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Abstract

We consider the problem of inference in dis-
crete probabilistic models, that is, distributions
over subsets of a finite ground set. These
encompass a range of well-known models in
machine learning, such as determinantal point
processes and Ising models. Locally-moving
Markov chain Monte Carlo algorithms, such
as the Gibbs sampler, are commonly used for
inference in such models, but their conver-
gence is, at times, prohibitively slow. This
is often caused by state-space bottlenecks that
greatly hinder the movement of such samplers.
We propose a novel sampling strategy that
uses a specific mixture of product distributions
to propose global moves and, thus, acceler-
ate convergence. Furthermore, we show how
to construct such a mixture using semigradi-
ent information. We illustrate the effective-
ness of combining our sampler with existing
ones, both theoretically on an example model,
as well as practically on three models learned
from real-world data sets.

1 INTRODUCTION

Discrete probabilistic models have played a fundamen-
tal role in machine learning. Examples range from clas-
sic graphical models, such as Ising and Potts models
(Koller and Friedman, 2009), which have long been used
in computer vision applications (Boykov et al., 2001),
to determinantal point processes (Kulesza and Taskar,
2012) used in video summarization (Gong et al., 2014),
and facility location diversity models used for product
recommentation (Tschiatschek et al., 2016). Recently,
there has been increased interest in general distributions
over subsets of a finite ground set V; that is, given a
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set function F' : 2V — R, distributions of the form
7(S) o exp(F(S)), forall S C V. These can be equiv-
alently seen as distributions over binary random vectors,
it S is replaced by the indicator function of the corre-
sponding vector. All the aforementioned examples can

be expressed in this form for a suitable choice of F'.

While exact inference in such models is known to be in-
tractable in general (Jerrum and Sinclair, 1993), there has
been recent work on analyzing approximate inference
techniques, such as variational methods (Djolonga and
Krause, 2014; Djolonga et al., 2016b), and Markov chain
Monte Carlo (MCMC) sampling (Gotovos et al., 2015;
Rebeschini and Karbasi, 2015). The sampling analyses,
in particular, focus on the Gibbs sampler, and derive suf-
ficient conditions under which it mixes—converges to-
ward the target distribution—sufficiently fast.

Unfortunately, oftentimes in practice these conditions
do not hold and the Gibbs sampler mixes prohibitively
slowly. A fundamental reason for this slow mixing be-
havior is the existence of bottlenecks in the state space
of the Markov chain. Conceptually, one can think about
the state-space graph containing several isolated compo-
nents that are poorly connected to each other, thus mak-
ing it hard for the Gibbs sampler to move between them.

In this work, we propose a novel sampling strategy that
allows for global moves in the state space, thereby avoid-
ing bottlenecks, and, thus, accelerating mixing. Our sam-
pler is based on using a proposal distribution that ap-
proximates the target 7 by a mixture of product distribu-
tions. We further propose an algorithm for constructing
such a mixture using discrete semigradient information
of the associated function F'. This idea makes a step to-
wards bridging optimization and sampling, a theme that
has been successful in continuous spaces. Our sampler
is readily combined with other existing samplers, and we
show provable theoretical, as well as empirical examples
of speedups.



Contributions.
are as follows.

The main contributions of this paper

e We propose the M? sampler, which makes global
moves according to a specific mixture of product
distributions.

e We theoretically analyze mixing times on an illus-
trative family of Ising models, and prove that adding
the M? sampler results in an exponential improve-
ment over the Gibbs sampler.

e We demonstrate the effectiveness of combining the
M? and Gibbs samplers in practice on three models
learned from real-world data.

Related work. Recent work on analyzing the mixing
time of MCMC samplers for discrete probabilistic mod-
els includes deriving general conditions on F' to achieve
fast mixing (Gotovos et al., 2015; Rebeschini and Kar-
basi, 2015; Li et al., 2016), as well as looking at specific
subclasses, such as strongly Rayleigh distributions (Li
et al., 2016; Anari et al., 2016).

