L
on

g

M
od

er
at

e

Sh
or

t

T r
an

si
en

t

PG
A

S-
a w

ar
e

N
am

ed
T

hr
ea

ds

B
ar

ri
er

s

Sy
nc

Po
in

ts

Fe
nc

es

B
as

ic
A

M
O

s

L
oc

ks

R
ed

uc
tio

ns

A
to

m
ic

Se
ct

io
ns

Primarily SPMD Threading
MPI E E I E No Yes Yes Yes Yes Yes

SHMEM E I E I E I Yes No Yes Yes Yes Yes Yes
Split-C E E I E I Yes Yes Yes Yes Yes Yes Yes Yes Yes
UPC E I E I E I Yes Yes Yes Yes Yes Yes Yes

Chapel E E E E I E E E I Yes Yes Yes Yes Yes Yes Yes Yes
X10 E E E E E E E E Yes No Yes Yes Yes Yes Yes Yes

Primarily Team Threading
OpenMP E E E E E No No Yes Yes Yes Yes Yes
CUDA E E E E E No Yes Yes Yes

Intel TBB E E E E E E No No Yes Yes Yes Yes Yes
Primarily Asynchronous Threading

Smalltalk I I E E E E I No Yes Yes
P-threads E E E E No Yes Yes Yes Yes Yes
Multilisp E E E E E No No
GASNet E E E E E E E I Yes Yes Yes Yes Yes Yes

Cilk E E E E E E No No Yes Yes Yes
Charm E E E E E E E Yes Yes Yes Yes

E = Explicitly stated by programmer. I = Implicit in implementations.

per locale, with access to two memory spaces: a “private”
memory accessible only to that thread, and a shared memory
space accessible by all. Although any thread can access freely
any location in shared memory, there is a program-definable
sense of affinity for some specific data (especially arrays) to
a specific thread, where it is typically far faster for a thread
to access data for which it has affinity than to access other
shared data with affinity to other threads.

Chapel [8], [9] and X10 [17], [43] were both programming
languages that came out of the DARPA HPCS project with
roots in an SPMD model but with significant capabilities for
asynchronous threads. Chapel has its roots in a combined
multi-mode threading and PGAS model with significant team
and asynchronous capabilities that is richer than UPC, in-
cluding more explicit definition of locales and a variety of
distribution options for arrays striped among various locales.

In X10, a prefix async in front of a statement creates a new
asynchronous thread called an activity that shares the parent’s
heap but has its own control stack. Affinities to locales (termed
places) are specifiable on a per statement block basis by an
at (<place-name>) <statement>. When such a statement is
encountered, part of the current thread’s state are migrated to
the new place, and unpacked into a new control stack that is
used by a local thread. When the thread completes, execution
is restarted back at the original place. Nothing is copied back
from the new stack to the old stack.

B. The Team Threading Model

The Team model has groups of threads spawned by the
program at logically the same time and locale to work their
way through some programmer-specified set of work, such as
through the different iterations of a for loop. Team threads are

anonymous. They typically use some sort of work-sharing or
work-stealing [3] where the next available thread picks off
(atomically) the next unit of work to do. The lifetime of a
team thread falls somewhere between short to moderate.

OpenMP [10] and Intel Thread Building Blocks (TBB)
[22] are two common team packages that are designed for
multi-threading within a shared memory environment with
fairly heavy-weight long-lived threads.

CUDA [38] (and the newer OpenCL3) assume there are
two distinct kinds of cores involved in two distinct types of
locales: a conventional one and one built around GPUs. There
are two address spaces, for which CUDA provides RDMA
operations to transfer data between the two. Function calls
made from a conventional host processor to a GPU define an
implicit grid of indices into GPU-resident data structures that
can be executed by different threads of different blocks.

C. The Asynchronous Threading Model

SPMD and team threading largely hide the act of spawning a
new thread from the programmer. In an asynchronous model,
not only is the act of creation a programmer-specified event,
but so is the specification of what code the new thread is to
execute and the key parts of the initial state. Further, unlike
SPMD and team, there need be no commonality between the
code of the parent and that of the child(ren). However. there
must be a way for the parent to know when the child has
completed, and for the child to return results.

P-threads [33] is perhaps the most well-known threading
package for shared memory system. There is no explicit
affinity to threads when they are created, and they may
run for arbitrarily long periods of time. It is a library with

3https://www.khronos.org/opencl/

284



four categories of calls: thread management, interaction via
mutexes, communication via condition variables,and thread
synchronization via locks and barriers.

