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Abstract

Determinantal Point Processes (DPPs) have at-

tracted significant interest from the machine-

learning community due to their ability to ele-

gantly and tractably model the delicate balance

between quality and diversity of sets. DPPs are

commonly learned from data using maximum like-

lihood estimation (MLE). While fitting observed

sets well, MLE for DPPs may also assign high

likelihoods to unobserved sets that are far from

the true generative distribution of the data. To ad-

dress this issue, which reduces the quality of the

learned model, we introduce a novel optimization

problem, Contrastive Estimation (CE), which en-

codes information about “negative” samples into

the basic learning model. CE is grounded in the

successful use of negative information in machine-

vision and language modeling. Depending on

the chosen negative distribution (which may be

static or evolve during optimization), CE assumes

two different forms, which we analyze theoreti-

cally and experimentally. We evaluate our new

model on real-world datasets; on a challenging

dataset, CE learning delivers a considerable im-

provement in predictive performance over a DPP

learned without using contrastive information.

1 Introduction

Careful selection of items from a large collection under-

lies many machine learning applications. Notable examples

include recommender systems, information retrieval and

automatic summarization methods, among others. Typically,

the selected set of items must fulfill a variety of application

specific requirements—e.g., when recommending items to

a user, the quality of each selected item is important. This
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quality must be, however, balanced by the diversity of the se-

lected items to avoid redundancy within recommendations.

But balancing quality with diversity is challenging: as the

collection size grows, the number of its subsets grows expo-

nentially. A model that offers an elegant, tractable way to

achieve this balance is a Determinantal Point Process (DPP).

Concretely, a DPP models a distribution over subsets of a

ground set Y that is parametrized by a semi-definite matrix

L 2 R
|Y|⇥|Y|, such that for any A ✓ Y ,

Pr(A) / det(LA), (1)

where LA = [Lij ]i,j2A is the submatrix of L indexed by A.

Informally, det(LA) represents the volume associated with

subset A, the diagonal entry Lii represents the importance

of item i, while entry Lij = Lji encodes similarity between

items i and j. Since the normalization constant of (1) is

simply
P

A✓Y det(LA) = det(L+ I), we have Pr(A) =
det(LA)/det(L + I), which suggests why DPPs may be

tractable despite their exponentially large sample space.

The key object defining a DPP is its kernel matrix L.

This matrix may be fixed a priori using domain knowl-

edge [Borodin, 2009], or as is more common in machine

learning applications, learned from observations using maxi-

mum likelihood estimation (MLE) [Gillenwater et al., 2014,

Mariet and Sra, 2015]. However, while fitting observed sub-

sets well, MLE for DPPs may also assign high likelihoods to

unobserved subsets far from the underlying generative distri-

bution [Chao et al., 2015], since MLE causes the DPP model

to maximize the determinantal volume of observed subsets

without explicitly minimizing the volume of unobserved

subsets. Therefore, the volume of unobserved subsets may

be larger than expected, and MLE-based DPP models may

thus have modes corresponding to subsets that are close in

likelihood, yet differ in how close they are to the true data

distribution. Such confusable modes reduce the quality of

the learned model, hurting predictions, as shown in Figure 1.

Such concerns when learning generative models over huge

sample spaces are not limited to the area of subset-selection:

applications in image and text generation have been the

driving force in developing techniques for generating high-

quality samples. Among their innovations, a particularly

successful technique uses generated samples as “negative
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samples” to train a discriminator, which in turn encourages

generation of more realistic samples; this is the key idea

behind the Generative Adversarial Nets (GANs) introduced

in [Goodfellow et al., 2014].

These observations motivate us to investigate the use of DPP-

generated samples with added perturbations as negatives,

which we then incorporate into the learning task to improve

the modeling power of DPPs. Intuitively, negative samples

are those subsets that are far from the true data distribution,

but to which the DPP erroneously assigns high probability.

As there is no closed form way to generate such idealized

negatives, we approximate them via an external “negative

distribution”.

