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Abstract— The speed and accuracy with which robots are
able to interpret natural language is fundamental to realizing
effective human-robot interaction. A great deal of attention
has been paid to developing models and approximate inference
algorithms that improve the efficiency of language understand-
ing. However, existing methods still attempt to reason over a
representation of the environment that is flat and unnecessarily
detailed, which limits scalability. An open problem is then
to develop methods capable of producing the most compact
environment model sufficient for accurate and efficient natural
language understanding. We propose a model that leverages
environment-related information encoded within instructions to
identify the subset of observations and perceptual classifiers
necessary to perceive a succinct, instruction-specific environ-
ment representation. The framework uses three probabilistic
graphical models trained from a corpus of annotated instruc-
tions to infer salient scene semantics, perceptual classifiers, and
grounded symbols. Experimental results on two robots operat-
ing in different environments demonstrate that by exploiting
the content and the structure of the instructions, our method
learns compact environment representations that significantly
improve the efficiency of natural language symbol grounding.

I. INTRODUCTION

The ability for robots to perform complex tasks is inher-

ently linked to the richness of their environment models.

Advances in sensor technology, machine perception, and

natural language understanding provide a wealth of data that

can be infused into these models. These innovations raise

new questions with regards to how to assimilate, manage,

and utilize this abundance of knowledge. A fundamental

problem is how to reason over this rich information in a

manner that enables robots to efficiently plan in diverse

environments of varying scales and complexities. Consider

the human-robot teaming scenario illustrated in Figure 1, in

which a user instructs the mobile robot to “navigate to the

nearest red ball.” If we assume that the robot has access

to knowledge bases (e.g., campus-level maps) and various

sensor measurements (e.g., images, laser scans, audio, etc.)

that it has accumulated over time, the problem becomes one

of situating or “grounding” the instruction in the context

of the perceived environment. With a few exceptions [1–5],

contemporary methods attempt to fuse the knowledge bases

and sensor measurements into a single, flat representation of

the environment (i.e., the “world model”) that expresses all

metric [6–12] as well as semantic [4, 5, 13–16] knowledge
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(a) a mobile robot receiving a natural language instruction

(b) detailed world model (c) compact world model

Fig. 1. Our framework learns to build a minimal representation of the
environment sufficient to interpret a given natural language instruction. In
this example, (a) a mobile robot is directed to “navigate to the nearest ball
in the lab.” Traditional methods interpret the instruction in the context of (b)
an exhaustive world model, whereas our method maintains (c) a compact
world model sufficient to ground the provided instruction.

gleaned from the observations. There are three fundamental

limitations to this approach.

First, a consistent, high fidelity model of the environment

is expensive to maintain in terms of both compute and

memory storage. Second, searching over dense models is

computationally prohibitive in the context of both planning

and natural language understanding [17–19], with costs as

high as exponential in the size of the model [17]. More

generally, it is unnecessarily detailed for most tasks. Ideally,

one would reason over the most compact representation

of the environment necessary to understand the instruction.

However, this representation can not be inferred until after

the instruction is received. Third, in situations in which

concepts are taught or evolve in-situ from human demon-

strations, previous interpretations of the environment may

become incorrect or deficient, necessitating a means of

revisiting these models as needed.

We propose a framework that explicitly reasons over



the relevance of the observations and perceptual classifiers

available, so as to learn a task-relevant, scalable environment

representation sufficient for planning and natural language

understanding. Underlying this method is a learned proba-

bilistic model that can be readily adapted based upon the

difficulty of the task and the complexity of the environment.

Importantly, the method infers an efficient environment rep-

resentation online by leveraging a learned model of saliency.

This model extracts characteristics of the representation from

free-form utterances to “lazily” reason over the small subset

of available knowledge pertinent to the task. Specifically,

we build upon recent work on adapting perception pipelines

from natural language instructions [20] to infer subsets of

observations that we use to construct instruction-specific

representations of the environment. These induced represen-

tations are more efficient to search, yet still express the

correct hierarchies and affordances necessary to perform

the task. In scenarios where humans can interactively teach

robots to classify objects in-situ, past observations of such

objects could be added to the world model given utterances

that reference the object.