GASNet [4] is a library that provides the ability to spawn
threads remotely. An argument on the spawn provides the
affinity of the child thread, expressed as a locale id coupled
with a local memory address. The lifetime of these threads is
shorter than the threads that spawned them.

Cilk [2] is an extension of C that provides dynamic multi-
threading where threads are spawned, merged, and die as
needed by the program. It is the base language for program-
ming the Emu system discussed earlier. The core Cilk adds to
C three keywords dealing with thread spawning:
• cilk: an attribute to a function definition that identifies that

function as being capable of being called and executed as an
independent thread, without blocking the caller’s execution.

• spawn: a keyword preceding a function call that specifies a
“non-blocking” call to be executed by a separate thread.

• sync: all threads spawned within the enclosing block must
complete before execution continues past the sync.

A new generation of compiler technology, Tapir [44], is
enhancing the ability of Cilk compilers to extract fork/join
parallelism automatically.

V. UNIFYING THE PARADIGMS

No single language from Table I encompasses all of the
attributes needed for all models. Further, as we move towards
very heterogeneous systems with many more locales, espe-
cially PGAS-based ones, we will need a richer and more uni-
fied paradigm. This section moves towards such a unification.

A. Stationary versus Mobile Threads

First, at least two kinds of threads should be definable:
stationary and mobile. The stationary class accounts for almost
all of today’s threading, except for active messages and the
largely hidden implementation of RMOs.

Mobile threads are best at attacking problems that either
have significant remote accesses, little reuse, and/or change
the type of core to be used. They fall into several categories:
• spawn-time mobility where a thread is explicitly created

by some parent thread to be executed on some other locale
or a different core type on the current locale,

• run-time directed mobility where a thread is migrated
“under the covers” by a run-time for some system reason.

• programmer-directed mobility where a thread migrates
only under programmer control.

• location-specific mobility where directives on data defini-
tions specify when an access should cause a migration.

• fully self-migrating where a thread moves from locale to
locale as non-local run-time data references are made.
In addition, mobile threads should be capable of spawning

other threads (of any kind), just like stationary threads. Such
a capability is not currently allowed in, for example, GASNet
active messages, although in many cases this is an implemen-
tation, not necessary semantics, limitation.

Finally, if a thread is to be created as mobile, an attempt
should be made to minimize the state that it must carry with
it. Thus it may make sense to resurrect something akin to
the old C syntax register on function arguments to try to keep
those arguments in registers rather than in memory. It may also
make sense to separate any call stack frame associated with a
thread from its working registers, but provide mechanisms for
the thread to remotely access the call stack. The Emu system
does this by keeping a thread’s stack in some home nodelet
memory and migrating back when needed to access it.

B. Other Variations in Thread Types
While both team and SPMD thread groups can be crafted

as a series of explicit one-at-a-time asynchronous spawns,
their ability to create at least teams with simple syntax is
a significant programming simplification. Once a programmer
has the ability to define a team with a thread per locale affinity,
then SPMD-style programs are also built easily.

The final consideration in thread typing is the ISA of the
core where the thread is to run. We note that this is actually
orthogonal to the stationary versus mobile discussion. A single
CUDA program [38], for example, describes the code for both
conventional and GPU core types in a single program, with the
compiler capable of identifying from annotations which kind
of core will run which section of code, and compile those
sections differently. Looking forward, we will see more of
this kind of inhomogeneity, especially when spawning non-
blocking threads to run on other core types.

The net effect of this is that any unified paradigm must
allow the compiler to determine which pieces of code are
to be compiled for which ISAs, and to be able to use that
information to compile in the right kind of transition code
when a change in ISA is encountered.

C. Affinity
For PGAS systems, the “affinity” of a thread is also impor-

tant. Today, affinity appears in SPMD and team languages as a
filter for loop iterations for groups of stationary threads. A few
languages like Chapel [9], OpenMP 4.0 [10], and GASNet [4]
provide an affinity argument to control where a new thread
is to be spawned and then run. Looking forward, for team
and asynchronous stationary threads, this affinity is at least
the locale where a spawned thread should execute. For mobile
threads, this affinity should include both the locale that the new
mobile thread calls “home,” and what should be the correct
affinity during execution.

