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Abstract

Determinantal Point Processes (DPPs) have at-
tracted significant interest from the machine-
learning community due to their ability to ele-
gantly and tractably model the delicate balance
between quality and diversity of sets. DPPs are
commonly learned from data using maximum like-
lihood estimation (MLE). While fitting observed
sets well, MLE for DPPs may also assign high
likelihoods to unobserved sets that are far from
the true generative distribution of the data. To ad-
dress this issue, which reduces the quality of the
learned model, we introduce a novel optimization
problem, Contrastive Estimation (CE), which en-
codes information about “negative” samples into
the basic learning model. CE is grounded in the
successful use of negative information in machine-
vision and language modeling. Depending on
the chosen negative distribution (which may be
static or evolve during optimization), CE assumes
two different forms, which we analyze theoreti-
cally and experimentally. We evaluate our new
model on real-world datasets; on a challenging
dataset, CE learning delivers a considerable im-
provement in predictive performance over a DPP
learned without using contrastive information.

1 Introduction

Careful selection of items from a large collection under-
lies many machine learning applications. Notable examples
include recommender systems, information retrieval and
automatic summarization methods, among others. Typically,
the selected set of items must fulfill a variety of application
specific requirements—e.g., when recommending items to
a user, the quality of each selected item is important. This
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quality must be, however, balanced by the diversity of the se-
lected items to avoid redundancy within recommendations.

But balancing quality with diversity is challenging: as the
collection size grows, the number of its subsets grows expo-
nentially. A model that offers an elegant, tractable way to
achieve this balance is a Determinantal Point Process (DPP).
Concretely, a DPP models a distribution over subsets of a
ground set ) that is parametrized by a semi-definite matrix
L € RYIXYI such that for any A C ),

Pr(A) o< det(L4), (1)

where L4 = [L;;]; jca is the submatrix of L indexed by A.
Informally, det(L 4) represents the volume associated with
subset A, the diagonal entry L;; represents the importance
of item 4, while entry L;; = L;; encodes similarity between
items ¢ and j. Since the normalization constant of (1) is
simply > 4y det(La) = det(L + I), we have Pr(A) =
det(L 4)/det(L + I'), which suggests why DPPs may be
tractable despite their exponentially large sample space.

The key object defining a DPP is its kernel matrix L.
This matrix may be fixed a priori using domain knowl-
edge [Borodin, 2009], or as is more common in machine
learning applications, learned from observations using maxi-
mum likelihood estimation (MLE) [Gillenwater et al., 2014,
Mariet and Sra, 2015]. However, while fitting observed sub-
sets well, MLE for DPPs may also assign high likelihoods to
unobserved subsets far from the underlying generative distri-
bution [Chao et al., 2015], since MLE causes the DPP model
to maximize the determinantal volume of observed subsets
without explicitly minimizing the volume of unobserved
subsets. Therefore, the volume of unobserved subsets may
be larger than expected, and MLE-based DPP models may
thus have modes corresponding to subsets that are close in
likelihood, yet differ in how close they are to the true data
distribution. Such confusable modes reduce the quality of
the learned model, hurting predictions, as shown in Figure 1.

Such concerns when learning generative models over huge
sample spaces are not limited to the area of subset-selection:
applications in image and text generation have been the
driving force in developing techniques for generating high-
quality samples. Among their innovations, a particularly
successful technique uses generated samples as “negative
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samples” to train a discriminator, which in turn encourages
generation of more realistic samples; this is the key idea
behind the Generative Adversarial Nets (GANs) introduced
in [Goodfellow et al., 2014].

These observations motivate us to investigate the use of DPP-
generated samples with added perturbations as negatives,
which we then incorporate into the learning task to improve
the modeling power of DPPs. Intuitively, negative samples
are those subsets that are far from the true data distribution,
but to which the DPP erroneously assigns high probability.
As there is no closed form way to generate such idealized
negatives, we approximate them via an external “negative
distribution”.