The central contribution of this paper is a framework that

exploits three probabilistic graphical models in the form of

Distributed Correspondence Graphs [18] to adaptively model

the environment representation in a task-specific manner.

These models are trained from examples of how language

maps to the relevant scene semantics, perceptual classifiers,

and the symbols used to ground language-based instructions.

Experimental results demonstrate that the ability to dynam-

ically adapt perception and observation models significantly

improves the computational efficiency of natural language

symbol grounding.

II. RELATED WORK

Existing language understanding methods reason over a

flat, unified symbolic model of the world that expresses

the spatial, semantic, and/or topologic properties of the

environment through a representation that is assumed to be

globally consistent. In practice, these models are typically

constructed by running a state-of-the-art SLAM algorithm [6,

7, 10, 11, 21], which provides flat, globally metric models

of the environment that are limited to spatial information.

Semantic and topologic properties are then manually injected

to realize a representation suitable for language grounding.

Localization and mapping methods that attempt to jointly

reason over spatial, semantic, and topologic properties of

the environment have also been proposed [4, 5, 14–16, 22–

24]. With few exceptions [22], however, these methods still

attempt to maintain a single globally consistent environment

representation, which is both unnecessarily detailed for lan-

guage grounding and also resource (e.g., memory) intensive.

Given a natural language utterance, grounding meth-

ods [18, 25, 26] attempt to associate each word in the

utterance with its corresponding referent in this environment

model and the robot’s symbolic action space. Semantic

parsing-based methods [27–29] similarly map natural lan-

guage to meaning representations, typically in the form

of a lambda calculus. Early work in grounding [30, 31]

employs manually engineered correspondences and features

between words in a flat representation of the environment.

Modern day methods [17–19, 26, 32] take a statistical

approach to language grounding (and similarly for inverse

grounding [33–35]) that employs probabilistic models that

relate words to their corresponding referents according to

the hierarchical structure of language, enabling the resolution

of complex free-form language. These models are typically

learned from annotated natural language corpora as well

as through interaction with humans [29, 36, 37]. Proba-

bilistic grounding models have been shown to be effective

at interpreting cooking instructions [38], learning spatial

relations in semantic maps [5, 15], and directing mobile

manipulators [39], among others.

These methods perform inference over the entire set

of state and action symbols, resulting in a computational

complexity that is proportional to the power set of objects,

regions, and constraints. This limits inference to simple tasks

with a few interchangeable constraints or requires access to a

set of predefined environment-specific behaviors. To improve

scalability, Howard et al. [18] developed the Distributed

Correspondence Graph (DCG) model that separates inference

across conditionally independent constituents of the graph. In

effect, this distributes inference across multiple factors in a

graphical model, transforming the computational complexity

from exponential to linear in the number of symbols. Chung

et al. [19] propose the Hierarchical Distributed Correspon-

dence Graph (HDCG), which improves the efficiency of

inference by learning to construct a more efficient approx-

imation of the space of relevant symbols for probabilistic

language grounding. Paul et al. [40] describe a method that

partitions the joint distribution into concrete and abstract

factors. The algortihm performs inference in two stages per

phrase. In the first stage, distributions of concrete symbols

are inferred and used to inform sparse approximations of the

abstract symbolic representation that are more efficient to

search. In the second stage, distributions of abstract symbols

are inferred and joined with the concrete symbols to represent

the meaning of each phrase.

III. TECHNICAL APPROACH

The problem of natural language understanding is com-

monly framed as inference over a learned distribution that

associates linguistic elements with their corresponding sym-

bolic representation of the robot’s state and action spaces.

More specifically, inference involves reasoning over a rep-

resentation Γs that symbolizes objects, places, constraints,

actions, trajectories, and others concepts expressed by the

robot’s world model. The set of symbols forms a discrete

and finite space in which the instruction can be grounded.