A logical choice for specifying affinity is the name of the
desired locale at spawn time. This is the MPI model. For
PGAS systems, specifying an address in PGAS space can
serve the same purpose without a programmer having to know
which locale holds which data. However, this does require
mechanisms to make this mapping between addresses and
locales. The Emu system does this in hardware.

D. Thread Naming and Families
As discussed above, there is a real dichotomy in whether

or not new threads should have “names”. SPMD languages

285



almost uniformly have intrinsics such as MYTHREAD that
return a value unique to each thread instance, usually tied
to the thread’s locale. Others such as GASNet use opaque
“handle” objects created at the time of a spawn. This gets
difficult to manage when many threads are to be created, as in
a team construct, and/or in distributed memory systems where
a handle is accessible only from the locale where the object
was built. Still other languages such as Cilk provide no such
programmer-accessible identifier whatsoever.

Almost all threading languages, however, need some way
for the parent of a thread to be able to track the progress
of the child and know at least when they have completed.
What we propose here is a variant of of the opaque handle
but designed to handle “families” of related threads. When a
thread wishes to spawn a new child thread, it creates/specifies
what we tentatively call a Family Control Block (FCB)4.
This FCB is accessible to the parent, with a reference given
to the child in a way that it can also access it. When the child
is spawned, the FCB is marked as tracking a new live thread.
When the child completes its execution, it resets this marking,
and may optionally either restart a waiting parent or simply
die and allow the parent to check at its convenience.

This is virtually the same as today’s handles in packages like
GASNet, except that a program may re-use the same FCB for
different spawns, even before the first child completes. If each
child of a parent thread gets a unique FCB, then the parent
can track each individually. If, however, a team is created
with a single FCB, then a count is established in the FCB
for the number of outstanding children, and the parent can
track the status of all of them in aggregate. Again, options
can tell the “last” child to complete to do something special
such as awaken the parent.

While obviously useful for a team, the same mechanism
could be used for asynchronous spawns launched for related
but not identical computations. Consider a search tree where
using the same FCB for all the randomly-created children
allows the parent to track progress as if it were a team, even
though each child may be executing a different set of code
based on the tree vertex it is covering.

Additionally, there is be no reason why a parent thread can
not reuse the FCB given it by its parent, thus allowing a thread
to dynamically create a “sibling” thread that is tracked not by
it but by its parent. This may prove to be an extraordinarily
valuable simplification for large irregular programs such as
Breadth First Search5. There should be no restriction on the
type of all members of a thread family (stationary or mobile),
only that they interact with other family members and report
completion via a single standard mechanism.

In addition, a parent thread need not have only one thread
family active at a time. It should be allowed to create multiple
concurrent families, all of which are allowed to run indepen-
dently, with the parent able to check the status of any one
family independently using separate FCBs.

4The Habanaro [1] paradigm has something similar
5https://graph500.org/

Further, it may be valuable to “link” FCBs together so that
the “last” child to return to a particular FCB should be able to
detect that it is in fact “the last,” and then proceed to a parent
FCB and repeat the process. Such tree-like structures would
allow large numbers of threads to terminate without hot spots
around singleton FCBs. Similar mechanisms would be useful
for barriers where threads don’t die but are suspended.

These FCBs are also convenient places to put information
as to the type of thread to be spawned, or to simplify the
process of building teams or swarms of similar threads. In
addition, an FCB could also be used for some inter-family
communication, such as a common place to put an abort or
eureka flag that could be set by either a parent or child to tell
all other threads to truncate their executions early. Whether
this abort is a command that goes to all children (possible for
stationary threads) or is simply an advisory that can be tested
by a child at its convenience (as in a mobile thread whose
location is unknown) is up to the language implementation.

E. ISA-Specific Specifications

In terms of the scope of the code to be given to a new thread,
there are two major approaches: as a function (Cilk, GASNet)
and as a block of statements (OpenMP, CUDA). Languages
that use the former typically include prefixes for the function
definition. Languages that use the latter allow either special
syntax (as in CUDA) or simply placement within a bigger
syntactic unit (as in forall loops in team languages).

