
Full-Lock: Hard Distributions of SAT instances for Obfuscating
Circuits using Fully Configurable Logic and Routing Blocks

Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, Avesta Sasan

George Mason University

Farifax, VA, USA

{hmardani,kzamiria,hhomayou,asasan}@gmu.edu

ABSTRACT
In this paper, we propose a novel and SAT-resistant logic-locking

technique, denoted as Full-Lock, to obfuscate and protect the hardware

against threats including IP-piracy and reverse-engineering. The Full-

Lock is constructed using a set of small-size fully Programmable Logic

and Routing block (PLR) networks. The PLRs are SAT-hard instances

with reasonable power, performance and area overheads which are

used to obfuscate (1) the routing of a group of selected wires and

(2) the logic of the gates leading and proceeding the selected wires.

The Full-Lock resists removal attacks and breaks a SAT attack by

significantly increasing the complexity of each SAT iteration.

KEYWORDS
Reverse Engineering, Logic Locking, SAT Attack, Logarithmic Net-

work.

1 INTRODUCTION AND BACKGROUND
To reduce the cost of manufacturing a new chip, to take advantage of

new technology nodes, or to meet the market demand, the manufac-

turing supply chain of Integrated Chips (IC) is globalized, distributing

steps of IC manufacturing over different facilities in different coun-

tries [32]. This is when the lack of trust and monitoring mechanisms

has raised concerns over manufacturing supply chain security threats

such as overproduction, Trojan insertion, reverse engineering, IP

theft, and counterfeiting [20]. To combat these threats, logic locking
has been introduced as a technique that obfuscates and conceals the

functionality of IC/IP using additional key inputs that are driven by

an on-chip tamper-proof memory [26]. When using logic locking, an

attacker in the manufacturing supply chain cannot re-generate the

correct functionality of an IC/IP without the correct key. After the

chip is fabricated, it is then programmed in a trusted facility. Consid-

ering a large number of key possibilities (e.g. 2
20

possibilities with

only 20 keys), a brute force attack on logic locking faces a runtime

that is on average exponentially related to the number of key values.

Shortly after introducing the primitive logic locking solutions [9,

18, 19, 21], a very strong Boolean attack, the Satisfiability (SAT ) attack,
was proposed [14]. In this attack model, the attacker has access to the

obfuscated, but reverse engineered netlist. In addition, the attacker

is able to obtain a functional/unlocked IC, apply a desired input and

observe its output (oracle-based attack). The SAT attack can extract

the functionality of locked circuit by applying and testing only a few

smartly selected input queries. It was shown that the SAT attack could

break all previously proposed primitive locking mechanisms in almost

polynomial time.

To thwart the strength of SAT attack, researchers have investigated

two main directions (1) formulating locking solutions that signifi-

cantly increase the number of required SAT iterations (inputs to be

tested), (2) formulating the locking solutions such that it is not trans-

latable to a SAT problem. The first approach in which formulating

obfuscation and locking solutions significantly increase the number

of SAT iterations was assumed to be a perfect anti-SAT solution, such

as SARLock, Anti-SAT, SFLL, and LUT-Lock [4, 11, 27, 30]. In extreme

case, using these techniques, each tested input (each iteration) inval-

idate a single key combination. Hence, by using these techniques,

a SAT attack, similar to a brute force attack, faces an exponential

runtime. However, further investigations demonstrated that some

of these locking techniques are vulnerable to other types of attacks

such as Signal Probability Skew (SPS) attack [13], removal attack [12],

approximate-based attack(s) [6, 22], bypass attack [29], and Satisfia-
bility Module Theories (SMT) attack [8]. In addition, these techniques

suffer from very low output corruption. Hence, an unactivated IC

behaves almost identical to an unlocked IC with exception of one or

few inputs.

The second approach investigated by researchers was formulating

obfuscation and locking mechanisms that were not translatable to

SAT problems. Example of such techniques includes the use of cyclic

Boolean logic for locking [16] or behavioral locking of the logic [28].

The cyclic obfuscation creates combinational cycles in the design.

This invalidates the Directed Acyclic Graph (DAG) nature of logic

and forces a SAT attack to either be trapped in an infinite loop or to

generate an incorrect key upon termination [16]. Alternatively, in [28]

a behavioral (non-Boolean) locking scheme was introduced where the

locking mechanism targeted the setup and hold properties (timing

properties) of the circuit. However, shortly after the introduction

of these obfuscation techniques, researchers revealed stronger and

more advanced modeling and attack solutions such as cycSAT [5], and

Satisfiability Module Theories (SMT) attack [8] that were able to model

the cyclic or behavioral locking into a SAT or SAT+theory solvable

logic problems.