More precisely, we introduce a novel DPP learning prob-
lem that incorporates samples from a negative distribution
into traditional MLE. Our approach reduces the confusable
mode issue associated with MLE for DPPs by augmenting
MLE with a term that explicitly minimizes the volume of
unobserved subsets that are far from the true data distribu-
tion (negative samples). While the focus of our work is on
generating the negative distribution jointly with L, we also
investigate outside sources of negative information. Ulti-
mately, our formulation leads to an optimization problem
harder than the original DPP learning problem; we show
that even approximate solutions greatly improve the per-
formance of the DPP model when evaluated on concrete
tasks, such as identifying the best item to add to a subset
of chosen objects (basket-completion) and discriminating
between held-out test data and randomly generated subsets.

Contributions. To our knowledge, this work is the first
theoretical or empirical investigation of augmenting the DpP
learning problem with negative information.

— Opwr first main contribution is the Contrastive Estima-
tion (CE) model, which incorporates negative informa-
tion through inferred negatives into the learning task.

— We introduce static and dynamic models for CE and
discuss the theoretical and practical trade-offs of such
choices. Static models leverage information that does
not evolve over time, whereas dynamic models draw
samples from a negative distribution that depends on
the current model’s parameters; dynamic CE posits an
optimization problem worthy of independent study.

— We show how to learn CE models efficiently, and fur-
thermore show that the complexity of conditioning a
DPP on a chosen sample can be brought from O(|)|?)
to essentially O(|)|). This helps dynamic CE and
removes a major bottleneck in computing next-item
predictions for a set.

Using findings obtained from extensive experiments con-
ducted on small datasets, we show on a large dataset that

CE learning significantly improves the modeling power of
Dpps: CE learning improves DPP performance for next-item
basket completion, as well as DPP discriminative power, as
evaluated by the model’s ability to distinguish held-out test
data from randomly generated subsets.

We present a review of related work in Section 2. In Sec-
tion 3, we introduce Contrastive Estimation and its dynamic
and static variants. We discuss how the CE problem can be
optimized efficiently in Section 4, as well as how DPP condi-
tioning for basket-completion predictions can be performed
with improved complexity. In Section 5, we show that CE
learning leads to remarkable empirical improvements of
DpP performance metrics.

2 Background and related work

First introduced to model fermion behavior by Macchi
[1975], DPPs have gained popularity due to their elegant
balancing of quality and subset diversity. DPPs are studied
both for their theoretical properties [Kulesza and Taskar,
2012, Borodin, 2009, Affandi et al., 2014, Kulesza, 2013,
Gillenwater, 2014, Decreusefond et al., 2015, Lavancier
et al., 2015], which include fast sampling [Rebeschini and
Karbasi, 2015, Li et al., 2016, Anari et al., 2016], and for
their machine learning applications: object retrieval [Af-
fandi et al., 2014], summarization [Lin and Bilmes, 2012,
Chao et al., 2015], sensor placement [Krause et al., 2008],
recommender systems [Gartrell et al., 2016], neural net-
work compression [Mariet and Sra, 2016a], and minibatch
selection [Zhang et al., 2017].

Gillenwater et al. [2014] study DPP kernel learning via EM,
while Mariet and Sra [2015] present a fixed-point method.
Dpp kernel learning has leveraged Kronecker [Mariet and
Sra, 2016b] and low-rank [Dupuy and Bach, 2016, Gartrell
et al., 2017] structures. Learning guarantees using DPP
graph properties are studied in [Urschel et al., 2017]. Aside
from Tschiatschek et al. [2016], Djolonga et al. [2016],
who learn a Facility Locatlon Diversity (FLID) distribution
(as well as more complex FLIC and FLDC models) by
contrasting it with a “negative” product distribution, little
attention has been given to using negative samples to learn
richer subset-selection models.