For other thread characteristics such as core type/ISA or
stationary/mobile, it is unlikely that a compiler can figure out
from context, so that some sort of annotation is appropriate,
most probably as prefixes to statement blocks. First, as with
Cilk, there may be blocks of code that need to be compiled in
multiple ways. Second, a programmer may want to specially
annotate specific statements within a statement block that has
some annotations already. An example might be some loop
within some larger code block that might be best run as a
mobile thread (for example, a loop doing pointer chasing).
When the outer block is compiled as a mobile thread, no
special considerations need to be given to the inner loop, but
if the outer loop is stationary, the annotation on the inner loop
triggers code for a thread creation.

F. Atomic Operations

Virtually all current multi-threaded languages have a suite of
built-in functions for performing operations where the update
to a memory location is to be done atomically in relationship
to other threads. This is limited, as in most cases there is no
way to specify new atomic functions without complex locks.

One exception is Chapel, which has the atomic prefix for
a block. OpenMP has a similar key word as a prefix to a
single statement and the keyword CRITICAL for a block. We
know from experience that the single statement form is too
limiting, while the general atomic block is quite powerful but
very difficult to implement in practice (see for example [46]).
A reasonable compromise might be to use Chapel’s atomic,

286



but explicitly limit its atomicity to a particular programmer-
specified subset of variables (including just one).

G. Value Return from Child Functions

A variation of the issue of atomic operations is the return of
values from a child thread that is created to run some function
asynchronously. Consider a Cilk-like example:

sum += spawn foo(...);
... continuation...;

At the spawn, the parent continues with the code after the
spawn, while the child concurrently executes foo. The issue
is that the code to implement the sum+ = is part of neither
threads’ scope, and cannot be started until the non-blocking
call to foo completes. There are potentially three threads: the
parent executing the spawn, the thread executing foo, and the
thread executing the sum+ =. This latter thread must be
spawned (or unsuspended) by the completion of foo, but must
run in the environment of the parent. If the parent and child
threads are stationary threads running on different locales, then
this third thread could be a very short mobile thread.

This is actually very close to the semantics of GASNet,
where a “reply” thread must be spawned by an active message
thread to return values to its parent’s context. In GASNet it
is up to the programmer to explicitly encode such a reply
function and call it from the active message thread.

A further complication occurs if the parent either updates
sum itself, or has gone on to make additional spawns that all
want to update sum. There may be a burst of updates to the
same variable at approximately the same time from different
threads. GASNet ensures atomicity by providing a program-
mer with the ability to “block interrupts,” thus guaranteeing
unfettered access during the update process. The original Cilk
allowed a programmer to identify an inlet function that runs
in the parent’s environment atomically.

A unified model should simplify such expressions by encap-
sulating the whole statement, not just the code to be executed
in parallel, so that it is clear what code is executed by whom.

VI. BOUNDARY CROSSING INVOCATIONS

This paper has introduced the notion of inhomogeneous
thread types, with the ability of one thread (either mobile or
stationary, and running in a core supporting some ISA), to
create a thread of possibly another type (mobile or stationary),
and/or in a core supporting a different ISA on possibly a
different locale. Before trying to discuss a notation to allow
this, an important discussion is what does the code look like
that would need be compiled to perform such calls. Table
II diagrams several combinations of parent and child types,
and for both spawns (“non-blocking thread invocations”) and
conventional calls (“blocking”). The latter are relevant because
when some boundary is crossed (locale, thread type, ISA),
even a conventional function call may look like a remote
spawn (consider a stationary thread calling a routine to be
executed on a different locale). Such actions may also occur
in codes for mobile threads where the code explicitly directs a

change of locale, but with no change in the “thread” doing the
execution. The numbers in Table II refer to code sequences as
discussed as follows:
1) No special code for the transition is needed other than a

normal procedure call/return.
2) Mobile thread created to migrate to target locale and “call”

a stationary thread. Both parent and mobile threads block.
Upon completion, stationary thread must return values to
mobile thread to return values and unblock parent.

3) Mobile thread created. Parent stationary thread blocks.
Upon completion, mobile thread returns to parent locale
to return values and unblock parent.

4) Parent thread identifies an FCB, and spawns a child thread
of correct type. Both continue execution with no interaction
other than through FCB. Note that if child is mobile, it can
migrate to correct locale.

5) Parent thread identifies an FCB, and spawns a mobile
thread to migrate to target locale and “spawn” a stationary
thread. Mobile thread may quit after spawn, or may block
where child stationary thread lives. Parent stationary thread
does not block. Upon completion, child stationary thread
must either re-create a new mobile thread or unblock the
blocked mobile child, which then returns to locale holding
FCB to signal completion.