There has also been work on mapping discrete infer-
ence to continuous domains (Zhang et al., 2012; Pak-
man and Paninski, 2013; Dinh et al., 2017; Nishimura
et al., 2018) to enable the use of well-established contin-
uous samplers, such as Hamiltonian Monte Carlo (Neal,
2012; Betancourt, 2017). It is worth pointing out that,
while these methods usually outperform simple Gibbs or
Metropolis samplers, they still tend to suffer from con-
siderable slowdowns in multimodal distributions (Neal,
2012). Our work is orthogonal to these methods, in the
sense that our proposed sampler can be combined with
any of the existing ones to provide a principled way for
performing global moves that can lead to improved mix-
ing.

Both darting Monte Carlo (Sminchisescu and Welling,
2007; Ahn et al., 2013) and variational MCMC (de Fre-
itas et al., 2001) share the high-level concept of combin-
ing two chains, one making global moves between high-
probability regions, and another making local moves
around those regions. However, their proposed global
samplers for continuous spaces are generally not appli-
cable to the class of discrete distributions we consider.

There are several well-known results on mixing of the
Gibbs sampler for the Ising model on different graph
structures (Jerrum and Sinclair, 1993; Berger et al., 2005;
Levin et al., 2008a;b). Other (non-MCMC) approaches
to discrete sampling include Perturb-and-MAP (Papan-
dreou and Yuille, 2011; Hazan et al., 2013), and random
projections (Zhu and Ermon, 2015). Semigradients of
submodular set functions have recently been exploited

for optimization (Iyer et al., 2013; Jegelka and Bilmes,
2011) and variational inference (Djolonga et al., 2016a),
but, to our knowledge, no prior work has used them for
sampling.

2 BACKGROUND

We consider set functions F : 2V — R, where V is
a finite ground set of size n that can be assumed to be
V ={1,...,n} without loss of generality. In this paper,
we focus on distributions over  := 2V of the form

n(S) = 2 exp (F(S)) 1)
for all S € . The partition function Z :=
> scq exp(F(S)) serves as the normalizer of the dis-
tribution. Alternatively, we can describe distributions of
the above form via binary vectors X € {0,1}™. If we
define V(X) := {v € V | X, = 1}, then the distri-
bution px (X) o exp(F(V(X))) over binary vectors is
isomorphic to the distribution (1) over sets.

Perhaps the simplest family of such models are log-
modular distributions, which describe a collection of in-
dependent binary random variables. Equivalently, they
are distributions of the form (1) where F' is a modular
function, that is, a function of the form F'(S) = ¢ +
> veg Mw, Where ¢,m,, € R, for all v € V. The parti-
tion function of a log-modular distribution can be derived
in closed form as Z,, = exp(c) [[,cy (1 + exp(my)).
Consequently, the corresponding log-modular distribu-
tion 18

exp (Dpes M)
H'UEV (1 +exp(m,)) '

Tm(S) =

Inference and sampling. Performing exact inference
in models of the form (1), that is, computing conditional
probabilities suchas 7(A C S C B | C C S C D),
is known to be in general #P-hard (Jerrum and Sinclair,
1993). As a result, we have to resort to approximate in-
ference algorithms, such as Markov chain Monte Carlo
sampling (Levin et al., 2008b), which is the primary fo-
cus of this paper. An MCMC algorithm for distribution 7
simulates a Markov chain in state space (2 in such a way
that the sequence of visited states (Xg, X1,...) € QY
ultimately converges to 7.

Gibbs sampler. One of the most commonly used
chains is the (single-site) Gibbs sampler, which adds or
removes a single element at a time. It first selects uni-
formly at random an element v € V'; subsequently, it
adds or removes v to the current state X; according to the
probability of the resulting state. We denote by P : 2 x



) — R the transition matrix of a Markov chain, that is,
forall SR € Q, P(S,R) :=P[X¢y1 =R | X: = 5]
Then, if we define
pon— __CSP(F(R)
ST exp(F(R)) + exp(F(S))’

and denote by S ~ R states that differ by exactly one

element (i.e., |[R| — [S]| = 1), the transition matrix P
of the Gibbs sampler is
1 .
—DS—R > ifR~S
n
a 1 .
PES,R) =4 1- ) ~psor, HR=S
T~S
0, otherwise