Nonetheless, leveraging negative information is a widely
used in other applications. In object detection, negative
mining corrects for the skewed simple-to-difficult nega-
tive distribution by training the model on its false posi-
tives [Sung, 1996, Canévet and Fleuret, 2014, Shrivastava
et al., 2016]. In language modeling, Noise Contrastive Esti-
mation (NCE) [Gutmann and Hyvirinen, 2012], which tasks
the model with distinguishing positive samples from gen-
erated negatives, was first applied in [Mnih and Teh, 2012]
and has been instrumental in Word2Vec [Mikolov et al.,
2013]. Since then, variants using adaptive noise [Chen et al.,
2017] have been introduced. NCE is also the method used
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Figure 1: Results for experiments on a synthetic toy dataset. This toy dataset was generated by replicating the baskets {1, 2}
and {3, 4} 1000 times each. We randomly select 80% of this dataset for training, and 20% for test. We train each model to
convergence, and then compute the next-item predictive probabilities for each unique pair, along with the symmetric KL
divergence (over areas of shared support) between the predictive and empirical next-item distributions. Net symmetric KL
divergence is computed by adding the symmetric KL divergences for each of the two unique baskets. Experiments were
run 10 times, with [ A™1|/|.A™| set to the optimal value for each model; « is set to its optimal LR value. See Section 3 for
details on the DYN and EXP negative sampling models. The LR (low-rank DPP) model assigns relatively high probabilities
to modes that represent incorrect predictions: as Maximum Likelihood Estimation learning teaches the model to maximize
the volume of observed subsets without explicitly minimizing the volume of unobserved subsets, volumes of unobserved
subsets may be larger than expected. The DYN and EXP methods we introduce in Section 3 reduce this confusable mode
issue, resulting in predictive distributions that are closer to the true distribution and much smaller variances.

by Tschiatschek et al. [2016] for subset-selection.

An alternate approach to negative samples within submod-
ular language models was introduced as Contrastive Esti-
mation in [Smith and Eisner, 2005a,b]. Negative sampling
is also used in GANs [Goodfellow et al., 2014], where a
generator network competes with a discriminative network
which distinguishes between positives and generated neg-
atives. An adversarial approach to Contrastive Estimation
has been recently introduced in [Bose et al., 2018], where
ideas from GANs for discrete data are used to implement an
adversarial negative sampler that augments a conventional
negative sampler.

3 Learning DPPs with negative samples

Motivated by the similarities between DPP learning and cru-
cial structured prediction problems in other ML fields, we
introduce an optimization problem that leverages negative
information. We refer to this problem as Contrastive Esti-
mation (CE) due to its ties to a notion discussed in [Smith
and Eisner, 2005a].

3.1 Contrastive Estimation

In conventional DPP learning, we seek to maximize deter-
minantal volumes of sets drawn from the true distribution
1 (that we wish to model), by solving the following MLE
problem, where samples in the training set AT are assumed

to be drawn 1.i.d.:

Find L € argmax ¢mie(L) éﬁ Z logdet(L )
Lz0 A€A*
2
— log det(L + I).

We augment problem (2) to incorporate additional infor-
mation from a negative distribution v, which we wish to
have the DPP distribution move away from. The ensuing
optimization problem is the main focus of our paper.

Definition 1 (Contrastive Estimation). Given a training set
of positive samples A1 on which ¢y g is defined and a neg-
ative distribution v over 2%, we call Contrastive Estimation
the problem

Find L € argmax ¢CE(L) 2 ¢MLE(L) —EAN,/ [log PL (A)],
L*>0

3)
where we write Pr,(A) = det(L 4)/det(L + I).

The expectation can be approximated by drawing a set of
samples A~ from v: ¢cg then becomes!

dce(L) =it > logPr(A) — i D logPr(4)
Ae At A€eA=
“)

"With a slight abuse of notation, we continue writing ¢cg de-
spite the sample approximation to Ea~.[].
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If |[A~|= 0, the CE objective (3) reduces to ¢yrg. Con-
versely, oML can be viewed as a sample-based approxi-
mation of the value E 4., [log Pr,(A)], where 1 is the true
distribution generating the samples in A™. Interestingly, an-
other reformulation of (3) suggests an even broader class of
DPP kernel learning: indeed, let 74 be ﬁ (resp. —lA—l,l)
for A € AT (resp. A7), and define

A={(ya,A): Ac AT}U{(ya, A): Ac A},

where the y4 should be viewed as belonging in {—1,1}
with an additional normalization coefficient. Then, we can
rewrite equation (4) in the following form

sce(L)= > ya [mg det Ly — det(L + I)} G
(ya,A)eA

Formulation (5) suggests the use of a broader scope of con-
tinuous labels y4; we do not cover this variation in the
present work, but note that (5) permits the use of weighted
samples for learning.