More precisely, we introduce a novel DPP learning prob-

lem that incorporates samples from a negative distribution

into traditional MLE. Our approach reduces the confusable

mode issue associated with MLE for DPPs by augmenting

MLE with a term that explicitly minimizes the volume of

unobserved subsets that are far from the true data distribu-

tion (negative samples). While the focus of our work is on

generating the negative distribution jointly with L, we also

investigate outside sources of negative information. Ulti-

mately, our formulation leads to an optimization problem

harder than the original DPP learning problem; we show

that even approximate solutions greatly improve the per-

formance of the DPP model when evaluated on concrete

tasks, such as identifying the best item to add to a subset

of chosen objects (basket-completion) and discriminating

between held-out test data and randomly generated subsets.

Contributions. To our knowledge, this work is the first

theoretical or empirical investigation of augmenting the DPP

learning problem with negative information.

– Our first main contribution is the Contrastive Estima-

tion (CE) model, which incorporates negative informa-

tion through inferred negatives into the learning task.

– We introduce static and dynamic models for CE and

discuss the theoretical and practical trade-offs of such

choices. Static models leverage information that does

not evolve over time, whereas dynamic models draw

samples from a negative distribution that depends on

the current model’s parameters; dynamic CE posits an

optimization problem worthy of independent study.

– We show how to learn CE models efficiently, and fur-

thermore show that the complexity of conditioning a

DPP on a chosen sample can be brought from O(|Y|2)
to essentially O(|Y|). This helps dynamic CE and

removes a major bottleneck in computing next-item

predictions for a set.

Using findings obtained from extensive experiments con-

ducted on small datasets, we show on a large dataset that

CE learning significantly improves the modeling power of

DPPs: CE learning improves DPP performance for next-item

basket completion, as well as DPP discriminative power, as

evaluated by the model’s ability to distinguish held-out test

data from randomly generated subsets.

We present a review of related work in Section 2. In Sec-

tion 3, we introduce Contrastive Estimation and its dynamic

and static variants. We discuss how the CE problem can be

optimized efficiently in Section 4, as well as how DPP condi-

tioning for basket-completion predictions can be performed

with improved complexity. In Section 5, we show that CE

learning leads to remarkable empirical improvements of

DPP performance metrics.

2 Background and related work

First introduced to model fermion behavior by Macchi

[1975], DPPs have gained popularity due to their elegant

balancing of quality and subset diversity. DPPs are studied

both for their theoretical properties [Kulesza and Taskar,

2012, Borodin, 2009, Affandi et al., 2014, Kulesza, 2013,

Gillenwater, 2014, Decreusefond et al., 2015, Lavancier

et al., 2015], which include fast sampling [Rebeschini and

Karbasi, 2015, Li et al., 2016, Anari et al., 2016], and for

their machine learning applications: object retrieval [Af-

fandi et al., 2014], summarization [Lin and Bilmes, 2012,

Chao et al., 2015], sensor placement [Krause et al., 2008],

recommender systems [Gartrell et al., 2016], neural net-

work compression [Mariet and Sra, 2016a], and minibatch

selection [Zhang et al., 2017].

Gillenwater et al. [2014] study DPP kernel learning via EM,

while Mariet and Sra [2015] present a fixed-point method.

DPP kernel learning has leveraged Kronecker [Mariet and

Sra, 2016b] and low-rank [Dupuy and Bach, 2016, Gartrell

et al., 2017] structures. Learning guarantees using DPP

graph properties are studied in [Urschel et al., 2017]. Aside

from Tschiatschek et al. [2016], Djolonga et al. [2016],

who learn a Facility LocatIon Diversity (FLID) distribution

(as well as more complex FLIC and FLDC models) by

contrasting it with a “negative” product distribution, little

attention has been given to using negative samples to learn

richer subset-selection models.

Nonetheless, leveraging negative information is a widely

used in other applications. In object detection, negative

mining corrects for the skewed simple-to-difficult nega-

tive distribution by training the model on its false posi-

tives [Sung, 1996, Canévet and Fleuret, 2014, Shrivastava

et al., 2016]. In language modeling, Noise Contrastive Esti-

mation (NCE) [Gutmann and Hyvärinen, 2012], which tasks

the model with distinguishing positive samples from gen-

erated negatives, was first applied in [Mnih and Teh, 2012]

and has been instrumental in Word2Vec [Mikolov et al.,

2013]. Since then, variants using adaptive noise [Chen et al.,

2017] have been introduced. NCE is also the method used
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Figure 1: Results for experiments on a synthetic toy dataset. This toy dataset was generated by replicating the baskets {1, 2}