A new (and third) direction for building SAT-hard solutions, which

is thoroughly discussed in this paper, is to significantly increase the

run-time of each iteration of the SAT solver. The only existing solution

that somewhat fits this category is the Cross-lock [7], in which a one-

time programmable interconnect mesh is used to obfuscate the routing

of a netlist, and the resulting obfuscated netlist substantially increase

the runtime of each iteration of the SAT attack. However, we will

illustrate that obfuscation solution in [7], although a step in the right

direction, is not a strong solution in this space, and by following the

principles and design guidelines discussed in this paper, it is possible

to construct obfuscated circuits that translate into far harder SAT

circuits than Cross-lock.

In this paper, we explore the characteristics and principles of de-

signing this new category of SAT-hard obfuscation solutions, where

the goal is to exponentially increase the time required for each iter-

ation of the SAT attack. As a strong representative member of this

class of obfuscation techniques, we introduce Full-Lock. The Full-Lock
is constructed using a set of cascaded fully programmable logic and

routing blocks (PLR) networks that replace parts of the logic and rout-

ing in the desired netlist. The PLRs are SAT-hard instances designed

to construct a desired ratio between the number of clauses and the

number of variables with PLRs are translated to their Conjunctive

Normal Form (CNF). The cascaded and non-blocking design of PLR

pushes the SAT solver’s algorithm to build a very deep decision tree

and to spend significant time in hopeless regions of the decision tree,

causing a significant increase in each iteration of SAT attack.



2 A NEW PERSPECTIVE OF SAT HARDNESS
A SAT attack, in each of its iterations, finds a Discriminating Input
Patterns and rules out one or more incorrect key value(s). Hence, many

SAT-resilient locking schemes tried to weaken the pruning power

of one DIPs, making sure each DIP can only rule out one incorrect

key. This forces the number of needed iterations to exponentially

increase with respect to the number of keys as a mean of exponentially

increasing the required execution time of the SAT attack, although,

the execution time of each iteration of SAT solver could be quite short.

The strength of SAT solvers come from their Conflict-Driven Clause

Learning (CDCL) ability. In each iteration of the SAT attack, a new SAT

problem is defined. The goal of the SAT solver is to finds a satisfying

value for all its literals. The literal values are either assigned or derived.

Each assignment of value to a literal pushes the solver down into one

of the branches of its decision tree implemented using a recursive

call. During this recursive procedure, if the solver reaches a state

where the derived value of a literal is different from its previously

derived or assigned value, a conflict is detected. This is when the

solver investigates how the conflict was driven, identifies a set of

literal assignments that cause the conflict, and generates a clause that

prevents the identified literal assignment. The newly learned conflict-

clause is then added to the original problem set, aiding the solver to

prune its decision tree and to avoid reaching the same conflict in the

future. Then, the decision tree is backtracked a safe point prior to the

conflict.

Davis-Putnam-Logemann-Loveland (DPLL) algorithm (or one of its

derivatives), which is used to perform CDCL, is illustrated in Algo-

rithm 1. Each SAT iteration invokes the DPLL function. In addition,

DPLL may also call itself. As it can be seen in line 12 and 16, new

recursive call adds a new variable, l or ¯l , to Φ. Hence, an increase in

the number of recursive calls (line 12 and 16) increases the complexity

of the next DPLL call. So, the number and complexity of recursive

DPLL calls could be a dominant factor for each invocation of SAT

solver (a SAT Attack iteration).

Algorithm 1 DPLL Algorithm Pseudo-code

1: function DPLL(Φ)
2: if Φ has an empty clause then
3: return "UNSAT ";
4: if Φ is [] then ▷ Φ is empty

5: SATassiдn ← Current Assignment;

6: return "SAT ";
7: if Φ contains a unit clause l then ▷ Unit Propagation

8: Φ← Φ - all clauses with l ;
9: Φ← Φ with eliminating all

¯l ;
10: return DPLL(Φ);
11: if Φ contains a pure literal l then ▷ Purification

12: return DPLL(Φ ∪ l );
13: if DPLL(Φ ∪ l ) is SAT then ▷ Branching

14: return "SAT ";
15: else
16: return DPLL(Φ ∪ ¯l ); ▷ (One more level in Tree)

The runtime of a SAT attack could be obtain from:

TAttack =
N∑
i=1

T (i) =
N∑
i=1

(t +TDPLL(Φ)) (1)

A difficult problem requires a very large runtime. The first solution

is weakening the DIP and increasing the number of iteration (N)

to a very large number [4, 11, 27, 30, 31]. In spite of very shallow

DPLL recursive tree, and for having a very large N these solution

exhibit resistance against SAT attack. However, this type of defense, as

suggested previously is prone to SPS [27], Approximate-based [6, 22],

bypass [29], and possibly removal attack [12].