Mixing. The efficiency of a Markov chain in approx-
imating its target distribution depends largely on the
speed of convergence of the chain, which is quanti-
fied by the chain’s mixing time. Most commonly, dis-
tance from stationarity is measured by the maximum
total variation distance, over all starting states, be-
tween X; and the target distribution 7, that is, d(t) :=
max x,cq dry (P*(Xo, -), 7). Then, the mixing time de-
notes the minimum number of iterations required to get
e-close to stationarity, tmix(€) := min{t | d(¢) < €}.

A common way to obtain an upper bound on the mixing
time of a chain is by lower bounding its spectral gap, de-
fined as v := 1 — Ay, where )\, is the second largest
eigenvalue of the transition matrix P. The following
well-known theorem connects the spectral gap to mixing
time.

Theorem 1 (cf. Theorems 12.3, 12.4 in (Levin et al.,
2008b)). Let P be the transition matrix of a lazy, irre-
ducible, and reversible Markov chain, and let ~y be its
spectral gap, and T, = mingeq 7(S). Then,

1 1 1 1
(— - 1) log (—) < tmix(€) < —log ( ) :
Y 2¢ Y €T min

3 THE MIXTURE CHAIN

Despite the simplicity and computational efficiency of
the Gibbs sampler, the fact that it is constrained to per-
forming local moves makes it susceptible to state-space
bottlenecks, which hinder the movement of the chain
around the state space. Intuitively, the state space may
contain several high-probability regions arranged in such
a way that moving from one to another using only single-
element additions and deletions requires passing through
states of very low probability. As a result, the Gibbs sam-
pler may mix extremely slowly on the whole state space,
despite the fact that it can move sufficiently fast within
each of the high-probability regions.

To alleviate this shortcoming, it is natural to ask whether
it is possible to bypass such bottlenecks by using a chain
that performs larger moves. In this paper, we introduce a
novel approach that uses a Metropolis chain based on a
specific mixture of log-modular distributions, which we
call the M3 chain, to perform global moves in state space.
Concretely, we define a proposal distribution

a8, R) = a(R) = - " exp (Fi(R)
9 4=1

_ Ziq ; w; exp (mi(R)),  (2)

where each F;(R) = ¢; + ), < p Miv is a modular func-
tion, while each m;(R) = ) _p M, is a normalized
modular function (m;(#) = 0), and w; = exp(¢;) > 0.
If we denote by Z; the normalizer of m;, then the nor-
malizer of the mixture can be written in closed form as

Zo=Y a®) =33 wiexp (mi(R))

ReQ ReQ i=1

= Z wy Z exp (m;(R))

i=1 ReQ
r
i=1

We define the M3 chain as a Metropolis chain (Levin
et al., 2008b) using ¢ as a proposal distribution; its tran-
sition matrix PM : Q x Q — R is given by

q(R)pa(S, R) , iftR+#S

PM(S,R)=¢ 1— Z q(T)pa(S,T), otherwise
T#S
where
o m(R)q(S)
p(l,(Sv R) = Imin {1, m} .

Note that, contrary to usual practice, the proposal ¢ only
depends on the proposed state, but not on the current state
of the chain. As a result, the chain is not constrained to
local moves, but rather can potentially jump to any part
of the state space. In practice, M? sampling proceeds in
two steps: first, a candidate set R is sampled according
to q; then, the move to R is accepted with probability
Da- Sampling from ¢ can be done in O(n) time—first,
sample a log-modular component, then sample a set from
that component. Computing p,, requires O(r) time for
the sum in (2), and it can be straightforwardly improved
by parallelizing this computation. All in all, the total
time for one step of M3 is O(n + r).



As is always the case with Metropolis chains, the mix-
ing time of the M sampler will depend on how well the
proposal g approximates the target distribution 7. The
following observation shows that, in theory, we can ap-
proximate any distribution of the form (1) by a mixture
of the form (2).