The distribution over groundings is conditioned over a parse

of the utterance Λ as well as a world model Υt expressing

environment knowledge that may be known a priori Υ0

or extracted from multimodal observations z1:t using the

classifiers in the robot’s perception pipeline P

Υt ≈ f(z1:t,P,Υ0). (1)



Natural language understanding then follows as maximum a

posteriori (MAP) inference over Γs

Γ∗
s = argmax

γ1...γn∈Γs

p (Γs|Λ,Υt) . (2)

Several contemporary approaches [17, 18, 40] formulate this

problem as probabilistic inference in a factor graph with a

hierarchical structure dictated by the compositional nature

of the utterance, symbolic representation, and environment.

This enables the model to reason about the meaning of partic-

ular phrases in terms of the symbolic grounding space based

upon their child phrases, and a model of the environment.

The parameters of the grounding model (e.g., feature weights

in a log-linear model) are learned from annotated corpora

that express the meaning of each phrase in the context of

the child groundings and phrases.

In practical settings, the the space of groundings Γs, the

environment Υt is complex, and the free-form instructions

Λ may be complex and diverse, making exact inference

computationally intractable. To address this, the Distributed

Correspondence Graph [18] proposes an approximate factor-

ization of the grounding distribution that affords an efficient

inference

Φ∗
s = argmax

φij∈Φs

|Λ|∏

i=1

|Γs|∏

j=1

p(φij |γij , λi,Φci,Υt). (3)

Formally, DCG inference involves searching for the most

likely assignment of boolean correspondence variables

Φ∗
s [41] in the context of the groundings γij ∈ Γs, phrases

λi ∈ Λ, child correspondences Φci, and the world model

Υt by maximizing the factorization in Equation 3. In such

model, a correspondence variable φij being true expresses

the fact that the corresponding grounding γij matches the

associated phrase in the command.

The ability to ground free-form instructions is inherently

linked to the richness of the robot’s environment represen-

tation Υt. However, building exhaustively detailed world

models using all available knowledge bases and observa-

tions z1:t is computationally expensive, particularly in large-

scale, unstructured environments. The runtime of common

language understanding models such as G3 are exponential in

the cardinality of the symbol space |Γs| [18]. DCG improves

this complexity to being linear in the size of the world model,

however the cost of inference still inhibits real-time human-

robot interaction.

In practice, a large fraction of the objects and their corre-

sponding symbols that comprise the inferred world model are

typically inconsequential to the meaning of the utterance. In

such cases, there exists a compact environment representa-

tion Υ
∗
t that is sufficient to interpret the utterance, providing

a significant improvement in the computational efficiency of

inference relative to the standard model (Equation 3).

We propose a probabilistic model that exploits natural

language in order to guide the generation of these compact

world models Υ
∗
t . Integral to this approach is the ability to

infer a small, succinct subset of perceptual classifiers P∗ ∈ P

in a manner that dynamically adapts the robot’s perceptual

capabilities according to the current task

P
∗ ≈ f (P,Λ) , (4)

resulting in the compact world model

Υ
∗
t
≈ f (z1:t,P

∗,Υ0) (5)

We further observe that not all observations are necessary

to produce this compact representation Υ
∗
t . For instructions

in which the context of the observation may be evident (e.g.,

“drive to the nearest red ball in the hallway”), samples out-

side of these semantically classified regions (i.e., hallways)

can be pruned from the space of observations. As the robot

drives through the environment, a real-time scene classifier

produces a semantic label (i.e., a scene category) that will

be associated with all of the observations (from all available

sensors) and pose measurements. The ability to assign a label

to the current region in real-time allows us to treat such

information as an observation produced by a virtual sensor

(i.e., the scene classifier).