Remark 1. Compared to the traditional Noise Contrastive
Estimation (NCE) approach, which requires full knowledge
of the negative distribution, CE does not suffer any such
limitation: we only require an estimate of E, [log Pr,(A)].

Remark 2. Eq. (3) can be made to go to +oo with patholog-
ical negative samples (i.e. Pr(A~) = 0); hence, choosing
the negative distribution is a crucial concern for CE. In
practice, we do not observe this pathological behavior (cf.
Section 5).

Remark 3. CE is a non-convex optimization problem, and
thus admits the same guarantees as DPP MLE learning when
learned using Stochastic Gradient Ascent with decreasing
step sizes; however, the convergence rate will depend on the
choice of v.

Indeed, to fully specify the CE problem one must first
choose the negative distribution v, or equivalently, choose
a procedure to generate negative samples to obtain (4). We
consider below two classes of distributions v with consider-
ably different ramifications: dynamic and static negatives;
their analysis is the focus of the next two sections.

3.2 Dynamic negatives

In most applications leveraging negative information (e.g.,
negative mining, GANs), negative samples evolve over time
based on the state of the learned model. We call any v
that depends on the state of the model a dynamic negative
distribution: at iteration k of the learning procedure with
kernel estimate Ly, we use a v parametrized by L.

More specifically, we focus on the setting where negative
samples themselves are generated by the current DPP, with
the goal of reducing overfitting. Given a positive sample AT,
we generate a negative A~ by replacing i € A" with j that

yields a high probability Pr, (AT\{i} U {j}) (Alg. 1). We
generate the samples probabilistically rather than via mode
maximization so that a sample A can lead to different A~
negatives when we generate more negatives than positives.

Algorithm 1 Generate dynamic negative

Input: Positive sample AT, current kernel L;,

Sample i € A prop. to its empirical probability in AT
A7 = AT\{i}

Sample j w.p. proportional to Pr,, (A~ U {j})

A~ A~ U{j}

return A~

As v evolves along with Ly, the second term of ¢cg acts
as a moving target that must be continuously estimated
during the learning procedure. For this reason, we choose to
optimize ¢cg by a two-step procedure described in Alg. 2,
similarly to an alternating maximization approach such as
EM.

Algorithm 2 Optimizing dynamic CE

Input: Positive samples AT, initial kernel L, maxlter.
k+1
while k£ 4+ + < maxIter and not converged do
A~ < GENERATEDYNAMICNEGATIVES(Ly, AT)
Ly < OPTIMIZECE(Ly, AT, A7)
end while
return L,

Note that this approach bears strong similarities with GANSs,
in which both the generator and discriminator evolve dur-
ing training (dynamic negatives also appear in a discussion
by Goodfellow [2014] as a theoretical tool to analyze the
difference between NCE and GANSs).

Once the generated negative A~ has been used in an itera-
tion of the optimization of ¢cg, it is less likely to be sampled
again.” Crucially, such dynamic negatives also avoid the
problem alluded to in Remark 2, since by construction they
have a non-zero probability under Py, at iteration k.

3.3 Static negatives

Conversely, we can simplify the optimization problem by
considering a static negative distribution: v does not depend
on the current kernel estimate. A considerable theoretical
advantage of static negatives lies in the simpler optimization
problem: given a static negative distribution v, the opti-
mization objective ¢cg does not evolve during training, and

2If A~ happens to be a false negative (i.e. appears in A™),
A~ will be comparatively sampled more frequently as a positive,
and so will contribute on average as a positive sample. Additional
precautions such as the ones mentioned in [Bose et al., 2018] can
also be leveraged if necessary.
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is amenable to a simple invocation of stochastic gradient
descent [Bottou, 1998].

Theorem 1. Let v be a static distribution over 2% and let
k > 0 be such that k > max{|S|: S € AT U supp(v)}.
Let K be a bounded subspace of all |Y|x|Y| positive semi-
definite matrices of rank k. Projected stochastic gradient
ascent applied to the CE objective with negative distribution
v and space K with step sizes n; such that >, n; = oo,
> n? < oo will converge to a critical point.