and {3, 4} 1000 times each. We randomly select 80% of this dataset for training, and 20% for test. We train each model to

convergence, and then compute the next-item predictive probabilities for each unique pair, along with the symmetric KL

divergence (over areas of shared support) between the predictive and empirical next-item distributions. Net symmetric KL

divergence is computed by adding the symmetric KL divergences for each of the two unique baskets. Experiments were

run 10 times, with |A+|/|A�| set to the optimal value for each model; ↵ is set to its optimal LR value. See Section 3 for

details on the DYN and EXP negative sampling models. The LR (low-rank DPP) model assigns relatively high probabilities

to modes that represent incorrect predictions: as Maximum Likelihood Estimation learning teaches the model to maximize

the volume of observed subsets without explicitly minimizing the volume of unobserved subsets, volumes of unobserved

subsets may be larger than expected. The DYN and EXP methods we introduce in Section 3 reduce this confusable mode

issue, resulting in predictive distributions that are closer to the true distribution and much smaller variances.

by Tschiatschek et al. [2016] for subset-selection.

An alternate approach to negative samples within submod-

ular language models was introduced as Contrastive Esti-

mation in [Smith and Eisner, 2005a,b]. Negative sampling

is also used in GANs [Goodfellow et al., 2014], where a

generator network competes with a discriminative network

which distinguishes between positives and generated neg-

atives. An adversarial approach to Contrastive Estimation

has been recently introduced in [Bose et al., 2018], where

ideas from GANs for discrete data are used to implement an

adversarial negative sampler that augments a conventional

negative sampler.

3 Learning DPPs with negative samples

Motivated by the similarities between DPP learning and cru-

cial structured prediction problems in other ML fields, we

introduce an optimization problem that leverages negative

information. We refer to this problem as Contrastive Esti-

mation (CE) due to its ties to a notion discussed in [Smith

and Eisner, 2005a].

3.1 Contrastive Estimation

In conventional DPP learning, we seek to maximize deter-

minantal volumes of sets drawn from the true distribution

µ (that we wish to model), by solving the following MLE

problem, where samples in the training set A+ are assumed

to be drawn i.i.d.:

Find L 2 argmax
L⌫0

�MLE(L) , 1
|A+|

X

A2A+

log det(LA)

(2)

� log det(L+ I).

We augment problem (2) to incorporate additional infor-

mation from a negative distribution ⌫, which we wish to

have the DPP distribution move away from. The ensuing

optimization problem is the main focus of our paper.

Definition 1 (Contrastive Estimation). Given a training set

of positive samples A+ on which �MLE is defined and a neg-

ative distribution ⌫ over 2Y , we call Contrastive Estimation

the problem

Find L 2 argmax
L⌫0

�CE(L) , �MLE(L)�EA⇠ν [logPL(A)],

(3)

where we write PL(A) ⌘ det(LA)/det(L+ I).

The expectation can be approximated by drawing a set of

samples A� from ⌫: �CE then becomes1

�CE(L) = 1
|A+|

X

A2A+

logPL(A)�
1

|A�|

X

A2A�

logPL(A)

(4)

1With a slight abuse of notation, we continue writing φCE de-
spite the sample approximation to EA∼ν [·].
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If |A�|= 0, the CE objective (3) reduces to �MLE. Con-

versely, �MLE can be viewed as a sample-based approxi-

mation of the value EA⇠µ[logPL(A)], where µ is the true

distribution generating the samples in A+. Interestingly, an-

other reformulation of (3) suggests an even broader class of

DPP kernel learning: indeed, let yA be 1
|A+| (resp. � 1

|A�| )

for A 2 A+ (resp. A�), and define

A = {(yA, A) : A 2 A+} [ {(yA, A) : A 2 A�},

where the yA should be viewed as belonging in {�1, 1}
with an additional normalization coefficient. Then, we can

rewrite equation (4) in the following form

�CE(L) =
X

(yA,A)2A

yA

h
log detLA � det(L+ I)

i
. (5)

Formulation (5) suggests the use of a broader scope of con-

tinuous labels yA; we do not cover this variation in the

present work, but note that (5) permits the use of weighted

samples for learning.