Based on the discussion on DPLL, an alternative solution is smaller

N but larger recursive trees. Hence, as illustrated in equation 2, the

attack time could also increase beyond acceptable if the number of

recursive calls (M) grows to a very large number.

TAttack =
N∑
i=1

(t +TDPLL(Φ)) ≃
N∑
i=1

M∑
j=1

(T
Avд
DPLL) ≃ MN ×T

Avд
DPLL (2)

The very strong aspect of this form of building SAT-hard solutions

is that (1) the problems posed at each iteration of SAT attack is a SAT-

hard problem, (2) the output corruption of this methods is significantly

higher than obfuscating solution relying on increasing the N, (3) it is

not susceptible to SPS, removal or approximate attack.

Motivated from this discussion, in this paper we present the Full-

Lock. Full-Lock is able to considerably and exponentially increase the

number (M) and computational complexity (T
Avд
DPLL ) of recursive calls

in DPLL function via replacing some of the logic and routing in the

circuit by one or more SAT-hard obfuscation instance(s) in the circuit.

3 FULL-LOCK
Many SAT-hard problems (instances) are introduced annually in SAT

competition. These problems aim to trap Davis-Putnam-Logemann-
Loveland (DPLL) or generate extremely complex and time-consuming

computational models for this algorithm. Although, none of them

is directly convertible to a logic circuit, feature and tricks used in

these SAT-hard problems could be used in designing SAT-hard circuit

(SATC) obfuscation problems.

In [17], the SAT hardness of formulas produced using fixed-length

clause generator was investigated. This work concluded that "For
formulas that are either relatively short, in which the number of clauses
per variable is less than 3, or relatively long, in which the number of
clauses per variable is larger than 6, DPLL finishes quickly, but the
formulas of medium length, between 3 to 6, take significantly longer".
This is because formulas that have few clauses are under-constrained,
and have several satisfying assignments. Providing under constrained

clauses to the algorithm 1 increases the chances of one satisfying

assignment to be found early in the search using unit propagation or

purification. Note that these two steps of DPLL algorithm are used to

simplify the size of formula before branching, while branching assigns
a value to an unassigned variable, making the DPLL tree one level

deeper. Formulas that have many clauses on the other hand are over-
constrained. In over-constrained clauses, the contradictions are found

easier and the search is quickly concluded.

SAT hardness of medium length formulas is higher than under

or over-constrained formulas. This is because they only have rel-

atively few (if any) satisfying assignments. Hence, throughout the

search and after assigning values to many variables, many empty

clauses will be generated. This results in a deep DPLL recursive tree

for testing each assumption [1]. Fig. 1 demonstrates the number of

recursive calls made by DPLL for solving the formula for fixed-length

3-SAT formulas, where the ratio of clauses to variables is varied from

2 to 8. As illustrated, the ratio from 3 to 6 provides much higher

DPLL calls, and 4.3 clauses per variable is the best ratio, generating

the most computational challenging SAT instances with the high-

est number of DPLL calls. For example, a 100-variable 300-clause

instance (clause/variable = 3 "under-constrained"), or a 100-variable

5000-clause instance (clause/variable = 50 "over-constrained") is easily

solvable within few seconds. However, the SAT solver takes a very

long time solving a 3-SAT instance which is constructed with 100

variables and 450 clauses. From this discussion, an obfuscated circuit

is SAT-hard when its Conjunctive Normal Form (CNF) has medium-

length clauses with a ratio of clauses to variables between 3 to 6 (best

if close to 4)

3.1 Logarithmic Networks for SAT-Hardness
Table 1 lists the Tseytin transformation [25] of various logic gates into

their respective CNF expression. From this table, only XOR/XNOR



0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8

R
e

cu
rs

iv
e

 D
P

LL
 T

re
e

 
P

ru
n

in
g/

B
ac

kt
ra

ck
in

g
×

1
0

0
0

Clauses to Variables Ratio

 20 Variable Formulas
 40 Variable Formulas
 50 Variable Formulas

Figure 1: Median Number of Recursive DPLL Tree Pruning/Backtracking for
Random 3-SAT Formulas, based-on the Ratio of Clauses to Variables [17].