6) Parent thread migrates to correct locale, creates stationary
child thread, and then suspends itself on that locale so that
child thread can resume parent thread.

7) Parent thread identifies an FCB, migrates to target locale,
“spawns” a stationary thread, and continues execution.
Parent stationary thread does not block. Upon completion,
child stationary thread creates a mobile thread, which then
returns to modify the FCB and signal completion.

In many of these cases, mobile threads are at the heart of
implementing the transitions, even when the threads doing the
computation are stationary on both sides. The architecture of
Fig. 2 is an ideal match for such implementations.

VII. A POSSIBLE UNIFIED LANGUAGE MODEL

This section suggests a unification that if present in a
language would provide all the capabilities discussed in the
last section. To crystallize the discussion, Fig. 3 suggests
some possible syntax to incorporate the thoughts developed
in the prior sections. Anything in italics is treated as verbatim
keywords; anything in < ... > represents a syntactic token.

A. Thread Spawning

A keyword like spawn in front of a statement block would
create a new thread to execute the block in a non-blocking
asynchronous manner. The material inside the [...] represents
the combination of an FCB and an expression that specifies a
creation affinity for the spawned thread. An intrinsic such as
MYFCB might be used to simply specify the parent’s FCB.

Fields in the FCB might identify the type of thread to be
spawned, how many current children are still active, what to
do when the last child reports in, where is the FCB for the
parent of this family, etc.

287



TABLE II
INHOMOGENEOUS INVOCATIONS.

Type of Invocation: Blocking Non-Blocking
Type of Child: Stationary Mobile Stationary Mobile

Affinity of Child: Same Different Same Different Same Different Same Different

Parent Stationary 1 2 3 3 4 5 4 4
Mobile 6 6 1 1 4 7 4 4

A team forall is essentially a for loop surrounding a nested
set of spawns, and creates a family of threads that perform
the same code. The same FCB is used for all created threads.
Using notation from UPC, the last argument in the loop header
is an affinity expression for each thread. It is inside the loop
because it may very well be a function of the loop variable.

Such a loop could also be used to start a family of SPMD
threads, with the body of the loop the SPMD program.

B. Affinity-based Migration

Fig. 3 suggests use of a keyword like Chapel’s on to
specify an explicit migration, with an argument for affinity, and
optionally a second keyword argument such as fully mobile,
controlled mobile, or stationary. Use of on as a stand-alone
statement has a similar effect, but controls the locale of
execution of the entire rest of the thread’s execution.

C. Affinity-based Work Allocation

The spmd forall is formatted similarly to team forall except
that it doesn’t spawn any threads, and thus doesn’t need an
FCB. The affinity expression is used by each thread that
executes it to test loop iterations and identify just those for
which the thread’s affinity matches. This is the same as UPC’s
upc forall and is there to support SPMD codes.

D. Atomics

The <=> notation from Chapel is suggested to provide an
atomic swap of two variables. As with normal C semantics,
the value returned from the statement (and thus usable if the
assignment is nested inside a bigger expression) is the value
being placed in the variable. A second version is suggested that
has an expression on the right side. In this case, the “swap” is
with the value returned out of the assignment, and is the prior
value of the left hand side expression. Thus z = (x <=> (y =
y + 1)); saves the value resulting from the incrementation of
y into x but atomically passes the value in x at the time of the
store out to be saved in z.

The prefix atomic in front of a single assignment guarantees
that there has been no change in the value in the left hand side
variable from the start of the statement until the new value is
written back into that variable.

The atomic prefix in front of a block of statement is very
similar to Chapel, except that we optionally allow a list of
variables to be defined whose values must be maintained
before any updates (the read and write sets for the update).
The reason is to allow far simpler implementation than the
more general case, as discussed earlier.

spawn [< FCB >,< affinity expression >]
< statement block >

team forall [< FCB >] (< loop iteration >,
< affinity expression >) < statement block >;

on [< affinity expression >] < statement block >;
on [< affinity expression >];

spmd forall(< loop iteration >,
< affinity expression >) < statement block >;

< var > <=> < var >;
< var > <=> < expression >;

atomic < var >=< expression >;
atomic [< var list >] < statement block >;

Fig. 3. Notional Syntax.