Remark 1. Compared to the traditional Noise Contrastive

Estimation (NCE) approach, which requires full knowledge

of the negative distribution, CE does not suffer any such

limitation: we only require an estimate of Eν [logPL(A)].

Remark 2. Eq. (3) can be made to go to +1with patholog-

ical negative samples (i.e. PL(A
�) = 0); hence, choosing

the negative distribution is a crucial concern for CE. In

practice, we do not observe this pathological behavior (cf.

Section 5).

Remark 3. CE is a non-convex optimization problem, and

thus admits the same guarantees as DPP MLE learning when

learned using Stochastic Gradient Ascent with decreasing

step sizes; however, the convergence rate will depend on the

choice of ⌫.

Indeed, to fully specify the CE problem one must first

choose the negative distribution ⌫, or equivalently, choose

a procedure to generate negative samples to obtain (4). We

consider below two classes of distributions ⌫ with consider-

ably different ramifications: dynamic and static negatives;

their analysis is the focus of the next two sections.

3.2 Dynamic negatives

In most applications leveraging negative information (e.g.,

negative mining, GANs), negative samples evolve over time

based on the state of the learned model. We call any ⌫

that depends on the state of the model a dynamic negative

distribution: at iteration k of the learning procedure with

kernel estimate Lk, we use a ⌫ parametrized by Lk.

More specifically, we focus on the setting where negative

samples themselves are generated by the current DPP, with

the goal of reducing overfitting. Given a positive sample A+,

we generate a negative A� by replacing i 2 A+ with j that

yields a high probability PLk
(A+\{i} [ {j}) (Alg. 1). We

generate the samples probabilistically rather than via mode

maximization so that a sample A+ can lead to different A�

negatives when we generate more negatives than positives.

Algorithm 1 Generate dynamic negative

Input: Positive sample A+, current kernel Lk

Sample i 2 A+ prop. to its empirical probability in A+

A� := A+\{i}
Sample j w.p. proportional to PLk

(A� [ {j})
A�  A� [ {j}
return A�

As ⌫ evolves along with Lk, the second term of �CE acts

as a moving target that must be continuously estimated

during the learning procedure. For this reason, we choose to

optimize �CE by a two-step procedure described in Alg. 2,

similarly to an alternating maximization approach such as

EM.

Algorithm 2 Optimizing dynamic CE

Input: Positive samples A+, initial kernel L0, maxIter.

k  1
while k ++ < maxIter and not converged do

A�  GENERATEDYNAMICNEGATIVES(Lk, A+)

Lk+1  OPTIMIZECE(Lk,A
+,A�)

end while

return Lk

Note that this approach bears strong similarities with GANs,

in which both the generator and discriminator evolve dur-

ing training (dynamic negatives also appear in a discussion

by Goodfellow [2014] as a theoretical tool to analyze the

difference between NCE and GANs).

Once the generated negative A� has been used in an itera-

tion of the optimization of �CE, it is less likely to be sampled

again.2 Crucially, such dynamic negatives also avoid the

problem alluded to in Remark 2, since by construction they

have a non-zero probability under PLk
at iteration k.

3.3 Static negatives

Conversely, we can simplify the optimization problem by

considering a static negative distribution: ⌫ does not depend

on the current kernel estimate. A considerable theoretical

advantage of static negatives lies in the simpler optimization

problem: given a static negative distribution ⌫, the opti-

mization objective �CE does not evolve during training, and

2If A− happens to be a false negative (i.e. appears in A+),
A− will be comparatively sampled more frequently as a positive,
and so will contribute on average as a positive sample. Additional
precautions such as the ones mentioned in [Bose et al., 2018] can
also be leveraged if necessary.
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is amenable to a simple invocation of stochastic gradient

descent [Bottou, 1998].

Theorem 1. Let ⌫ be a static distribution over 2Y and let

k > 0 be such that k � max{|S|: S 2 A+ [ supp(⌫)}.

Let K be a bounded subspace of all |Y|⇥|Y| positive semi-

definite matrices of rank k. Projected stochastic gradient

ascent applied to the CE objective with negative distribution

⌫ and space K with step sizes ⌘i such that
P

⌘i = 1,P
⌘2i <1 will converge to a critical point.