Proposition 1. For any 7 on Q) as in (1), and any € >
0, there are positive constants w; = w;(e) > 0, and
normalized modular functions m; = m;(€), such that, if
we define q(S) == >_._, w;exp(m;(9)), forall S € Q,
then dry (7, q) < e.

Conceptually, the proof relies on having one log-modular
term per set in Q.! Therefore, while the above re-
sult shows that mixtures of log-modulars are expressive
enough, the constructed mixture of exponential size in n
is not useful for practical purposes. On the other hand, it
is not necessary for us to have ¢ be an accurate approx-
imation of 7w everywhere, as long as the corresponding
M? chain is able to bypass state-space bottlenecks. With
this in mind, we suggest combining the M? and Gibbs
chains, so that each of them serve complementary pur-
poses in the final chain; the role of M? is to make global
moves and avoid bottlenecks, while the role of Gibbs is
to move fast within well-connected regions of the state
space. To make this happen, we define the transition ma-
trix P¢ : Q x  — R of the combined chain as

PCY(S,R) = aPY(S,R) + (1 —a)PM(S,R), (3)

where 0 < v < 1. It is easy to see that PC is reversible,
and has stationary distribution 7.

We next illustrate how combining the two chains works
on a simple example, where a mixture of only a few log-
modular distributions can dramatically improve mixing
compared to running the vanilla Gibbs chain. Then we
propose an algorithm for automatically creating such a
mixture.

3.1 EXAMPLE: ISING MODEL ON THE
COMPLETE GRAPH

We consider the Ising model on a finite complete graph
(Levin et al., 2008a), also known as the Curie-Weiss
model in statistical physics, which can be written in the
form of (1) as follows:

- e (—%S(n - |5|)) . (ISING)

) = 7)

"Detailed proofs of all our results can be found in the ap-
pendix.

In particular, we focus on the case where 5 = In(n), that
is,

m(S) = - eXP (—QIHT(n)

In this case, if we define d,, := 21In(n)/n, then F(S) =
—dn|S|(n — [S]).

The Gibbs sampler is known to experience poor mixing
in this model; the following is an immediate corollary of
Theorem 15.3 in (Levin et al., 2008b).

Corollary 1 (cf. Theorem 15.3 in (Levin et al., 2008b)).
For n > 3, the Gibbs sampler on ISING has spectral gap
74 = O (e="), where ¢ > 0 is a constant.

|S|(n — |S|)> . (ISING)

From Theorem 1 it follows that the mixing time of Gibbs
is tmix(€) = Q((e“™ — 1) log(1/(2¢))). Yet, it has been
shown that the only reason for this is a single bottleneck
in the state space (Levin et al., 2008a). To make this
statement more formal, let us define a decomposition of
Q into two disjoint sets, Qg := {S € Q| |S| < n/2},
and Q; := {S € Q| |S| > n/2} (Jerrum et al., 2004).
To keep things simple, we will assume for the remain-
der of this section that n is odd; the analysis when n is
even follows from the same arguments with only a minor
technical adjustment. Our goal is to separately examine
two characteristics of the sampler: (i) its movement be-
tween the two sets €, {21, and (ii) its movement when
restricted to stay within each of these sets.

For analyzing the “between-sets” behavior, we define the
projection 7 : {0,1} — R of 7 as

Se;

and, for any reversible chain P, we define its projection
chain P : {0,1} x {0,1} — Ras

P(i,j) = % Z

SeQ;,ReQ;

#(S)P(S, R).

It is easy to see that P is also reversible and has stationary
distribution 7. For analyzing the “within-set” behavior,
we define the restrictions 7; : €2; — R of 7 as

and the two restriction chains P; : €; x ; — R of P as

P(S, R), IS #R
Pi(S,R):==¢ 1- Z P(S,T), otherwise
TeQ;: T+S

Again, it is easy to see that each of the P; is also re-
versible and has stationary distribution ;.



Coming back to the Gibbs sampler, if we could show that
it mixes fast within each of 2y and 21, then we could de-
duce that the only reason for the slow mixing on {2 is the
bottleneck between these two sets. Indeed, the follow-
ing corollary of a theorem by Ding et al. (2009) shows
exactly that.