Table 1: Tseytin Transformation of Basic Logic Gates.

Gate Operation CNF (sub-expression)

C = AND(A,B) C = A.B (A ∨ B ∨C) ∧ (A ∨C) ∧ (B ∨C)
C = NAND(A,B) C = A.B (A ∨ B ∨C) ∧ (A ∨C) ∧ (B ∨C)
C = OR(A,B) C = A + B (A ∨ B ∨C) ∧ (A ∨C) ∧ (B ∨C)
C = NOR(A,B) C = A + B (A ∨ B ∨C) ∧ (A ∨C) ∧ (B ∨C)
C = BUFF(A,B) C = A (A ∨C) ∧ (A ∨C)
C = NOT(A,B) C = A (A ∨C) ∧ (A ∨C)
C = XOR(A,B) C = A ⊕ B (A ∨ B ∨C) ∧ (A ∨ B ∨C) ∧ (A ∨ B ∨C) ∧ (A ∨ B ∨C)
C = XNOR(A,B) C = A ⊕ B (A ∨ B ∨C) ∧ (A ∨ B ∨C) ∧ (A ∨ B ∨C) ∧ (A ∨ B ∨C)
C = MUX(S ,A,B)C = A.S + B .S (S ∨ A ∨C) ∧ (S ∨ A ∨C) ∧ (S ∨ B ∨C) ∧ (S ∨ B ∨C)

Logic 1 Logic 4

Logic 2

Logic 3

Figure 2: N -by-M switch-boxes for Building Hard Satisfiable Instances [2].

and MUX have 4 clauses per gate. This is when the clauses to variables

ratio is 1 and 4/3 in MUX and XOR/XNOR respectively. In spite of

the observation that for a single gate the XOR/XNOR has a larger

clause to variables ratio, MUXes provides a better building block for

constructing SAT-hard circuits. This is because: (1) with no unit prop-

agation and purification, for having four variables, a MUX can make

the recursive DPLL tree one level deeper, (2) unit propagation and

purification steps in DPLL algorithm provide more simplified and

smaller formula using enhanced Gaussian elimination while the con-

tribution of XOR/XNOR gates are much higher [10]. Hence, MUXes

needs more DPLL recursive tree prunings/backtrackings compared

to XORs/XNORs. Moreover, since unit propagation and purification

satisfy less formula, the clause to variable ratio will increase while

MUXes have more contribution.

The next step for building a SAT hard problem, and to push the

clause to variable ratio to the desired range of 3 to 6 (4.3 as the

best), is preventing the propagation and purification from simplifying

the circuit before branching into recursive DPLL tree. This could be

achieved by building a switching network using MUXes, where none

of the variable related to a givenMUX in a switching network could be

resolved, unless their cascaded variables (related to cascaded MUXes

in the original circuit) are resolved, a requirement that is recursively

continued. This would prevent purification and simplification prior

to reaching the leaves of the decision tree, as each variable in an

intermediate layer of switching network is cascaded, while pushing up

the clause to variable ratio to the desired range. This is consistent with

the finding in the [3], in which investigating Boolean formulations

of global detailed interconnect constraints, authors concluded that

the CNF of symmetric switching networks is a hard problem for SAT

solvers. In addition, using N -by-M switch-boxes, with back-to-back

interconnection, illustrated in Fig. 2 creates hard satisfiable instances

that trap even the best solvers in hopeless regions of their solution

space for a long time before a satisfying solution can be found [2].

Keys

O
2

i+
1

I 2
i

I 2
i+

1

key0

O
2

i

key2

key1

1

0

1

0

1

0

1

0

SwB

SwB

SwB

SwB

00

01

02

03
SwB

SwB
20

23

SwB

SwB

SwB

SwB

10

11

12

RRBij

SwB
22

SwB
21

In
p

u
ts

O
u

tp
u

ts

13

Figure 3: Shuffle-based Blocking CLN with N = 8.

In Full-Lock we achieve this by constructing a key-configurable

logarithmic-based network (CLN) for obfuscation of routes. For this

purpose, we create small and lightweight switch-boxes (SwB) that are

implemented easily using only MUXes. These small and lightweight

SwBs allow us to create large logarithmic switching (loд2N ) network

to (1) increase the clauses to variables ratio using MUXes that are

independently interconnected back-to-back (cascaded) to each other,

and (2) benefit from the hardness of switch-boxes while the power,

performance, and area overhead remains reasonable.