Note, however, that such distributions may suffer from the

fundamental theoretical issue in Rem. 2, and hence careful

attention must be paid to ensure that the learning algorithm

does not converge to a spurious optimum that assigns a prob-

ability PL(A) = 0 to A 2 A�. In practice, we observed

that the local nature of stochastic gradient ascent iterations

was sufficient to avoid such behavior.

Let us now discuss two classical choices for fixed ⌫.

Product negatives. A common choice of negative distri-

bution in other machine learning areas is the product distri-

bution, which is the standard “noise” distribution used in

NCE. It is defined by

⌫(A) =
Y

i2A
p̂(i)

Y
i 62A

(1� p̂(i)) (6)

where p̂(i) is the empirical probability of {i} in A+. Al-

though [Mikolov et al., 2013] reports better results by raising

the p̂ to the power 3
4 , we did not observe any improvements

when using exponentiated power distributions; for this rea-

son, by product negatives, we always indicate the baseline

distribution (6).

The product distribution is in practice a mismatch for DPPs,

as it lacks the negative association property of DPPs which

enables them to model the repulsive interactions between

similar items3.

Explicit negatives. Alternatively, we may have prior

knowledge of a class of subsets that our model should not

generate. For example, we might know that items i and

j are negatively correlated and hence unlikely to co-occur.

We may also learn via user feedback that some generated

subsets are inaccurate. We refer to negatives obtained using

such outside information as explicit negatives.

A fundamental advantage of explicit negatives is that they

allow us to incorporate prior knowledge and user feedback

as part of the learning algorithm. The ability to incorporate

such information, to our knowledge, is in itself a novel

contribution to DPP learning.

3DPPs belong to the family of Strongly Rayleigh measures,
which have been shown to verify a broad range of negatively asso-
ciated properties; we refer the interested reader to the fascinating
work [Pemantle, 2000, Borcea et al., 2009a,b, Borcea and Brändén,
2009a,b, 2010].

Although such knowledge may be costly and/or only avail-

able at rare intervals, a form of continuous learning that

would regularly update the state of our prior knowledge

(and hence ⌫) would bring the explicit negative distribution

into the realm of dynamic distributions, as described by

Alg. 2.

4 Efficient learning and prediction

We now describe how the Contrastive Estimation problem

for DPPs can be optimized efficiently. In order to effi-

ciently generate dynamic negatives, which rely on DPP

conditioning, we additionally generalize the dual transfor-

mation leveraged in [Osogami et al., 2018] to speed up

basket-completion tasks with DPPs. This speed-up impacts

the broader use of DPPs, outside of CE learning.

4.1 Optimizing �CE

We propose to optimize the CE problem by exploiting a

low-rank factorization of the kernel, writing L = V V
>,

where V 2 R
M⇥K and K  M is the rank of the kernel,

which is fixed a priori.

This factorization ensures that the estimated kernel remains

positive semi-definite, and enables us to leverage the low-

rank computations derived in [Gartrell et al., 2017] and

refined in [Osogami et al., 2018]. Given the similar forms of

the MLE and CE objectives, we use the traditional stochas-

tic gradient ascent algorithm introduced by [Gartrell et al.,

2017] to optimize (3). In the case of dynamic negatives, we

re-generate A� after each gradient step; less frequent up-

dates are also possible if the negative generation algorithm

is very costly.

We furthermore augment �CE with a regularization term

R(V ), defined as

R(V ) = ↵
XM

i=1

1

µi

kvik
2
2,

where µi counts the occurrences of i in the training set, vi is

the corresponding row vector of V and ↵ > 0 is a tunable

hyperparameter. Note that this is the same regularization

as introduced in [Gartrell et al., 2017]. This regularization

tempers the strength of kvik2, a term interpretable as to the

popularity of item i [Kulesza and Taskar, 2012, Gillenwater,

2014], based on its empirical popularity µi. Experimentally,

we observe that adding R(V ) has a strong impact on the

predictive quality of our model.

The reader may wonder if other approaches to DPP learning

are also applicable to the CE problem.

Remark 4. Gradient ascent algorithms require that the esti-

mate L be projected onto the space of positive semi-definite

matrices; however, doing so can lead to almost-diagonal

kernels [Gillenwater et al., 2014] that cannot model nega-

tive interactions. Riemannian gradient ascent methods were
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considered, but deemed too computationally demanding

by [Mariet and Sra, 2015]. Furthermore, the update rule for

the fixed-point approach in [Mariet and Sra, 2015] does not

admit a closed form solution for CE, rendering it impractical

(App. A).