We define a minimal set of observations z
∗ ∈ z1:t that,

based on their semantic labels, are used to construct the

compact representation that is sufficiently detailed to contain

all symbols necessary to be expressed by the natural language

symbol grounding model

z
∗ ≈ f (z1:t,Λ) (6a)

Υ
∗
t
≈ f (z∗,P∗,Υ0) . (6b)

Using the subsampled set of observations to construct a

compact representation for symbol grounding transforms the

expression for natural language inference (Eqn. 3) to

Φ∗
s = argmax

φij∈Φs

|Λ|∏

i=1

|Γs|∏

j=1

p(φij |γij , λi,Φci,Υ
∗

t
). (7)

This inference problem requires that we learn three mod-

els (Fig. 2): an adaptive perception model, an observation

filtering model, and a natural language symbol grounding

model. The process for training these models begins with

the natural language symbol grounding module, in which

symbols that represent objects, spatial relationships, contain-

ers, constraints, actions, and other types are associated with

language [18, 40]. The process of training the observation

filtering and adaptive perception models requires one to fit

the minimum set of semantic labels and perceptual clas-

sifiers. Such classifiers are the ones that extract the most

compact environment representation for each example that

will not prune out any of the annotated ground-truth symbols

from the corpus of instructions. This process yields three

separate corpora with common instructions, but different

symbolic representations and annotations that we use to train

the three distinct models.
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Fig. 2. The system architecture for language-guided observation filtering,
adaptive perception, and natural language symbol grounding. The three
natural language understanding models that are learned from the annotated
instructions are highlighted in bold.

IV. EXPERIMENTAL SETUP

Figure 2 illustrates the software architecture that we

implemented for experimental evaluation of the proposed

algorithm. In this architecture, the robot stores the sensors

measurements in the observation filtering module. When the

human provides a textual instruction, we convert the text

into a parse tree Λ that is provided to the three natural

language understanding modules. The scene semantics natu-

ral language understanding module extracts the salient scene

semantics Γz pertaining to the instruction. The observations

filtering module then extracts a subset of observations z
∗

(Eqn. 6a) based on the inferred scene semantic label(s). The

perception natural language understanding module extracts

the symbols representing the classifiers (Eqn. 4) that are

necessary to detect the objects that are relevant to the natural

language instruction. This information is then passed to the

adaptive perception node that extracts an approximation of

the environment model Υ
∗
t

(Eqn. 6b) from z
∗ using the

sub-sampled classifiers P
∗. The symbol grounding natural

language understanding module uses the parse tree and

the world model approximation to extract a distribution of

symbols that represents the robot behavior Γs (Eqn. 7).

All of the natural language understanding modules are

implemented as Distributed Correspondence Graphs [18]

with symbolic representations and features adapted for each

of the scene semantics, perception, and grounding domains.

We trained the natural language understanding modules

with a synthetic corpus of annotated examples consistent

with example robot instructions, such as “navigate to the

nearest cone in the parking lot” or “navigate to the farthest

blue ball.” Approximately 500 instructions were annotated

for the scene semantic, perception, and grounding models in

accordance with their symbolic representation. The software

was integrated onto two Clearpath Robotics Husky A200

Unmanned Ground Vehicles (Fig. 1) and used for dataset

collection at two distinct sites. Visual observations were

collected using the RealSense D435 RGB-D sensor. Robot

localization was performed using laser-scan matching with a

planar LIDAR sensor.

In these experiments, we use eight semantic labels such

as “kitchen,” “laboratory,” “parking lot,” etc., which are

associated with sensor observations. To detect the semantics

of the scene ,we use a YOLO object detector [42] trained

on the COCO dataset [43]. Object detections are passed

to a scene classifier. The scene classifier then assigns a

semantic label to each observation based on an object co-

occurrence model that relates objects and scene classes.

Objects that are not characteristic of any particular scene

(e.g., person, cat, or horse) are ignored. The perception

pipeline within in the adaptive perception node contains

multiple elements including a YOLO-based object detector, a

noise removal filter that refines the segmented object clusters,

a 3d bounding box detector, an LUV color space-based color

detector, and a 3-DOF pose detector. We limit the sensing

range to 3.5 m to avoid processing noisy point cloud data.

The experiments were designed to explore the impact of

observation filtering and adaptive perception on the task

of mobile robot instruction following. We quantify the

performance of the system using metrics of computational

efficiency of perception for symbol grounding under the

assumption of lazy evaluation of the observations.