VIII. CONCLUSIONS

This paper has explored the kinds of threading that may
be relevant if we move into an environment where there is
no longer a single type of thread, and we want to be able
to express a wide variety of threading paradigms within the
same program. This heterogeneity is both in the possible ISAs
of the cores on which the threads execute and in beginning
the evolution of the kinds of threads suggested by active
messages into full-fledged mobile thread types. As discussed
here, mobile threads have a far-reaching effect on the structure
of programs that wish to utilize them.

In the process of describing such unified paradigms, the con-
cept of identifying “families” of threads and their “affinities”
in an organized manner was surfaced.

There is certainly work left to be done before beginning
to consider actual packages based on these ideas. As was
done by the UHPC language developers, a significant set of
sample programs should be developed to explore both the
potential savings in program complexity and the additional
considerations that must be made. Also a reference definition
of an interface as suggested in Fig. 2 should be prototyped.
The Emu architecture outlined in [16] is a good starting point.

One such consideration that was not touched on here is
extended syntax for data declarations, especially for PGAS
systems where there is a great deal of flexibility in how
and where parts of large data structures find their affinity.
Additional expressiveness for such things as how either mobile
or stationary threads should approach different data structures
is one such area needing additional thought.

288



IX. ACKNOWLEDGEMENTS

This material is based in part upon work supported by the
National Science Foundation under Grant No. CCF-1822939,
and in part by the Univ. of Notre Dame.

REFERENCES

[1] R. Barik, Z. Budimlic, V. Cavè, S. Chatterjee, Y. Guo, D. Peixotto,
R. Raman, J. Shirako, S. Tasirlar, Y. Yan, Y. Zhao, and V. Sarkar. The
Habanero multicore software research project. In Proc. of the 24th ACM
SIGPLAN conf. companion on Object oriented programming systems
languages and applications, OOPSLA ’09, pages 735–736, New York,
NY, USA, 2009. ACM.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system,
1995.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46(5):720–748, Sept. 1999.

[4] D. Bonachea. GASNet Specification, v1.1. Technical report, University
of California at Berkeley, Berkeley, CA, USA, 2002.

[5] J. Brockman, P. Kogge, S. Thoziyoor, and E. Kang. PIM Lite: On the
road towards relentless multi-threading in massively parallel systems.
Technical report, 2003.

[6] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge. A low
cost, multithreaded processing-in-memory system, 2004.

[7] J. Brown, L. Porter, and D. Tullsen. Fast thread migration via cache
working set prediction, Feb 2011.

[8] D. Callahan, B. L. Chamberlain, and H. P. Zima. The Cascade High
Productivity Language, 2004.

[9] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and
the Chapel language. Int. J. High Perform. Comput. Appl., 21(3):291–
312, Aug. 2007.

[10] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon. Parallel Programming in OpenMP. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[11] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,
and L. Smith. Introducing OpenSHMEM: SHMEM for the PGAS
community, 2010.

[12] Cray. CRAY T3D System Architecture Overview Manual.
[13] W. J. Dally, A. Chien, S. Fiske, W. Horwat, R. Lethin, M. Noakes,

P. Nuth, E. Spertus, D. Wallach, D. S. Wills, A. Chang, and J. Keen.
Retrospective: The J-machine, 1998.

[14] W. Dayy and et al. Architecture of a message-driven processor, 1987.
[15] J. Dongarra and M. Heroux. Toward a new metric for ranking high

performance computing systems. Sandia Report SAND2013 4744,
Sandia National Labs, June 2013.

[16] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. B. Brockman,
K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin, J. McMahon, C. Pawar,
M. Perrigo, S. Rucker, J. Ruttenberg, M. Ruttenberg, and S. Stein.
Highly scalable near memory processing with migrating threads on the
emu system architecture, Nov. 2016.

[17] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: Programming for
hierarchical parallelism and non-uniform data access (extended abstract),
2015.

[18] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed
Shared-Memory Programming. Wiley-Interscience, 2003.

[19] S. E. Frost, A. F. Rodrigues, C. A. Giefer, and P. M. Kogge. Bouncing
threads: Merging a new execution model into a nanotechnology memory,
2003.

[20] W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2nd ed.): portable
parallel programming with the message-passing interface. MIT Press,
Cambridge, MA, USA, 1999.

[21] R. E. Hiromoto, O. M. Lubeck, and J. Moore. Experiences with the
Denelcor HEP. Parallel Comput., 1(3):197–206, Dec. 1984.

