


TABLE I
SIMON PARAMETERS

block size (bits) key size (bits)

32 64

48 72, 96

64 96, 128

96 96, 144

128 128, 192, 256

Fig. 2. Round function of SIMON.

(unlike its sister algorithm SPECK), allowing for good perfor-

mance regardless of platform (ASIC or FPGA) [14]. SIMON

was found to have roughly half the footprint of AES in various

hardware implementations while meeting satisfactory security

requirements [15]. Furthermore, it provides flexible levels of

security with ten configurations, as listed in Table I, with a

key size of mn and a block size of 2n, where m is the number

of keys and n is the word size [15]. An appropriate block and

key size must be chosen to fit the required security level of

the application. The flexibility of SIMON makes it attractive

for a variety of use cases, particularly in IoT applications such

as RFID sensor networks, smart cards. This paper is focused

on a 32/64 SIMON implementation, meaning that 32 bits of

plain-text are encrypted with a 64 bit key in 32 rounds (m=4,

n=16). This is the smallest configuration of SIMON and was

chosen to minimize area and complexity of the design.

A. Round Function

The operation of the round function for all configurations of

SIMON is shown in Fig. 2. The input is split into two words

and ran through a series of left circular shifts, bitwise XORs,

and bitwise ANDs. At the end of each round, the two word

blocks hold the input text for the next round. In each round,

Xupper performs the operations to compute cipher text, while

the current bits in Xupper are saved into Xlower for use in the

next round. After a certain amount of rounds, depending on

which configuration of SIMON used, the final cipher text is

generated.

B. Key Expansion

The SIMON block cipher uses a different key in each round,

as generated by the key expansion function. The operations

Fig. 3. SIMON key expansion for m=4.

Fig. 4. Bit serialized round function.

used are bitwise XOR and right circular shifts. Also, a single

bit round constant Zi is used to eliminate slide properties,

circular shift symmetries and introduce randomness [11]. It is

important to note that SIMON has multiple key functions de-

pending on what security configuration is chosen (the number

of key words m), this paper uses the key expansion function

for m=4. As shown in Fig. 3, Ki is the key for the current

round, which is written to the highest block Ki+3. All of the

keywords are then shifted one block to the right.

C. Bit Serialized Architecture

Different levels of parallelism (bit level, round level, and

encryption level) can be achieved when designing a block

cipher [16]. In this work, a bit serialized implementation is

used from [17] to fully mimic resource critical IoT devices.

This is a FIFO based implementation where the parallelism

level is one bit of one round of one encryption engine per

clock cycle. The round and key expansion functions for the

bit serialized implementation are shown, respectively, in Fig. 4

and Fig. 5. A benefit of this design implementation is that

it has the smallest area and lowest power consumption, at

the expense of a lower throughput than more parallelized

approaches.

Three fully custom SIMON cores are developed in 2D,

transistor-level Mono3D and gate-level Mono3D technologies

to evaluate the effect of number of MIVs and various power

delivery networks. The three designs are also characterized in

terms of area and power.

III. PROPOSED IMPLEMENTATION

The proposed implementations in this work utilize a fully

functional PDK and cell library developed for transistor-level







Fig. 11. The effect of ground bounce on output data (ciphertext) integrity
(top) and zoomed view (bottom) as a function of number of MIVs.

Fig. 12. Effect of number of MIVs on peak power supply noise.

E. Effect of Number of MIVs on Power Supply Noise

The number of MIVs in the power grid of the gate-level

Mono3D SIMON is varied and the effect on peak power

supply noise is analyzed. When there are only 21 MIVs in

the power distribution network, the peak power supply noise

is 146 mV. Increasing the number of MIVs to 50 and 100

alleviates this issue by decreasing the peaks to 118 mV and

92 mV, respectively. The power supply noise approximately

stabilizes when there are 150 MIVs in the PDN, where the

peak power supply noise is 73 mV. With 221 MIVs, there is a

peak voltage drop of 67 mV. Thus, the number of MIVs has

significant impact on power integrity in Mono3D ICs.

V. CONCLUSION

Three full custom implementations of the SIMON block

cipher are realized in 1) conventional 2D technology,

2) transistor-level Mono3D technology, and 3) gate-level

Mono3D technology. These three implementations are char-

acterized and compared in terms of area and power at the

same performance. A routed power network and a grid based

power network are developed and compared for the Mono3D

implementations. Simulation results demonstrate that it is

more challenging to ensure power integrity in transistor-level

Mono3D ICs. Furthermore, the effect of number of MIVs on

both ground bounce and peak power supply noise is studied.
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