V. RESULTS

This section presents results highlighting the performance

of different aspects of the learned models in our proposed

architecture. First, we highlight the computational efficiency

of adaptive perception applied in the navigation domain.

Second, we demonstrate how observation filtering reduces

the number of observations we need to reason over in order

to extract task-relevant objects. Later, we demonstrate the

efficiency gains achieved by combining these two strategies

in order to generate compact world representations.

A. Adaptive Perception

In previous experiments [20], we observed that language

grounding was faster in environments inferred by adaptive

perception than non-adaptive perception. Also the adaptive

perception was found to be faster than its counterpart. To

verify the predicted behavior of the adaptive perception

pipeline, we analyzed its impact on the runtime of perception

by evaluating it on the datasets collected at two diffrent sites

for six different instructions. Table I presents the results

demonstrating the impact of adaptive perception (AP) on

the perception runtime against the standard baseline (B) that

corresponds to the standard approach of invoking all classi-

fiers and observations. Table II shows the impact of adaptive

perception on the compactness of the approximated world

representations. Consistent with previous evaluations [20],

reducing the cardinality of the world model improves the

runtime of language grounding.

Figure 3 demonstrates the impact of adaptive perception

for the example instruction “drive to the nearest cup in the

kitchen.” In this particular example, the model is able to inde-

pendently evaluate which object detectors should be engaged

to construct an instruction-specific world model. By using the

information contained within the instructions, our method



(a) exhaustive perception: detecting all objects

(b) adaptive perception: detecting only cups

Fig. 3. Impact of adaptive perception for the command “drive to the
farthest cup in the kitchen.” A standard approach requires generating and
reasoning over (a) an exhaustive map generated using all of the available
object detectors, resulting in a map with 37 objects and a runtime of 408 s.
In contrast, our adaptive method generates (b) a more compact map only
using detectors relevant to the command, resulting in a map with 11 objects
and a runtime of 225 s. .

results in a 36% reduction in the time required to build an

environment representation for inferring the instruction “go

to the nearest cup in the kitchen.” This demonstrates how

inferring the classifiers useful for generating task-relevant

compact representations can reduce the runtime requirements

of robot perception. As we have seen [20], the reduction in

runtime is proportional to the sparsity of classifiers necessary

to extract a sufficient detailed environment model that is

suitable for the grounding of specific instructions.

As more complex detectors are considered (e.g., ICP-

based point cloud matching), we expect to find that these

differences will become increasingly significant. For exam-

ple, an operator performing service on a truck may require a

robot to “turn the top-left screw on the back panel by forty

five degrees” at one point during an activity, while it may

also ask the same robot to “unload the truck of all of the

pallets” at a later time. The computational requirements of

the multitude of classifiers necessary to generate a consistent

interpretation of the environment that is sophisticated enough

TABLE I

IMPROVEMENT IN THE PERCEPTION RUNTIME AT SITES 1 & 2

(runtime in seconds)

Instruction Site B OF AP OF+AP

“go to the farthest umbrella in the hallway” 1 401 60 242 55

“go to the nearest suitcase in the parking lot” 2 306 136 220 99

“go to the farthest cup in the kitchen” 1 401 146 225 75

“go to the nearest keyboard in the office” 2 306 74 222 46

“go to the nearest ball in the hallway” 1 401 59 217 38

“go to the farthest ball in the lab” 2 306 67 206 48

TABLE II

IMPROVEMENT IN THE REPRESENTATION COMPACTNESS AT SITES 1 & 2

(# of detected objects)

Instruction Site B OF AP OF+AP

“go to the farthest umbrella in the hallway” 1 37 4 2 2

“go to the nearest suitcase in the parking lot” 2 36 3 3 2

“go to the farthest cup in the kitchen” 1 37 29 11 9

“go to the nearest keyboard in the office” 2 36 29 3 3

“go to the nearest ball in the hallway” 1 37 4 1 1

“go to the farthest ball in the lab” 2 36 7 7 7

to perform both of these tasks may be too burdensome for

an robot to extract in real-time. We hypothesize that as the

interactions approach such diversity and complexity, a model

that extracts the salient information from the command and

constructs a representation suitable for natural language sym-

bol grounding will outperform non-adaptive representations

of the environment.