[22] Intel. Intel threading building blocks: (Intel TBB), 2015.
[23] R. Kessler and J. Schwarzmeier. Cray T3D: a new dimension for Cray

Research, Feb 1993.
[24] P. Kogge. Of piglets and threadlets: Architectures for self-contained,

mobile, memory programming. Innovative Architecture for Future
Generation High-Performance Processors and Systems, pages 130–138,
Jan. 2004.

[25] P. Kogge. Tracking the effects of technology and architecture on energy
through the Top 500, Green 500, and Graph 500, 2012.

[26] P. Kogge and T. Dysart. Using the TOP500 to trace and project
technology and architecture trends, 2011.

[27] P. Kogge and J. Shalf. Exascale computing trends: Adjusting to the
new normal for computer architecture. Computing in Science and
Engineering, 15(6):16–26, 2013.

[28] P. M. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp,
S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott,
A. Snavely, T. Sterling, R. S. Williams, and K. Yelick. Exascale
computing study: Technology challenges in achieving exascale systems.
Technical Report CSE 2008-13, Univ. of Notre Dame, Sept. 2008.

[29] P. M. Kogge and D. R. Resnick. Yearly update: Exascale projections for
2014. Technical Report SAND2014-18651, University of Notre Dame,
Sandia National Laboratories, Sept. 30 2014.

[30] P. M. Koggw and S. K. Kuntz. A Case for Migrating Execution for
Irregular Applications, Nov. 2017.

[31] A. Kopse and D. Vollrath. Overview of the next generation Cray XMT,
May 2011.

[32] P. A. La Fratta and P. M. Kogge. Models for generating locality-tuned
traveling threads for a hierarchical multi-level heterogeneous multicore,
2010.

[33] B. Lewis and D. J. Berg. Multithreaded Programming with Pthreads.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[34] V. Marjanovic, J. Gracia, and C. W. Glass. High Performance Com-
puting Systems. Performance Modeling, Benchmarking, and Simulation,
chapter Performance modeling of the HPCG benchmark, pages 172–192.
Springer Int. Publishing, Nov. 2014.

[35] R. Murphy. X-factors: The X-caliber approach to codesign, data
movement, and pico-joules, Oct. 2010.

[36] R. Murphy. X-caliber and exascale grand challenge research summary,
Sept. 2011.

[37] R. C. Murphy. Traveling Threads: A New Multithreaded Execution
Model. PhD thesis, University of Notre Dame, Notre Dame, IN, USA,
2006. AAI3221330.

[38] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. Queue, 6(2):40–53, Mar. 2008.

[39] J. Nieplocha, M. Krishnan, M. Krishnan, D. Panda, and et al. High
performance remote memory access comunications: The armci approach.
Int. Journal of High Performance Computing and Applications, 20:2006,
2006.

[40] B. Page and P. M. Kogge. Scalability of Hybrid Sparse Matrix Dense
Vector (SpMV) Multiplication, July. 2018.

[41] J. T. Pawlowski. Hybrid memory cube: a re-architected DRAM subsys-
tems, August 2011.

[42] A. Rodrigues. The UHPC X-Caliber project architecture, design space,
and codesign, Nov. 2010.

[43] V. A. Saraswat, O. Tardieu, D. Grove, D. Cunningham, M. Takeuchi,
and B. Herta. A brief introduction to X10 (for the high performance
programmer), 2008.

[44] T. B. Schardl, W. S. Moses, and C. E. Leiserson. Tapir: Embedding
fork-join parallelism into LLVM’s intermediate representation, 2017.

[45] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin,
N. Mitchell, J. Feo, and B. Koblenz. Multi-processor performance on
the Tera MTA, Nov 1998.

[46] S. Sridharan. Compiler and Runtime Techniques for Software Trans-
actional Memory in Partitioned Global Address Space Languages and
Runtime Libraries. PhD thesis, CSE Dept., Univ. of Notre Dame, Oct.
29 201.

[47] J. E. Thornton. Design of a Computer: The Control Data 6600. Scott
Foresman & Co, 1970.

[48] S. Thoziyoor, J. Brockman, and D. Rinzler. pim lite.
[49] T. Ungerer, B. Robič, and J. Šilc. A survey of processors with explicit

multithreading. ACM Comput. Surv., 35(1):29–63, Mar. 2003.
[50] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active

messages: A mechanism for integrated communication and computation,
1992.

289