Across all switching networks, a set of self-routing logarithmic net-

works, loд2N networks, provides configurable interconnection with

less overhead compared to conventional networks such as mesh or

crossbar. There are numerous self-routing networks in this category,

such as banyan, baseline, shuffle, etc. Fig. 3 demonstrates a simple

implementation of a 8×8 CLN using the blocking shuffle network [24].
This CLN is constructed using small SwBs, where each SwB is built us-

ing MUXes. In each SwB the outputs can be an arbitrary permutation

of the inputs. In addition, as shown, we add key-configurable inverters

for each wire, allowing an output to be shuffled and negated based

on the key value. The CLN has N inputs, and due to its structure N is

a power of 2. Numbers of SwBs in a CLN depends on the number of

inputs as well as the model of loд2N networks. In all aforementioned

blocking CLN, the number of SwBs is the same, i.e. N /2 ∗ loдN , and

the only difference between them is the topology of SwBs intercon-

nections.

The previously discussed self-routing logarithmic networks are

blocking networks as they cannot propagate all permutations of their

inputs to the outputs. In the result section of this paper, we illustrate

that the blocking feature of these networks, eliminate a large number

of permutations and significantly reduce the SAT hardness of these

networks. This could change by building a non-blocking network.

According to [23], a non-blocking logarithmic network is char-

acterized by LOGN ,M,P . In this equations N denotes the number of

inputs/outputs,M is the number of extra (cascaded) stages, and P indi-

cates there are P − 1 additional copies vertically cascaded. Exploration
on N ,M , and P shows that the minimum feasible values of P andM ,

which makes the network strictly non-blocking, results in construct-

ing a much larger network than a blocking CLN. As an instance, for

N = 64, these values areM = 3 and P = 6. It means that a LOGN ,M,P ,
with N = 64, has more than 5× area overhead compared to a blocking

CLN with the same input size, i.e. N = 64.

To substantially increase the permutations possibilities without

incurring large area overhead, we used the near non-blocking logarith-

mic network suggested in [23] for constructing a key-Configurable

Logarithmic-based Network (CLN). This network is able to generate

not all, but almost all permutations, while it could be implemented us-

ing a LOGN ,loд2(N )−2,1 configuration, meaning it has only loд2(N )−2

extra stages and no additional copy. Fig. 4, demonstrates an example

of such an almost non-blocking CLN with N = 8. As it can be seen,

the topology of SwBs interconnections is different with shuffle-based,



Keys

SwB

SwB

SwB

SwB

00

01

02

03
SwB

SwB
20

23

SwB

SwB

SwB

SwB

10

11

12
SwB

22

SwB
21

In
p

u
ts

O
u

tp
u

ts

13

SwB

SwB

SwB

SwB

30

31

32

33

Figure 4: Almost Non-Blocking CLN, LOG8,1,1.

shown in Fig. 3. This topology is a banyan-based interconnection that

matches with our proposed LOGN ,loд2(N )−2,1.

Since an almost non-blocking CLN has only loд2(N )−2 extra stages,

its area and power overhead is roughly 2x compared to a blocking

CLN with the same N . However, this almost non-blocking CLN is far

more resistant against SAT attack compared to a blocking network.

For example, an N=64 input non-blocking CLN allow only 5 iterations

of SAT attack to be completed within 2×106
seconds, while the same

size blocking network resist the SAT attack for only ∼17 Seconds, or a

much larger blocking network of N = 512 inputs (4 times the number

of inputs, 16 times the area) complete 6 iterations of SAT attack in

2×106
seconds.

3.2 Strongly Twisted CLN into LUT/Logic
CLN provides an interconnect locking scheme that is able to generate

a SAT-hard instance which significantly increases the execution time

for each SAT iteration. However, in order to enhance this strength,

and especially resist against other types of attacks, such as removal at-

tack, we try to twist CLN into the logic of the gates around it. For this

purpose, we suggest two methods. First, as was mentioned, we add

key-configurable inverters within CLN. These inverters allow us to

combine the CLN with the logic of the gates leading its inputs. In fact,

both logic and interconnect locking is embedded into the CLN. For

instance, suppose that one of the inputs of CLN is derived using an OR
gate. So, we can change it to NOR, and configure the CLN to generate

its negate on its corresponding output. These key-configurable invert-

ers within CLN allow us to change the logic of the gates leading it. So,

even removing CLN and finding the correct permutation provided by

CLN will not generate correct functionality. In addition, since adding

these inverters has no impact on simplification steps in DPLL, i.e. unit

propagation and purification, the clause to variable ratio generated

by CLN will not change.