The low-rank formulation allows us to apply CE (as well

as NCE, as discussed in Section 5) to learn large datasets

such as the Belgian retail supermarket dataset (described in

Section 5) without prohibitive learning runtimes. We show

below that by leveraging the idea described in [Osogami

et al., 2018], the low-rank formulation can also lead to

additional speed ups during prediction.

4.2 Efficient conditioning for predictions

Dynamic negatives rely upon conditioning a DPP on a cho-

sen sample A (see Alg. 1: PLk
(A�[{j}) can be efficiently

computed for all j by a preprocessing step that conditions

Lk on set A�). For this reason, we now describe how low-

rank DPP conditioning can be significantly sped up.

In [Gartrell et al., 2017], conditioning has a cost of

O(K|Ā|2+|A|3), where Ā = Y � A. Since |Y|� |A|
for many datasets, this represents a significant bottleneck

for conditioning and computing next-item predictions for a

set. We show here that this complexity can be brought down

significantly.

Proposition 1. Given A ✓ {1, . . . ,M} and a DPP of rank

K parametrized by V , where L = V V
>, we can derive the

conditional marginal probabilities in the DPP parametriza-

tion L
A in only O(K3 + |A|3+K2|A|2+|Ā|K2) time.

Proof. Let V be the low-rank parametrization of the DPP

kernel (L = V V
>) and A ✓ Y . As in Gillenwater [2014],

we first compute the dual kernel C = B
>
B, where B =

V
>. We then compute

C
A = (BA)>BA = Z

A
CZ

A,

with Z
A = I �BA(B

>
ABA)

�1
B

>
A , and where C

A is the

DPP kernel conditioned on the event that all items in A are

observed, and BA is the restriction of B to the rows and

columns indexed by A.

Computing C
A costs O(K3 + |A|3+K2|A|2). Next, fol-

lowing Kulesza and Taskar [2012], we eigendecompose

C
A to compute the conditional (marginal) probability Pi of

every possible item i in Ā:

Pi =
XK

n=1

λn

λn+1

⇣
1p
λn

b
A
i v̂n

⌘2

where b
A
i is column vector for item i in B

A and (�n, v̂n)
are an eigenvalue/vector of CA.

The computational complexity for computing the eigende-

composition is O(K3), and computing Pi for all items in

Ā costs O(|Ā|K2). Therefore, we have an overall com-

putational complexity of O(K3 + |A|3+K2|A|2+|Ā|K2)
for computing next-item conditionals/predictions for the

low-rank DPP using the dual kernel, which is significantly

superior to the typical cost of O(K|Ā|2+|A|3).

As in most cases K ⌧ |Ā|, this represents a substantial im-

provement, allowing us condition in time essentially linear

in the size of the item catalog.

5 Experiments

We run next-item prediction and AUC-based classification

experiments4 on two recommendation datasets for DPP eval-

uation: the UK retail dataset [Chen, 2012], which after

clipping all subsets to a maximum size5 of 100, contains

4070 items and 20059 subsets, and the Belgian Retail Super-

market dataset6, which contains 88,163 subsets, of a total

of 16,470 unique items [Brijs et al., 1999, Brijs, 2003]. We

compare the following Contrastive Estimation approaches:

– EXP: explicit negatives learned with CE. As to our

knowledge there are no datasets with explicit negative

information, we generate approximations of explicit

negatives by removing one item from a positive sam-

ple and replacing it with the least likely item (Algo-

rithm 3).

– DYN: dynamic negatives learned with CE.

As our work revolves around improving DPP performance,

we focus on the two following baselines, which are targeted

to learning DPP parametrizations from data:

– NCE: Noise Contrastive Estimation using product neg-

atives.

– LR: the standard low-rank DPP stochastic gradient

ascent algorithm from [Gartrell et al., 2017].

NCE learns a model by contrasting A+ with negatives

drawn from a “noisy” distribution pn, training the model to

distinguish between sets drawn from µ and sets drawn from

pn. NCE has gained popularity due to its ability to model

distributions µ with untractable normalization coefficients,

and has been shown to be a powerful technique to improve

submodular recommendation models [Tschiatschek et al.,

2016]. NCE learns by maximizing the following conditional

4All code is implemented in Julia and will be made publicly
available upon publication.