Corollary 2 (cf. Theorem 2 in (Ding et al., 2009)).
For all n > 3, the restriction chains of the Gibbs sam-
pler PiG, 1 = 0,1, on ISING have spectral gap ’in =
2In(n)—1

o (2nin1)

To improve mixing we want to create an M? chain that
is able to bypass the aforementioned bottleneck. For this
purpose, we use a mixture of two log-modular distribu-
tions, the first of which puts most of its mass on ), and
the second on 2. We define the mixture of the form (4)
by

mi(8) =Y —dn(n—1) = —dyn(n —1)|S],
veS

ma(8) =Y dn(n—1) =dn(n - 1)|S].

veS

We also use wy = 1/Z; and wy = 1/Z5, where Z; and
Zo are the normalizers of m; and mq respectively. It
follows that Z, = 1 /2, and, furthermore, the mixture
q is symmetric, that is, ¢(S) = ¢(V \ S). Since the
proposal ¢ is symmetric and state independent, we would
expect the M? chain to jump between € and 2; without
being hindered by the bottleneck described previously.
We verity this intuition by proving the following lemma.

Lemma 1. For all n > 10, the projection chain PM of
the M3 sampler on ISING has spectral gap 3™ = Q(1).

Putting everything together we show the following result
about the combined chain P¢.

Theorem 2. For all n > 10, the combined chain PC on
ISING has spectral gap

7CZQ(M)

2n

The proof consists of two steps. In the first step
we make a comparison argument (Diaconis and Saloff-
Coste, 1993; Levin et al., 2008b) to show that the spectral
gaps of the projection and restriction chains of the com-
bined sampler are smaller by at most a constant factor
in o compared to those of Gibbs and M2. In particu-
lar, we use the M2 bound (Lemma 1) for the projection
chain, and the Gibbs bound (Theorem 2) for the restric-
tion chains. The second step, then, combines the projec-
tion and restriction bounds to establish a bound on the
spectral gap of the combined chain. To accomplish this
we use a result by Jerrum et al. (2004), which, roughly

Algorithm 1 Iterative semigradient-based mixture con-
struction

Input: Set function F', mixture size r
1: for:=1tordo
2 o < GREEDY(F, {m1,...,m;—1})
3:  m; < SEMIGRADIENT(F, o)
4: return {m1,...,m,}

speaking, states that the spectral gap of the whole chain
cannot be much smaller than the smallest of the projec-
tion and restriction spectral gaps.

Finally, using Theorem 1, and noting that, in this case,
Tmin = O(e™™) (cf. proof of Lemma 1), we get a mix-
ing time of tyix(€) = O(n?log(1/e)) for the combined
chain. This shows that the addition of the M? sampler re-
sults in an exponential improvement in mixing time over
the Gibbs sampler by itself.

4 CONSTRUCTING THE MIXTURE

Having seen the positive effect of the M? sampler, we
now turn to the issue of how to choose the proposal q.
While a manual construction like the one we just pre-
sented for the Ising model may be feasible in some cases,
it is often more practical to have an automated way of ob-
taining the mixture.

Let us assume, as is usually the case, that we have ac-
cess to a function oracle for F', and we want to create a
mixture of size . Ideally, we would like to construct a
proposal ¢ that is as close to 7 as possible, that is, mini-
mize an objective such as the following,

Ei(q) := mqin lm—qll

F( j R—
_ mqin exp(Z () 7 ST w; exp(mi(-))‘ 7
where || - || could be, for example, total variation dis-

tance or the maximum norm. Unfortunately, this prob-
lem is hard: both computing the partition function Z,
and jointly optimizing over all w;, m; are infeasible in
practice. To make the problem easier, we could try to
get rid of the normalizers and weights w;, and iteratively
minimize over each m; individually:

' )

’exp(F(-)) — Z;;ll exp(m;(-))

fori € {1,...,r}. This problem is still hard, since opti-
mizing || exp(F'(+))|| is by itself infeasible in general.