Second, we replace the gates preceding the CLN with small Spin

Transfer Torque- (STT)-based LUTs with the same input. Combining

CLNwith LUTs provide a fully Programmable Logic and Routing blocks
(PLRs) that bears a resemblance to FPGA architecture. From SAT

attack perspective, since each LUT will be translated to MUXes, for

a LUT with R inputs, it adds up to R level to recursive DPLL tree.

Moreover, since LUTs are directly connected to the output of CLN,

these extra R level will be added to the large recursive DPLL tree of

CLN. Hence, by massively increasing the size of recursive DPLL tree

of CLN using small LUTs, PLR boosts the security of Full-Lock against

SAT.

It should be noted that we use STT-based LUTs that are similar in

functionality to FPGAs, however, they provide significantly higher

speed running at GHz frequency, near zero leakage power, high ther-

mal stability, and highly integrative with CMOS [4]. Since, each gate,

located at the output of CLN, will be replaced with a LUT with the

same input size, investigation on sizes of gates in different bench-

marks such as ISCAS-85 and MCNC, shows that the maximum fan-in

size is 5. It means that the largest required LUT has 5 inputs. Hence,

0

0.5

1

1.5
Area
Delay

lu
t-

2
lu

t-
3

lu
t-

4
lu

t-
5

in
v

x0
in

v
x1

n
a

n
d

2
x0

n
a

n
d

2
x4

n
o

r2
x0

n
o

r2
x4

a
n

d
2

x1
a

n
d

2
x4

o
r2

x1
o

r2
x4

d
ff

x
1

la
tc

h
x1

sd
ff

x
1

100

101

102

0

1

2

3

N
o

rm
a

li
ze

d
 

Leakage
Total Active Power

lu
t-

2
lu

t-
3

lu
t-

4
lu

t-
5

in
v

x0
in

v
x1

n
a

n
d

2
x0

n
a

n
d

2
x4

n
o

r2
x0

n
o

r2
x4

a
n

d
2

x1
a

n
d

2
x4

o
r2

x1
o

r2
x4

d
ff

x
1

la
tc

h
x1

sd
ff

x
1

N
o

rm
a

li
ze

d

N
o

rm
a

li
ze

d
 

A
re

a

P
o

w
e

r

D
e

la
y

Figure 5: Power, Delay, and Area of STT-LUT and Standard Cells in 28nmCMOS.

using STT-based LUTs with a maximum size of 5 relatively has no

delay overhead compared to CMOS-based basic gates. In addition,

the power and area overhead is considerably low in these LUTs with

size less than 5. As shown in Fig. 5, LUTs with size 2, 3, 4, and 5,

have negligible overhead compared to CMOS-based basic gates. In

addition, the size of all gates leading the CLN can be decreased to be

2. For instance, an AND3 gate can be changed to two AND2 while

the outputs of one of them is an input for the second one. Hence, the

overhead of STT-LUT can be even lower while only LUTs with size 2

is required.

3.3 Inserting SAT-hard PLRs into Design
Using these PLRs provides a big advantage compared to other lock-

ing schemes. Since inserting a PLR in a circuit provides a SAT-hard

instance in the circuit, it is not required to employ a specific insertion

to enhance the strength of PLRs. However, due to the topological

structure of circuits it may be beneficial to have an insertion policy.

But, we demonstrate that even using random insertion/replacement

strategy for these PLRs creates extremely large recursive DPLL tree

that makes the circuit resilient against SAT.

Additionally, in comparison with Cross-lock [7] that is a layout-

based interconnect locking scheme, Full-Lock has no restriction on

selection of wires and logic gates to replace them with PLRs. In Cross-

lock, since they used high-density cone-based selection strategies,

such as k-cut and wire-cut, to decrease the possibility of using removal

attack, it has a restriction in selecting the wires to insert the crossbar.

However, since we strongly twisted the CLN into the logic of the

gates leading and preceding the selected wires, even removing the

CLN using removal attack does not generate correct functionality.

Hence, there is no limitation for wire selection in Full-Lock.