5This allows us to use a low-rank matrix factorization for the
DPP that scales well in terms of train and prediction time.

6http://fimi.ua.ac.be/data/retail.pdf
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(a) UK dataset

Improvement over LR

Metric LR EXP DYN

MPR 80.07 3.75 ± 0.16 3.74 ± 0.16

AUC 0.57297 0.41465 ± 0.01334 0.41467 ± 0.01339

(b) Belgian dataset

Improvement over LR

LR EXP DYN

79.42 9.58 ± 0.15 9.64 ± 0.13

0.6162 0.3705 ± 8.569e-5 0.3702 ± 4.447e-5

Table 1: Results over the UK and Belgian datasets. Both explicit and dynamic CE obtain statistically significant improvements

in MPR and AUC metrics, confirming that CE learning enhances recommender value of the model and its ability to distinguish

data drawn from the target distribution from fake samples. The impact on precisions@k metrics is not reported as we did

not observe statistically significant deviations from LowRank performance.

log-likelihood:

�NCE(L) =
X

A2A+

logP (A 2 A+ | A) (7)

+
X

A2A�

logP (A 2 A� | A).

The key difference between NCE and CE lies in how nega-

tive information is used: whereas CE learns to assign a low

probability to negative subsets, NCE’s task is more indirect,

learning to distinguish positive from negative examples. As

a consequence of NCE’s objective function (Eq. 7), NCE

requires knowledge of the distribution of negative samples,

making it difficult to apply when explicit negative samples

are available, but not the form of their distribution.

In our experiments, we learn the NCE objective with

stochastic gradient ascent for our low-rank model, since

r log Pr(A 2 A⇤|A,V V
>) is given by

⇣
✏⇤ �

⇣
1 +

|A�|

|A+|

pn(A)

PV V >(A)

⌘�1⌘
rV logPV V >(A).

(8)

where ✏⇤ = 1 if A⇤ = A+ and 0 otherwise.

Algorithm 3 Approximate explicit negative generation

input: Positive sample A+

Sample i 6= j 2 A+ w.p. pi / bP ({i})

Sample k 62 A+ w.p. pk / 1� bP ({i, k}).
return (A+\{j}) [ {k}

This allows us to approximate true explicit negatives, as we

use the empirical data to derive “implausible” sets. Note,

however, that when using such negatives we have no guaran-

tee that objective function will be well behaved, as opposed

to the theoretically grounded dynamic negatives.

5.1 Experimental setup

The performance of all methods are compared using stan-

dard recommender system metrics: Mean Percentile Rank

(MPR). MPR is a recall-based metric which evaluates the

model’s predictive power by measuring how well it pre-

dicts the next item in a basket, and is a standard choice for

recommender systems [Hu et al., 2008, Li et al., 2010].

Specifically, given a set A, let pi,A = Pr(A[ {i} | A). The

percentile rank of an item i given a set A is defined as

PRi,A =

P
i0 62A 1(pi,A � pi0,A)

|Y\A|
⇥ 100%

The MPR is then computed as

MPR =
1

|T |

X

A2T

PRi,A\{i}

where T is the set of test instances and i is a randomly

selected element in each set A. An MPR of 50 is equivalent

to random selection; a MPR of 100 indicates that the model

perfectly predicts the held out item.

We also evaluate the discriminative power of each model

using the AUC metric. For this task, we generate a set of

negative subsets uniformly at random. For each positive

subset A+ in the test set, we generate a negative subset A�

of the same length by drawing |A+| samples uniformly at

random, while ensuring that the same item is not drawn

more than once for a subset. We then compute the AUC for

the model on these positive and negative subsets, where the

score for each subset is the log-likelihood that the model

assigns to the subset. This task measures the ability of the

model to discriminate between positive subsets (ground-

truth subsets) and randomly generated subsets.

In all experiments, 80% of subsets are used for training; the

remaining 20% served as test; convergence is reached when

the relative change in the validation log-likelihood is below

a pre-determined threshold ✏, set identically for all methods.

All results are averaged over 5 learning trials.

5.2 Amazon registries

We conducted an experimental analysis on the largest 7 sub-

datasets included in the Amazon Registry dataset, which has

become a standard dataset for DPP modeling [Gillenwater

et al., 2014, Mariet and Sra, 2015, Gartrell et al., 2017].