Note, however, that such distributions may suffer from the
fundamental theoretical issue in Rem. 2, and hence careful
attention must be paid to ensure that the learning algorithm
does not converge to a spurious optimum that assigns a prob-
ability Pr,(A) = 0to A € A~. In practice, we observed
that the local nature of stochastic gradient ascent iterations
was sufficient to avoid such behavior.

Let us now discuss two classical choices for fixed v.

Product negatives. A common choice of negative distri-
bution in other machine learning areas is the product distri-
bution, which is the standard “noise” distribution used in
NCE. It is defined by

v) =TL_ o0 I, 0 -5  ©

where p(i) is the empirical probability of {i} in A*. Al-
though [Mikolov et al., 2013] reports better results by raising
the p to the power %, we did not observe any improvements
when using exponentiated power distributions; for this rea-
son, by product negatives, we always indicate the baseline

distribution (6).

The product distribution is in practice a mismatch for DPPs,
as it lacks the negative association property of DPPs which
enables them to model the repulsive interactions between
similar items?.

Explicit negatives. Alternatively, we may have prior
knowledge of a class of subsets that our model should not
generate. For example, we might know that items ¢ and
7 are negatively correlated and hence unlikely to co-occur.
We may also learn via user feedback that some generated
subsets are inaccurate. We refer to negatives obtained using
such outside information as explicit negatives.

A fundamental advantage of explicit negatives is that they
allow us to incorporate prior knowledge and user feedback
as part of the learning algorithm. The ability to incorporate
such information, to our knowledge, is in itself a novel
contribution to DPP learning.

3Dpps belong to the family of Strongly Rayleigh measures,
which have been shown to verify a broad range of negatively asso-
ciated properties; we refer the interested reader to the fascinating
work [Pemantle, 2000, Borcea et al., 2009a,b, Borcea and Briindén,
2009a,b, 2010].

Although such knowledge may be costly and/or only avail-
able at rare intervals, a form of continuous learning that
would regularly update the state of our prior knowledge
(and hence v) would bring the explicit negative distribution
into the realm of dynamic distributions, as described by
Alg. 2.

4 Efficient learning and prediction

We now describe how the Contrastive Estimation problem
for DPPs can be optimized efficiently. In order to effi-
ciently generate dynamic negatives, which rely on DpP
conditioning, we additionally generalize the dual transfor-
mation leveraged in [Osogami et al., 2018] to speed up
basket-completion tasks with DpPs. This speed-up impacts
the broader use of DPPs, outside of CE learning.

4.1 Optimizing ¢cg

We propose to optimize the CE problem by exploiting a
low-rank factorization of the kernel, writing L = vVVvT,
where V. € RM*K and K < M is the rank of the kernel,
which is fixed a priori.

This factorization ensures that the estimated kernel remains
positive semi-definite, and enables us to leverage the low-
rank computations derived in [Gartrell et al., 2017] and
refined in [Osogami et al., 2018]. Given the similar forms of
the MLE and CE objectives, we use the traditional stochas-
tic gradient ascent algorithm introduced by [Gartrell et al.,
2017] to optimize (3). In the case of dynamic negatives, we
re-generate A~ after each gradient step; less frequent up-
dates are also possible if the negative generation algorithm
is very costly.

We furthermore augment ¢cg with a regularization term
R(V), defined as

M 1
RV)=a ) ol

where p; counts the occurrences of ¢ in the training set, v; is
the corresponding row vector of V' and a > 0 is a tunable
hyperparameter. Note that this is the same regularization
as introduced in [Gartrell et al., 2017]. This regularization
tempers the strength of ||v;||2, a term interpretable as to the
popularity of item ¢ [Kulesza and Taskar, 2012, Gillenwater,
2014], based on its empirical popularity p;. Experimentally,
we observe that adding R(V') has a strong impact on the
predictive quality of our model.

The reader may wonder if other approaches to DPP learning
are also applicable to the CE problem.

Remark 4. Gradient ascent algorithms require that the esti-
mate L be projected onto the space of positive semi-definite
matrices; however, doing so can lead to almost-diagonal
kernels [Gillenwater et al., 2014] that cannot model nega-
tive interactions. Riemannian gradient ascent methods were
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considered, but deemed too computationally demanding
by [Mariet and Sra, 2015]. Furthermore, the update rule for
the fixed-point approach in [Mariet and Sra, 2015] does not
admit a closed form solution for CE, rendering it impractical
(App. A).

