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ABSTRACT

Augmented reality (AR) technologies are rapidly gaining momen-
tum in society and are expected to play a critical role in the future
of cities and transportation. In such dynamic settings with a het-
erogeneous population of AR users, it is important for holograms
to be placed in the surrounding environment with regard to the
users’ preferences. However, the area of AR personalization re-
mains largely unexplored. This paper proposes to use behavioral
cloning, an algorithm for imitation learning, as a means of automat-
ically generating policies that capture user preferences of hologram
positioning. We argue in favor of employing the fog computing
paradigm to minimize the volume of data sent to the cloud, and
thereby preserve user privacy and increase both communication
efficiency and learning efficiency. Through preliminary results ob-
tained with a custom, Unity-based AR simulator, we demonstrate
that user-specific policies can be learned quickly and accurately.
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Figure 1: Geographically dispersed local servers (such as fog
nodes) can help support interconnected cyber-physical sys-
tems, including AR devices, in a smart city setting.

1 INTRODUCTION

In augmented reality (AR), a layer of virtual content such as text,
video, or holograms is superimposed onto a user’s view of the real
world [24]. AR is increasingly being adopted across numerous do-
mains and is projected to generate billions of dollars in revenue
within the next decade [21]. It is expected by many to become
the next big computing platform, potentially as revolutionary as
the personal computer and as ubiquitous as the smartphone. Not
only is AR permeating the space of mobile devices [9], but it is
also emerging in the form of fully immersive systems — whether
as head-mounted displays (HMDs) [11, 16], or AR-enhanced wind-
shields for vehicles [15]. A grand vision for AR is a smart city in
which users can perceive real-time annotations of roads, buildings,
transportation systems, and even people [1, 22, 23]; see Fig. 1.

Challenges in AR. Current and future AR deployments face a
number of key challenges, including:

1) Power and delay constraints. The graphical demands of AR
applications require significant power consumption. AR experi-
ences are also very sensitive to delay, and the presence of lag in the
processing of user interactions or virtual content could cause users
to experience motion sickness, make navigation errors, or even get
into accidents [7, 26]. Thus, enabling seamless and pervasive AR
experiences will require a networking infrastructure, such as a fog
or edge computing architecture, that supports ultra low-latency
and resource-efficient data processing [14, 18, 27].

2) Security and privacy. As AR systems collect and analyze con-
tinuous streams of fine-grained sensor data, including video, audio,
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Figure 2: System diagram illustrating how a local server first
trains several policies using state-action pairs from nearby
devices, then either distributes these policies to powerful de-

vices or executes them on behalf of resource-poor devices.

and user interactions with the environment, there is a pressing
need to regulate what can be seen and manipulated by third parties
such as cloud-based platforms [20]. From a security standpoint, we
also need to ensure that holograms are presented to the user in
a safe, non-distracting, and unobstructive way [2, 12, 13]. These
safety mechanisms will become essential as AR-equipped vehicles
and glasses turn into mainstream cyber-physical systems.

3) Personalization. By virtue of their complex arrays of sensors,
actuators, and information processing capabilities, AR systems are
in many ways more intimately connected to their users than any
devices before. While a substantial amount of work has been done
on context-aware AR [10], to the best of our knowledge, there is
no existing literature on personalizing hologram placements based
on user preferences. We expect this kind of personalization to be
necessary to accommodate a heterogeneous population of AR users,
especially those using HMDs. The users may differ in attributes
such as height, eyesight, or hand dominance, all of which may
influence their preferences for where holograms should be placed.

Our contributions. This paper advances the personalization
dimension of AR systems by developing a method to automatically
learn user preferences of hologram placements using behavioral
cloning, an autonomous imitation learning technique,! which has
been employed successfully in several different scenarios where
a human expert’s demonstrations can serve as valuable training
data (e.g., autonomous vehicles [5]). We argue that the first two
challenges (power/delay constraints and security/privacy) can be ad-
dressed by leveraging the availability of local computing resources,
i.e., using an architecture consistent with fog computing [6]. By
keeping the data processing closer to the devices and further away
from the cloud, such architectures improve network latency, in-
crease control over who gets to see the information, and reduce
the chance of successful eavesdropping by an adversary [8]. Our
preliminary results indicate that behavioral cloning holds promise
for the future of AR personalization.?