Fig. 6 demonstrates two simple examples that how Full-Lock inserts

PLRs in the circuit. As shown in Fig. 6(a) and (b), the selected gates

are highlighted in red, i.e. д14, д15, д16, and д17. Since these gates have

no impact on each other, replacing them with PLR, including CLN and

LUTs, does not generate any cycle in the design. However, Fig. 6(a)

and (c) show that replacing the gates, which are highlighted in blue,

i.e. д2, д5, д7, and д9, generates cycle in the circuit. Additionally, some

of the leading gates of CLN is changed (negated), all highlighted in

purple, i.e.д5,д12,дnew in Fig. 6(b), andд1,д6 in Fig. 6(c), which shows

that how twisting leading gates into CLN is working. For instance, д5

in Fig. 6(a), an XOR, has been replaced with д5 in Fig. 6(b), an XNOR.
In this case, CLN will recover the functionality of this gate using

key-configurable inverters that are embedded into CLN.

4 EXPERIMENTAL RESULTS
To show the efficiency of Full-lock, it is evaluated using different SAT-

based attacks, including SAT for acyclic [14, 15], cycSAT for cyclic

[5], and AppSAT for approximate-based [6, 22], all implemented in

C++, and were run on a Dell PowerEdge R620 equipped with Intel

Xeon E5-2670 2.50GHz and 64GB of RAM.



LUT22

LUT11

LUT31

g1

g7

g12
g2

g13
g10

g3

g4

LUT21

g15

g14

g16

g5g1

g12
g2

g13g10
g3

g4

g1

g15

g12

g14

LUT22

LUT21

LUT11

LUT31

CLN

g3

g4
g10

g13
g16

g6

g9

g7

g8

g11
g17

g6

g9

g8 CLN

g11

g6

g11
g8

g17

g5

gnew

PLR

PLR

(a)

LUT22

LUT11

LUT31

g1

g7

g12
g2

g13
g10

g3

g4

LUT21

g15

g14

g16

g5g1

g12
g2

g13g10
g3

g4

g1

g15

g12

g14

LUT22

LUT21

LUT11

LUT31

CLN

g3

g4
g10

g13
g16

g6

g9

g7

g8

g11
g17

g6

g9

g8 CLN

g11

g6

g11
g8

g17

g5

gnew

PLR

PLR

(b)

LUT22

LUT11

LUT31

g1

g7

g12
g2

g13
g10

g3

g4

LUT21

g15

g14

g16

g5g1

g12
g2

g13g10
g3

g4

g1

g15

g12

g14

LUT22

LUT21

LUT11

LUT31

CLN

g3

g4
g10

g13
g16

g6

g9

g7

g8

g11
g17

g6

g9

g8 CLN

g11

g6

g11
g8

g17

g5

gnew

PLR

PLR

(c)

Figure 6: PLR Insertion Example: (a) Gate-level of Original Circuit. (b) Adding PLR and Negating leading Gates with (b) Acyclic Structure, (c) Cyclic Structure.

Table 2: SAT Execution Time on shuffle-based Blocking CLN for Different Sizes.

CLN Size (N ) 4 8 16 32 64 128 256 512

Shuffle-based Blocking CLN

SAT Iterations 7 8 9 13 15 27 28 TO

SAT Execution Time (Seconds ) 0.01 0.04 0.22 1.22 17.4 154.7 2329.3 TO

Almost non-Blocking CLN

SAT Iterations 14 18 25 32 TO TO TO TO

SAT Execution Time (Seconds ) 0.01 0.15 2.35 79.18 TO TO TO TO
TO: Timeout = 2 × 10

6 Seconds

4.1 Blocking vs. almost non-Blocking CLN
Aswasmentioned previously, Since not all but almost all permutations

can be generated using non-blocking CLN, LOGN ,loд2(N )−2,1, it is far

more resistant against SAT attack compared to a blocking network,

especially with less power/performance/area overhead. We evaluate

a shuffle-based CLN and an almost non-blocking with different sizes

using SAT. As it can be seen in Table 2, increasing the CLN size,

exponentially increases SAT execution time for either blocking or

almost non-blocking. However, the SAT execution time is at least one

order of magnitude higher in almost non-blocking. In addition, SAT

is not able to break almost non-blocking CLN with a size larger than

N = 64, however, for blocking CLN, it is easily broken for all sizes

less than N = 512.

Since CLNs is the main part of PLRs as a SAT-hard instance that

have medium length clauses while translated to CNF, the execution

time of each iteration is significantly high, particularly for large sizes

that cannot be broken using SAT. For blocking CLN with size N = 512

and non-blocking with size N = 64, after 2×106
Seconds, the number

of completed iterations in SAT is only 7 and 5, respectively. It means

that, on average, each iteration at least takes 2.8 × 10
5
Seconds in

blocking and 4 × 10
5
in almost non-blocking CLNs.