B. Observation Filtering

To explore the impact of observation filtering, we eval-

uated the runtime performance of perception on the same

six instructions explored for the adaptive perception exper-

iment. Table I presents the results that reveal the impact of

observation filtering (OF) against the standard baseline (B).

This result demonstrates how removing observations inferred

to be unnecessary to extract the meaning of the natural

language instruction can improve the runtime performance of

robot perception. The results demonstrate a 55% reduction in

runtime for the instruction “go to the nearest suitcase in the

parking lot” over the baseline. The improvement is a function

of the diversity of scene labels across all observations.

Table II shows the impact of observations filtering on the

compactness of the approximated world representation. In

this case the improvement is a function of the distribution of

objects across different regions in the world.

C. Observation Filtering with Adaptive Perception

The last model that we considered combines observation

filtering with adaptive perception. The results in Table I

show the improvement of observation filtering with adaptive

perception (OF+AP) against the standard baseline (B). As

expected, combining both of these approaches reduces the

time required to extract a suitable world model for natural

language symbol grounding in all six scenarios. An example

is depicted in Figure 4. In the best case, we observed a 90%
improvement in runtime performance for the instruction “go



(a) exhaustive environment model (b) semantic scene labels (c) compact environment model inferred for the
command “drive to the farthest cup in the kitchen”

(d) exhaustive environment model (e) semantic scene labels (f) compact environment model inferred for the
command “drive to the nearest ball in the lab”

Fig. 4. A visualization of environment representations for Site 1 (top) and Site 2 (bottom). The renderings in (b) and (e) depict the scene labels. The
standard approach of employing all observations and object classifiers results in (a), (d) an exhaustive representation of the environment. In contrast,
inferring the set of observations and detectors relevant to the command yields (c), (f) compact environment models that afford more efficient grounding.

to the nearest ball in the hallway.” Table II lists the number

of objects extracted by the perception pipeline. Reducing

the number of objects significantly improves the runtime of

symbol grounding, which is at best linear [18, 19] and at

worst exponential [26] in the size of the world model.

VI. CONCLUSIONS

In this paper, we presented a novel framework that im-

proves the efficiency of natural language understanding by

generating and reasoning over a compact, instruction-specific

world model. Underlying the framework are three primary

methods that exploit the structure of language to facilitate

inference. First, we use language reduce the set of all

observations available to the robot by extracting semantic

labels for the context in which the salient observations

occur. Second, language is used to infer a subset of per-

ceptual classifiers that extract a compact but sufficiently

complex environment model that is suitable for interpreting

the meaning of the instruction. Third, language is used in

the context of the compact environment representation to

infer the symbolic meaning of the instruction. Experimental

results demonstrate how adaptive perception and observation

filtering improve the computational efficiency of inference

without affecting the accuracy of language grounding. In

ongoing work, we are exploring methods to improve the

robustness of semantic label classification for observations,

including per-pixel semantic classification approaches.

This work also presents a number of interesting areas of

future research. In the examples considered here, we did not

exploit prior knowledge about the environment. However,

one can easily extrapolate how using past compact repre-

sentations to seed future models might mitigate the need to

re-classify all objects for every instruction. A model that does

not discard the information, but incrementally builds a rich

spatial-semantic environment model over time is likely to be

highly effective and efficient for human-robot interaction in

complex environments with diverse tasks. Training and eval-

uating the performance of language models that use corpora

collected from studies involving human-robot interaction and

more complex tasks, robots, and environments that exploit

differences in scale remain as future work. Such additional

experiments would further characterize the performance of

the proposed model and enrich our understanding of how

to best construct efficient, hierarchical representations of

environments for multi-modal human-robot interaction.
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