The low-rank formulation allows us to apply CE (as well
as NCE, as discussed in Section 5) to learn large datasets
such as the Belgian retail supermarket dataset (described in
Section 5) without prohibitive learning runtimes. We show
below that by leveraging the idea described in [Osogami
et al., 2018], the low-rank formulation can also lead to
additional speed ups during prediction.

4.2 Efficient conditioning for predictions

Dynamic negatives rely upon conditioning a DPP on a cho-
sen sample A (see Alg. 1: Pr, (A~ U{j}) can be efficiently
computed for all j by a preprocessing step that conditions
L, on set A™). For this reason, we now describe how low-
rank DPP conditioning can be significantly sped up.

In [Gartrell et al.,, 2017], conditioning has a cost of
O(K|A>+|A?), where A = Y — A. Since |Y|> |A|
for many datasets, this represents a significant bottleneck
for conditioning and computing next-item predictions for a
set. We show here that this complexity can be brought down
significantly.

Proposition 1. Given A C {1,..., M} and a DPP of rank
K parametrized by V', where L = V'V, we can derive the
conditional marginal probabilities in the DPP parametriza-
tion L in only O(K3 + | AP+ K?|A|>+|A|K?) time.

Proof. Let V be the low-rank parametrization of the DpPP
kernel (L = VV ") and A C ). As in Gillenwater [2014],
we first compute the dual kernel C = BT B, where B =
V' T. We then compute

CA — (BA)TBA _ ZACZA,

with Z4 = I — B4(B] Ba)~'B], and where C4 is the
Dpp kernel conditioned on the event that all items in A are
observed, and B 4 is the restriction of B to the rows and
columns indexed by A.

Computing C4 costs O(K? + |A|>+K?2|A|?). Next, fol-
lowing Kulesza and Taskar [2012], we eigendecompose

C* to compute the conditional (marginal) probability P; of
every possible item 7 in A:

2
P = E K An L pA%
? n=1 A+l \ VX, ¢ 77

where b:! is column vector for item i in B4 and (\,,, 9,)
are an eigenvalue/vector of C'.

The computational complexity for computing the eigende-
composition is O(K?), and computing P; for all items in

A costs O(|A|K?). Therefore, we have an overall com-
putational complexity of O(K?® + |A]P+K?|A]?+|A|K?)
for computing next-item conditionals/predictions for the
low-rank DPP using the dual kernel, which is significantly
superior to the typical cost of O(K|A|>+|AJ3). O

As in most cases K < |A|, this represents a substantial im-
provement, allowing us condition in time essentially linear
in the size of the item catalog.

S Experiments

We run next-item prediction and AUC-based classification
experiments* on two recommendation datasets for DPP eval-
uation: the UK retail dataset [Chen, 2012], which after
clipping all subsets to a maximum size> of 100, contains
4070 items and 20059 subsets, and the Belgian Retail Super-
market dataset®, which contains 88,163 subsets, of a total
of 16,470 unique items [Brijs et al., 1999, Brijs, 2003]. We
compare the following Contrastive Estimation approaches:

— EXP: explicit negatives learned with CE. As to our
knowledge there are no datasets with explicit negative
information, we generate approximations of explicit
negatives by removing one item from a positive sam-
ple and replacing it with the least likely item (Algo-
rithm 3).

— DYN: dynamic negatives learned with CE.

As our work revolves around improving DPP performance,
we focus on the two following baselines, which are targeted
to learning DPP parametrizations from data:

— NCE: Noise Contrastive Estimation using product neg-
atives.

— LR: the standard low-rank DPP stochastic gradient
ascent algorithm from [Gartrell et al., 2017].

NCE learns a model by contrasting A" with negatives
drawn from a “noisy” distribution p,,, training the model to
distinguish between sets drawn from p and sets drawn from
pn. NCE has gained popularity due to its ability to model
distributions x4 with untractable normalization coefficients,
and has been shown to be a powerful technique to improve
submodular recommendation models [Tschiatschek et al.,
2016]. NCE learns by maximizing the following conditional

*All code is implemented in Julia and will be made publicly
available upon publication.