Eéi) (m;) := min

To arrive at a practical algorithm, we approximate
the above objective using the two-step procedure de-
scribed in Algorithm 1. In the first step, we gener-
ate a permutation o of the ground set V' by running



Algorithm 2 Greedy difference maximization

Algorithm 3 Subgradient computation

Input: Set function F', modular functions {ma,...,m;_1}
1: D;i(S) «+ F(S) —log >'_} exp(m;(S)), forall S € Q

Jj=

2: 0+ (1,...,n)

30 A0

4: fori = 1tondo

5: v —argmax,y (Di(AU{v}) — D;s(A))
6: o; —v*

7. A+ AU{v*}

8: return o

the greedy algorithm on function D;(S) := F(S) —
log Z;;ll exp(m;(S)), as shown in Algorithm 2. Intu-
itively, the sets that are formed by elements near the be-
ginning of ¢ are those on which F' and the current mix-
ture disagree by the most. Therefore, in the second step,
we would like to add to the mixture a modular function
my; that is a good approximation for F on {o1,...,0%},
for a choice of 1 < k < n. To accomplish this, we pro-
pose using discrete semigradients.

Semigradients are modular functions that provide lower
(subgradient) or upper (supergradient) approximations of
a set function F' (Fujishige, 2005; Iyer et al., 2013). More
concretely, given a set S’ € (), a modular function m is a
subgradient of F' at S, if, forall R € Q, F(R) > F(S)+
m(R) — m(S). Similarly, m is a supergradient if the
inequality is reversed. Although, in general, a function
is not guaranteed to have sub- or supergradients at each
S € (), it has been shown that this is true when F' is
submodular or supermodular (Fujishige, 2005; Jegelka
and Bilmes, 2011; Iyer and Bilmes, 2012).

Submodularity expresses a notion of diminishing returns;
that is, adding an element to a larger set provides less
benefit than adding that same element to a smaller set.
More formally, F' is submodular if, forany S C R C V,
and any v € V' \ R, itholds that F(RU {v}) — F(R) <
F(SU{v}) — F(S). Supermodularity is defined in a
similar way by reversing the sign of this inequality. The
resulting models of the form (1) are referred to as log-
submodular and log-supermodular respectively. Many
commonly used models fall under these categories; Ising
and Potts models, including our example in the previous
section, are log-supermodular, while determinantal point
processes and facility location diversity models are log-
submodular.

Coming back to the second step of Algorithm 1, to create
a subgradient of F' given permutation o we just need to
define a modular function via marginal gains according
to the permutation order (Iyer et al., 2013), as shown in
Algorithm 3. Moreover, this is a subgradient of F' at
{o1,...,01}, forall 1 < k < n. On the other hand,

Input: Set function F', permutation o
1: A« 0
2. f+ F(0)
3: forv=1tondo
4: my,+ F(AU{o,}) — F(A)
5: A+ AUo,
6: return m(S) := ) _omy, forall S € Q

Algorithm 4 Supergradient computation

Input: Set function F', permutation o
1: k£ + DRAWUNIFORM(I, n)
2: forv=1to k do
33 my <« F(V)—FWV\{v})
4: forv =k + 1ton do
5. my,+ F({v})
6: return m(S) =3 _gmy,forall § € Q

Algorithm 4 creates a supergradient of F'at {01, ...,0%}
for a randomly chosen k. (This type of supergradient is
denoted by gy by Iyer et al. (2013).) In fact, the modular
functions mj, ms that we used in analyzing the Ising
model in the previous section were supergradients of F’
at sets S; = (), and Sy = V respectively.

In practice, we can use Algorithm 1 regardless of
whether F' is sub- or supermodular. We have, however,
noticed that subgradients give better results when F' is
submodular, and the same goes for supergradients and
supermodular functions.

S EXPERIMENTS

We now evaluate the performance of our proposed sam-
pler on the Ising model we analyzed earlier, as well as
the following three models learned from real-world data
sets.

WATER. A (log-submodular) facility location model,
which was used in a problem of sensor placement in a
water distribution network (Krause et al., 2008). The
function F'is of the form

F(S) =
(9) Z max ci;
Jj=1
We randomly subsample the original facility location
matrix C' = (¢;5), so that n = 50, and L = 500.

