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(a) 1 demo (b) 40 demos

Figure 4: Content-independent hologramdestinations at the

beginning and end of training. Green circles represent the

hologram destinations chosen by the agent; the red circle

represents the target destination.

3.2 Content-Independent Hologram Placement

We first show that the student agent is able to learn the user’s

placement preference of a single hologram, independent of the

application’s content. That is, the agent’s goal is simply to mimic

the way in which the user moves around a hologram from arbitrary

initial positions in the environment. The state of the environment at

every video frame is given by the coordinates of the hologram and

real-world object, and the sizes of their bounding boxes. Including

features of real-world objects in the state is important because users

may have different placement preferences depending on how real

objects are configured. The action vector indicates how much the

user moves the hologram along the x ,y, and z directions.

Qualitative comparisons between the user and agent hologram

placements are given in Fig. 3. Observe that the agent is not only

able to learn the user’s preferred final position of the holograms, but

also the physical trajectory that is taken. The full training session

was ≈ 7 minutes; but the agent’s actions began to closely match

those of the user in much less time. Furthermore, the agent learns

that the user prefers smaller holograms to be placed closer to them,

to maintain a similar level of visibility as a larger hologram.

We collected data on 50 training sessions, each with 60 demon-

strations from a deterministic (noiseless) teacher agent. At the end

of each demonstration, we recorded the final destinations of both

the teacher agent’s and student agent’s holograms. Fig. 4 shows

these destinations for all 50 training sessions, at the beginning and

end of training. As more user demonstrations from the teacher are

provided, the student agent’s accuracy and precision improve. The

metric we use to assess the performance of the student agent is

the distance between its hologram and the teacher agent’s holo-

gram at the end of each trial. Fig. 5 shows the median and mean

(with standard error) of this metric over the duration of training.

Overall, the agent’s actions converge quickly to the target, but with

high variability near the beginning of training. A couple of outliers

around the 30-40 demonstration mark result in high standard error.

We say convergence has occurred when the agent moves the

hologram to within a specified radius threshold (in meters) from

the target, three consecutive times. Under a threshold of 0.45 meters,

we found that convergence occurs in under 10 demonstrations more

than 80% of the time. Looser thresholds lead to faster convergence.

3.3 Content-Dependent Hologram Placement

Wenext test the student agent’s learning ability when features of the

hologram content are included in the state. The motivation is that

(a) Median (b) Mean

Figure 5: Median/mean error, content-independent case.

(a) 4 demos (b) 13 demos

Figure 6: Content-dependent hologram destinations. Each

color corresponds to one application category.

(a) Median (b) Mean

Figure 7: Median/mean error, content-dependent case.

users may prefer having different types of applications (e.g., email

or navigation) in different positions in the perceived environment.

In our AR simulator, we use the hologram’s color to represent its

application category. This color is then encoded as an integer in the

environmental state. Our experiment uses two different categories,

represented by red and blue, and we apply a deterministic teacher

function that moves holograms in a straight line to one of two

separate target destinations (depending on the hologram’s color).

Fig. 6 shows the student agent-driven destinations of the blue and

red holograms at two different points in the training process. Early

on, the agent yields a few misclassifications. However, even as early

as 13 demos, full accuracy is achieved. Policy convergence is shown

in Fig. 7. Under a distance threshold of 0.35 meters, convergence

occurred in under 15 demos more than 80% of the time.

4 CONCLUSIONS AND FUTUREWORK

We proposed a fog-based behavioral cloning method for the emerg-

ing area of AR personalization, and demonstrated the promise of

this approach via simulations. The use of edge servers for pol-

icy learning and distribution offers many benefits such as privacy

preservation, faster training time, and low-cost communication, all

of which will be essential in future fog-supported cyber-physical

systems. Our future work includes evaluating the approach in more

complex and realistic environments, and experimentally deploying

it in a fog computing testbed with physical AR devices.
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