Given the small size of these datasets (the largest has 100

items), these experiments serve only to provide insight into

the general behavior of the baselines and CE methods as

well as the influence of the hyperparameters on convergence.

Table 2 reports the average time to convergence for each

method. As generating the dynamic negatives has a high
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complexity due to DPP conditioning, DYN is 2.7x slower

than EXP. LR is the fastest method, as it does not need

to process any negatives. NCE is by far the most time-

consuming.

Table 2: Runtime to convergence (s) on the feeding Amazon
registry (α = 1, |A−|/|A+|= 0.5, K = 30).

METHOD LR EXP DYN NCE

RUNTIME 0.83 ± 0.54 2.69 ± 0.02 7.13 ± 0.28 27.59 ± 2.20

We found that explicit and dynamic CE are not very sensitive

to the ↵ and |A�|/|A+| hyperparameters. For this reason,

in all further results, we set ↵ = 1 and |A�|/|A+|= .5
in all further experiments. In previous work on low-rank

DPP learning [Gartrell et al., 2017], ↵ = 1 was found to

be a reasonably optimal value, ensuring a fair comparison

between all methods.

Further experiments reporting the MPR, AUC and various

precisions for the Amazon registries are described in App. B.

5.3 UK and Belgian Retail Datasets

Following [Gartrell et al., 2016], for both the UK and the

Belgian dataset, we set the rank K of the kernel to be the size

of the largest subset in the dataset (K=100 for the UK dataset,

K=76 for the Belgian dataset): this optimizes memory costs

while still modeling all ground-truth subsets. Based on our

results on the smaller Amazon dataset, we fix |A�|/|A+|=
0.5 and ↵ = 1.

Finally, corroborating our timing results on the Amazon

registry, we saw that one iteration of NCE required nearly

11 hours on the Belgian dataset (compared to 5 minutes for

one iteration of CE). For this reason, we remove NCE as a

baseline from all remaining experiments, as it is not feasible

in the general case.

Tables 4 (a) and (b) summarize our results; the negative

methods show significant MPR improvement over LR, with

both DYN and EXP performing almost 10 points higher on

the Belgian dataset, and 3 points higher on the UK dataset.

This is a striking improvement, compounded by small stan-

dard deviations confirming that these results are robust to

matrix initialization.

We also see a dramatic improvement over LR in AUC, with

an improvement of approximately 0.41 for the UK dataset

and 0.37 for the Belgian dataset, across both DYN and EXP

methods. Both DYN and EXP perform quite well, with

an AUC score of approximately 0.9864 or higher for both

models. These results suggest that for larger datasets, CE

can be effective at improving the discriminative power of

the DPP.

6 Conclusion and future work

We introduce the Contrastive Estimation (CE) optimiza-

tion problem, which optimizes the difference of the tradi-

tional DPP log-likelihood and the expectation of the DPP

model’s log-likelihood under a negative distribution ⌫. This

increases the DPP’s fit to the data while simultaneously in-

corporating inferred or explicit domain knowledge into the

learning procedure.

CE lends itself to intuitively similar but theoretically differ-

ent variants, depending on the choice of ⌫: a static ⌫ leads to

significantly faster learning but allows spurious optima; con-

versely, allowing ⌫ to evolve along with model parameters

limits overfitting at the cost of a more complex optimization

problem. Optimizing dynamic CE is in of itself a theoretical

problem worthy of independent study.

Additionally, we show that low-rank DPP conditioning com-

plexity can be improved by a factor of M by leveraging the

dual representation of the low-rank kernel. This not only

improves prediction speed on a trained model, but allows

for more efficient dynamic negative generation.

Experimentally, we show that CE with dynamic and explicit

negatives provide comparable, significant improvements

in the predictive performance of DPPs, as well as on the

learned DPP’s ability to discriminate between real and ran-

domly generated subsets.

Our analysis also raises both theoretical and practical ques-

tions: in particular, a key component of future work lies in

better understanding how explicit domain knowledge can

be incorporated into the generating logic for both dynamic

and static negatives. Furthermore, the CE formulation in

Eq. (5) suggests the possibility of using continuous labels

for weighted samples within CE.
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