3This allows us to use a low-rank matrix factorization for the
Dpp that scales well in terms of train and prediction time.

*http://fimi.ua.ac.be/data/retail.pdf
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(a) UK dataset (b) Belgian dataset
Improvement over LR Improvement over LR
Metric LR EXpP DYN LR Exp DYN
MPR 80.07 3.75 + 0.16 3.74 £ 0.16 79.42 9.58 £ 0.15 9.64 £ 0.13

AUC  0.57297 0.41465 £ 0.01334  0.41467 + 0.01339

0.6162  0.3705 + 8.569e-5 0.3702 + 4.447¢-5

Table 1: Results over the UK and Belgian datasets. Both explicit and dynamic CE obtain statistically significant improvements
in MPR and AUC metrics, confirming that CE learning enhances recommender value of the model and its ability to distinguish
data drawn from the target distribution from fake samples. The impact on precisions @k metrics is not reported as we did
not observe statistically significant deviations from LowRank performance.

log-likelihood:

dnee(L) = > log P(A € AT | A) (7)
Ac A+
+ ) logP(A€ A | A).
AcA-

The key difference between NCE and CE lies in how nega-
tive information is used: whereas CE learns to assign a low
probability to negative subsets, NCE’s task is more indirect,
learning to distinguish positive from negative examples. As
a consequence of NCE’s objective function (Eq. 7), NCE
requires knowledge of the distribution of negative samples,
making it difficult to apply when explicit negative samples
are available, but not the form of their distribution.

In our experiments, we learn the NCE objective with
stochastic gradient ascent for our low-rank model, since
Vlog Pr(A € A*|A, V'V T)is given by

(e* _ (1 n m%)l)vv log Py v (A).
(3)

where ¢ = 1if A* = AT and 0 otherwise.

Algorithm 3 Approximate explicit negative generation

input: Positive sample A*
Sample i # j € AT w.p. p; o P({i})

Sample k ¢ AT w.p. pp < 1 — P({3, k}).
return (AT\{j}) U {k}

This allows us to approximate true explicit negatives, as we
use the empirical data to derive “implausible” sets. Note,
however, that when using such negatives we have no guaran-
tee that objective function will be well behaved, as opposed
to the theoretically grounded dynamic negatives.

5.1 Experimental setup

The performance of all methods are compared using stan-
dard recommender system metrics: Mean Percentile Rank
(MPR). MPR is a recall-based metric which evaluates the
model’s predictive power by measuring how well it pre-
dicts the next item in a basket, and is a standard choice for
recommender systems [Hu et al., 2008, Li et al., 2010].

Specifically, given a set A, let p; 4 = Pr(AU {i} | A). The
percentile rank of an item ¢ given a set A is defined as
Zi/gm 1(pi,a > pir.a)
RAVY

The MPR is then computed as

1
— PR; a\fs
1T Z AN}

AeT

PR, 4 = x 100%

MPR =

where 7 is the set of test instances and i is a randomly
selected element in each set A. An MPR of 50 is equivalent
to random selection; a MPR of 100 indicates that the model
perfectly predicts the held out item.

We also evaluate the discriminative power of each model
using the AUC metric. For this task, we generate a set of
negative subsets uniformly at random. For each positive
subset A™ in the test set, we generate a negative subset A~
of the same length by drawing |A™| samples uniformly at
random, while ensuring that the same item is not drawn
more than once for a subset. We then compute the AUC for
the model on these positive and negative subsets, where the
score for each subset is the log-likelihood that the model
assigns to the subset. This task measures the ability of the
model to discriminate between positive subsets (ground-
truth subsets) and randomly generated subsets.

In all experiments, 80% of subsets are used for training; the
remaining 20% served as test; convergence is reached when
the relative change in the validation log-likelihood is below
a pre-determined threshold e, set identically for all methods.
All results are averaged over 5 learning trials.