SENSOR. A (log-submodular) determinantal point pro-
cess (Kulesza and Taskar, 2012), which was used in
a problem of sensor placement for indoor temperature
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Figure 1: (a)-(c) Ising model results for increasing n. Note how the Gibbs sampler gets worse significantly faster than
the combined ones. (d)-(f) Potential scale reduction factor (PSRF) as a function of sampling iterations. (g)-(i) PSRF
as a function of wall-clock time in milliseconds. The combined sampler outperforms Gibbs both in terms of samples

required, as well as actual runtime.

monitoring (Guestrin et al., 2005). The function F' is of
the form

F(S) = log |K + 0”1,

where K is a kernel matrix, and o is a noise parameter.
The size of the ground set is n = 46.

GAME. A (log-submodular) facility location diversity
model (Tschiatschek et al., 2016), which represents the
characters that are chosen by players in the popular on-
line game “Heroes of the Storm”. We learned the model
from an online data set of approximately 8, 000 teams of

5 characters® using noise-contrastive estimation, as de-

scribed by Tschiatschek et al. (2016). The function F' is
of the form

L
F(S)= Z wy + Zr{leasxcij,

vES j=1
with n = 48, and L = 10. In practice, we would only be
interested in sampling sets of fixed size £ = 5. The Gibbs
sampler can be easily modified to sample under a cardi-

nality constraint by using moves that swap an element in

*https://www.hotslogs.com
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Figure 2: (a) Increasing the number of mixture components improves performance. (b) The combination of Gibbs and

M? performs better than either of them does individually.

the current set X; with an element in V' \ X;. Extend-
ing the M? chain to sample from cardinality-constrained
models is also straightforward. In fact, the only addi-
tional ingredient required is a procedure to sample a set
of size ¢ from a log-modular distribution, which can be
easily done, as before, in O(n) time.

In what follows, we compare the performance of the
Gibbs sampler (GIBBS) against our proposed combined
sampler using a proposal mixture g constructed by Algo-
rithm 1 (COMBO-I). We also compare against a variation
where we substitute the greedy procedure in line 2 of Al-
gorithm 1 with picking a permutation o of the ground set
uniformly at random (COMBO-R).

To assess convergence we use the potential scale reduc-
tion factor (PSRF) (Brooks et al., 2011) using 20 paral-
lel chains. We compute the PSRF using single-element
marginal probabilities averaged over 50 repetitions of
each simulation.

In Figures la—1c we show the results for the Ising model
(n = 6,7,8) with the additional COMBO-F line denot-
ing the combined sampler with two mixture components
described in Section 3.1. The other two combined sam-
plers use mixtures of size » = 20. Note that Gibbs mixes
dramatically slower than the combined sampler, even for
such small n.

In Figures 1d—1f we show the results on the three log-
submodular models described before using mixtures of
size r = 200. It is interesting to see that even random
permutations are enough to significantly improve over
the performance of Gibbs. Similar observations can be
made with respect to computation time, as shown in Fig-
ures 1g—1i, which measure wall-clock time on the z-axis.

In Figure 2a we show how mixture size affects perfor-
mance; as expected, adding more components to the mix-
ture results in a proposal that approximates the target
distribution better, and, therefore, mixes faster. Finally,
in Figure 2b we see that both Gibbs (v = 1) and M3
(o = 0, r = 200) perform poorly by themselves, but
combining them results in much improved performance.
This highlights again the complementary nature of the
two chains (local vs. global moves) we discussed earlier.

6 CONCLUSION

We considered the problem of sampling from general
discrete probabilistic models, and presented the M3 sam-
pler that proposes global moves using a mixture of log-
modular distributions. We theoretically analyzed the ef-
fect of combining our sampler with the Gibbs sampler
on a class of Ising models, and proved an exponential
improvement in mixing time. We also demonstrated no-
table improvements when combining the two samplers
on three models of practical interest. We believe that
our work represents a step towards moving beyond lo-
cal samplers, and incorporating ideas from optimization,
such as semigradients, into probabilistic inference.
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