2 PERSONALIZED HOLOGRAM PLACEMENT
We begin with a brief overview of imitation learning. We then for-
malize the AR personalization problem and present our behavioral
cloning approach, which is illustrated in Fig. 2.

Surin Ahn, Maria Gorlatova, Parinaz Naghizadeh, and Mung Chiang

1See our demo of AR behavioral cloning at https://youtu.be/L8yF2bz-yml.
2 An extended version of this paper can be found at https://tinyurl.com/y5c96prd.
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2.1 Imitation Learning Overview

In many contexts related to robotics and artificial intelligence, an
autonomous agent is tasked with learning a desired behavior by
observing an “expert” perform the task. This is the main idea of
imitation learning (also known as apprenticeship learning or learning
from demonstration [3]). More formally: Given an execution trace
(i.e., a set of demonstrations) from an expert, can an agent learn to
imitate the expert’s policy? Behavioral cloning [4] is an approach to
imitation learning in which the policy is estimated directly from a
trace of the expert’s policy 7* : S — A that maps states to actions,
where S is the state space and A is the action space. This trace
is viewed as the “training set,” and is represented as a sequence
of state-action pairs {(so, ao), (s1, a1), (s2, a2), . . .}. Any supervised
learning method of choice, e.g., neural networks or SVMs, can be
applied to fit a model to the data.

2.2 Problem Formalization

We consider a scenario in which N users in close proximity to one
another are employing AR devices, which may be mobile phones,
HMDs, heads-up displays, or others. At each time step ¢, a nearby
server (such as a fog server) presents user i with a random, simu-
lated environmental state denoted by sli € S, which may consist
of the locations and rotations of real-world and virtual objects, the
sizes of their bounding boxes, and features of the application con-
tent (e.g., category). Additionally, the local server may ask the user
for some specific attributes, such as height or eyesight, which can
be incorporated into the state. In general, the server can generate
these simulated states based on environmental context, by incorpo-
rating statistics about the real-world environment (e.g., locations,
sizes, and frequencies of real-world objects based on sensors or
video feeds). These statistics can help the local server create more
realistic, context-specific simulations, which can then improve the
efficiency of training and effectiveness of the resulting policy.
User i then sends back its chosen action ai € A, which encodes
how the user displaced the holograms from their original positions.
Thus, at each time step, the local server collects N state-action pairs
(sli, ai), i=1,...,N.Over some period of time T, the local server
collects T samples per user, forming an N X T training set:

(s(i, aé) (s; a;) (S%, a%) (S;T, a;T)
(sg» ag) (s{» a}) (s3, a3) (s%» a%)

. (1)
N, ally (sN,alN) (N, al (sN, all)

Here, each column of the training set gives the state-action pairs
of all users at a particular time step, and each row gives the state-
action pairs of a specific user during the entire duration of training.
In practice, the value of N may range from one to hundreds, de-
pending on the number of users near the local server. The number
of demonstrations per user, T, on the other hand, would depend on
the complexity of the environment/state space. From the training
data in (1), the local server wishes to generate a set of policies that
closely mimic the N users’ demonstrations.