5.2 Amazon registries

We conducted an experimental analysis on the largest 7 sub-
datasets included in the Amazon Registry dataset, which has
become a standard dataset for DPP modeling [Gillenwater
et al., 2014, Mariet and Sra, 2015, Gartrell et al., 2017].
Given the small size of these datasets (the largest has 100
items), these experiments serve only to provide insight into
the general behavior of the baselines and CE methods as
well as the influence of the hyperparameters on convergence.

Table 2 reports the average time to convergence for each
method. As generating the dynamic negatives has a high
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complexity due to DPP conditioning, DYN is 2.7x slower
than ExXP. LR is the fastest method, as it does not need
to process any negatives. NCE is by far the most time-
consuming.

Table 2: Runtime to convergence (s) on the feeding Amazon
registry (a = 1, |A™|/|AT|= 0.5, K = 30).

METHOD LR Exp DYN NCE

RUNTIME 0.83 £0.54 2.694+0.02 7.13+0.28 27.59+2.20

We found that explicit and dynamic CE are not very sensitive
to the v and | A~ | /| AT | hyperparameters. For this reason,
in all further results, we set « = 1 and |A™|/|AT|= .5
in all further experiments. In previous work on low-rank
DPP learning [Gartrell et al., 2017], o = 1 was found to
be a reasonably optimal value, ensuring a fair comparison
between all methods.

Further experiments reporting the MPR, AUC and various
precisions for the Amazon registries are described in App. B.

5.3 UK and Belgian Retail Datasets

Following [Gartrell et al., 2016], for both the UK and the
Belgian dataset, we set the rank K of the kernel to be the size
of the largest subset in the dataset (K=100 for the UK dataset,
K=76 for the Belgian dataset): this optimizes memory costs
while still modeling all ground-truth subsets. Based on our
results on the smaller Amazon dataset, we fix [A~|/|AT|=
0.5and o = 1.

Finally, corroborating our timing results on the Amazon
registry, we saw that one iteration of NCE required nearly
11 hours on the Belgian dataset (compared to 5 minutes for
one iteration of CE). For this reason, we remove NCE as a
baseline from all remaining experiments, as it is not feasible
in the general case.

Tables 4 (a) and (b) summarize our results; the negative
methods show significant MPR improvement over LR, with
both DYN and EXP performing almost 10 points higher on
the Belgian dataset, and 3 points higher on the UK dataset.
This is a striking improvement, compounded by small stan-
dard deviations confirming that these results are robust to
matrix initialization.

We also see a dramatic improvement over LR in AUC, with
an improvement of approximately 0.41 for the UK dataset
and 0.37 for the Belgian dataset, across both DYN and EXP
methods. Both DYN and EXP perform quite well, with
an AUC score of approximately 0.9864 or higher for both
models. These results suggest that for larger datasets, CE
can be effective at improving the discriminative power of
the DPP.

6 Conclusion and future work

We introduce the Contrastive Estimation (CE) optimiza-
tion problem, which optimizes the difference of the tradi-
tional DPP log-likelihood and the expectation of the DpP
model’s log-likelihood under a negative distribution v. This
increases the DPP’s fit to the data while simultaneously in-
corporating inferred or explicit domain knowledge into the
learning procedure.

CE lends itself to intuitively similar but theoretically differ-
ent variants, depending on the choice of v: a static v leads to
significantly faster learning but allows spurious optima; con-
versely, allowing v to evolve along with model parameters
limits overfitting at the cost of a more complex optimization
problem. Optimizing dynamic CE is in of itself a theoretical
problem worthy of independent study.

Additionally, we show that low-rank DPP conditioning com-
plexity can be improved by a factor of M by leveraging the
dual representation of the low-rank kernel. This not only
improves prediction speed on a trained model, but allows
for more efficient dynamic negative generation.

Experimentally, we show that CE with dynamic and explicit
negatives provide comparable, significant improvements
in the predictive performance of DPPs, as well as on the
learned DPP’s ability to discriminate between real and ran-
domly generated subsets.

Our analysis also raises both theoretical and practical ques-
tions: in particular, a key component of future work lies in
better understanding how explicit domain knowledge can
be incorporated into the generating logic for both dynamic
and static negatives. Furthermore, the CE formulation in
Eq. (5) suggests the possibility of using continuous labels
for weighted samples within CE.
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