2.3 Learning Policies with Behavioral Cloning

In the policy learning phase, the local server can view each row of
the training set as a distinct trace d;, i = 1,..., N. Then, for each
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Algorithm 1 Learning Personalized Hologram Placements

: procedure LEARNHOLOGRAMS

: Input: Number of users N, horizon T

: Output: Policies 1, 72, . .., 1, where K < N

: Initialize: t < 0

: Whilet < T :

Send out simulated states si tousersi=1,...,N
Collect actions ai from users

te—t+1

: Generate K different policies from user demonstrations (sf, ai)
using behavioral cloning

Return m1, 12, . .., 7K

T R R I ST R

10:

user, the local server estimates a placement policy 7; based solely
on d;, for a total of N different policies. For more efficient training,
the local server could also identify similar users and merge their
training data to produce a joint policy. The local server would then
have K different training sets d1,dz, . . .,dx, K < N, which lead to
K different policies 1, 72, . . . , 7. However, this approach would
require us to define a notion of “similarity” that can be efficiently
estimated by the local server. Here, we employ a multi-layer neural
network to learn each of the N policies, where the input and output
layers correspond to states and actions, respectively. The learning
method is summarized in Algorithm 1. Note that the local server
can re-run this algorithm whenever new users enter the vicinity.

2.4 Distributing and Executing Policies

After the policies are learned, they are cached in the local server
and can be distributed to nearby users with powerful AR devices
that are capable of running policies (e.g., Microsoft’s HoloLens [17]).
Powerful devices can simply download and run policies themselves,
thereby reducing reliance on (and communication costs from) the
local server. In the policy execution phase, the AR device must
compute its own state based on what it observes in real time. From
the device’s raw video stream, it must extract the relevant features
of the state using real-time image processing techniques such as the
popular YOLO object detection algorithm [19] or the HoloLens’s
spatial mapping functionality.

If resource constraints prevent an AR device from running the
policy itself (as with, e.g., smartphones or low-power HMDs), then
the local server can compute the policy output based on the state
sent from the device. As a consequence, the device must communi-
cate much more frequently with the local server to send states and
receive corresponding actions over the network. As with powerful
AR devices, image processing techniques will be required to com-
pute the state. However, for especially resource-poor devices, raw
images will have to be offloaded to the local server or another edge
node to be processed first. Edge-based offloading of deep learning
for video applications has been explored in [18] and related works.

3 EVALUATION

Using an AR simulator that we implemented, we present prelim-
inary results demonstrating that behavioral cloning can be used
to generate a policy which accurately captures a user’s hologram
placement preferences.
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Figure 3: Two examples of behavioral cloning. In (a) and (b),
the left screen shows the user-controlled hologram, while
the right screen shows the agent-controlled hologram. The
bright pink trail is the hologram’s trajectory. Figs. (c) and (d)
show the birds-eye view of (a) and (b), respectively.

3.1 Evaluation Setup

Using the popular Unity game engine, we built an AR simulator
with C# that randomly generates holograms (represented as colored
tiles to resemble applications) in a virtual HMD-like experience. A
large sign reading “Important Real Object” is placed in the center
of the environment, both to serve as part of the state and to remind
the viewer that anything other than the holograms constitutes the
“simulated real world.” On top of the AR simulator, we implemented
the behavioral cloning algorithm with a multi-layer neural network
using the Unity Machine Learning Agents Toolkit [25]. There are
two key components to behavioral cloning in this implementation:

o Teacher agent: The agent controlled by the user, who provides a
state-action pair at every video frame, which is then broadcast to
the student agent, i.e., local server. The full trace of state-action
pairs serves as the training set.

o Student agent: The completely autonomous agent that observes
and tries to learn from the teacher agent’s (user’s) demonstra-
tions. The student agent updates its policy as new demonstra-
tions are provided.

At the beginning of each trial in the learning phase, a hologram
of random size and color is spawned in a random location in the
simulated environment and presented to the user as though he/she
is looking through an HMD. The user uses the keyboard to repo-
sition the hologram as desired, and can simultaneously view the
agent’s progress due to the split-screen feature of our simulator.
From these demonstrations, the agent estimates a policy (repre-
sented as a neural network) that best estimates the user’s behavior.
After 500 frames, the environment is reset and a new trial begins.

We employed a standard neural network architecture for be-
havioral cloning, in which an input layer takes a feature vector
representing the state of the environment, feeds this through four
hidden layers, and produces at the output layer an action vector
indicating how the holograms should be displaced from their cur-
rent positions. In each of the following experiments, we ran 50 full
training sessions, which is equivalent to training 50 independent
and identical agents in the same environment.
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Figure 4: Content-independent hologram destinations at the
beginning and end of training. Green circles represent the
hologram destinations chosen by the agent; the red circle
represents the target destination.

3.2 Content-Independent Hologram Placement

We first show that the student agent is able to learn the user’s
placement preference of a single hologram, independent of the
application’s content. That is, the agent’s goal is simply to mimic
the way in which the user moves around a hologram from arbitrary
initial positions in the environment. The state of the environment at
every video frame is given by the coordinates of the hologram and
real-world object, and the sizes of their bounding boxes. Including
features of real-world objects in the state is important because users
may have different placement preferences depending on how real
objects are configured. The action vector indicates how much the
user moves the hologram along the x, y, and z directions.

Qualitative comparisons between the user and agent hologram
placements are given in Fig. 3. Observe that the agent is not only
able to learn the user’s preferred final position of the holograms, but
also the physical trajectory that is taken. The full training session
was ~ 7 minutes; but the agent’s actions began to closely match
those of the user in much less time. Furthermore, the agent learns
that the user prefers smaller holograms to be placed closer to them,
to maintain a similar level of visibility as a larger hologram.

We collected data on 50 training sessions, each with 60 demon-
strations from a deterministic (noiseless) teacher agent. At the end
of each demonstration, we recorded the final destinations of both
the teacher agent’s and student agent’s holograms. Fig. 4 shows
these destinations for all 50 training sessions, at the beginning and
end of training. As more user demonstrations from the teacher are
provided, the student agent’s accuracy and precision improve. The
metric we use to assess the performance of the student agent is
the distance between its hologram and the teacher agent’s holo-
gram at the end of each trial. Fig. 5 shows the median and mean
(with standard error) of this metric over the duration of training.
Overall, the agent’s actions converge quickly to the target, but with
high variability near the beginning of training. A couple of outliers
around the 30-40 demonstration mark result in high standard error.

We say convergence has occurred when the agent moves the
hologram to within a specified radius threshold (in meters) from
the target, three consecutive times. Under a threshold of 0.45 meters,
we found that convergence occurs in under 10 demonstrations more
than 80% of the time. Looser thresholds lead to faster convergence.

3.3 Content-Dependent Hologram Placement

We next test the student agent’s learning ability when features of the
hologram content are included in the state. The motivation is that
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Figure 5: Median/mean error, content-independent case.
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Figure 6: Content-dependent hologram destinations. Each
color corresponds to one application category.
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Figure 7: Median/mean error, content-dependent case.

users may prefer having different types of applications (e.g., email
or navigation) in different positions in the perceived environment.
In our AR simulator, we use the hologram’s color to represent its
application category. This color is then encoded as an integer in the
environmental state. Our experiment uses two different categories,
represented by red and blue, and we apply a deterministic teacher
function that moves holograms in a straight line to one of two
separate target destinations (depending on the hologram’s color).

Fig. 6 shows the student agent-driven destinations of the blue and
red holograms at two different points in the training process. Early
on, the agent yields a few misclassifications. However, even as early
as 13 demos, full accuracy is achieved. Policy convergence is shown
in Fig. 7. Under a distance threshold of 0.35 meters, convergence
occurred in under 15 demos more than 80% of the time.

4 CONCLUSIONS AND FUTURE WORK

We proposed a fog-based behavioral cloning method for the emerg-
ing area of AR personalization, and demonstrated the promise of
this approach via simulations. The use of edge servers for pol-
icy learning and distribution offers many benefits such as privacy
preservation, faster training time, and low-cost communication, all
of which will be essential in future fog-supported cyber-physical
systems. Our future work includes evaluating the approach in more
complex and realistic environments, and experimentally deploying
it in a fog computing testbed with physical AR devices.
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