Table 3 demonstrates power/area/delay of blocking and almost

non-blocking CLNs for different sizes using Synopsys generic 32nm

educational libraries. As it can be seen, the incurred overhead by the

smallest almost non-blocking CLN, which is resilient against SAT

(N = 64), is approximately one-third of the smallest SAT-resilient

blocking CLN (N = 512) in terms of power consumption. Additionally,

the overhead imposed by CLN is significantly low compared to area

and power of even small-scale benchmark circuits.

4.2 Full-Lock Security Against Various Attacks
As was mentioned previously, in Full-Lock, the gates and their driving

wires will be selected randomly to be replaced with PLRs. After select-

ing the required wires and their leading gates, Full-lock replaces them

with PLR. Furthermore, the logic of some gates leading the selected

wires will be negated. One or few PLR(s) can be added into the design

based on the design criteria in terms of power/area/delay or security.

4.2.1 Security Against SAT-based Attack. Since random inser-

tion is implemented for inserting PLRs in Full-Lock, it may generate

Table 3: Power/Area/Delay and SAT-based Resiliency of Blocking and almost
non-Blocking CLNs for Different Sizes.

CLN Area (um2
) Power (nW ) Delay (ns ) SAT-Resilient

Shuffle (N = 32) 10.1 448.1 0.82 ✗
LOG32,3,1 17.8 2137.5 0.98 ✗

Shuffle (N = 64) 22.8 1071.1 0.89 ✗
LOG64,4,1 38.6 8451.4 1.06 ✓

Shuffle (N = 128) 50.8 2503.6 0.93 ✗

Shuffle (N = 256) 113.6 5791.4 0.99 ✗

Shuffle (N = 512) 254.3 2308 1.04 ✓

Table 4: Execution Time of SATAttack on Full-LockwithDifferent Sizes of PLRs.

Circuit 16×16 32×32

1 2 3 4 1 2 3

c432 28.8 1506.8 TO TO TO TO TO

c499 40.7 786.2 TO TO TO TO TO

c880 34.1 847.6 TO TO TO TO TO

c1355 64.9 1158.3 TO TO TO TO TO

c1908 45.5 1022.6 TO TO TO TO TO

c2670 79.8 1766.2 11791.5 184993.6 TO TO TO

c3540 67.2 429.6 7924.7 TO TO TO TO

c5315 66.8 887.2 5748.1 TO TO TO TO

c7552 90.3 1109.4 7638.6 66808.2 273367.4 TO TO

apex2 38.4 633.1 TO TO TO TO TO

apex4 40.1 348.9 3670.9 18539.1 58467.6 380449.5 TO

i4 55.8 1604.8 TO TO TO TO TO

i7 84.6 1330.8 TO TO TO TO TO

TO: Timeout = 2 × 10
6 Seconds

Table 5: PLRs Size in SAT-resilient Full-Lock compared to Cross-Lock.

Circuit # Gates # I/Os Full-Lock Cross-Lock [7]

c432 160 36/7 2×16×16 + 1×8×8 1×32×36
c499 202 41/32 2×16×16 + 1×8×8 1×32×36
c880 386 60/26 2×16×16 + 1×8×8 1×32×36
c1355 546 41/32 2×16×16 + 1×8×8 2×32×36
c1908 880 33/25 3×16×16 2×32×36
c2670 1193 157/64 1×32×32 3×32×36
c3540 1669 50/22 3×16×16 + 1×8×8 3×32×36
c5315 2307 178/123 3×16×16 + 2×8×8 3×32×36
c7552 3512 206/107 1×32×32 + 1×16×16 3×32×36

apex2 610 39/3 2×16×16 + 1×8×8 2×32×36
apex4 5360 10/19 2×32×32 + 1×8×8 11×32×36

i4 338 192/6 2×16×16 + 1×8×8 1×32×36
i7 1315 199/67 2×16×16 + 2×8×8 3×32×36

cycle into the design. So, cycSAT has been used instead of SAT to

support having potential cycles in locked circuits. In addition, to check

resiliency against approximate-based attack, the cycSAT is enabled us-

ing AppSAT to extract the approximate key and corresponding error

rate. Table 4 shows cycSAT execution time while different numbers

of PLRs with different sizes have been inserted into ISCAS-85 and

MCNC benchmark circuits. As it can be seen, for all circuits, having

three PLRs contain 32×32 CLNs makes all locked circuit resistant

against SAT. However, for each benchmark circuit, even smaller PLRs

can break cycSAT.



1

1.5

2

2.5

3

3.5

4

C
la
u
se
s/
V
ar
ia
b
le
s

R
LL

 [
2

1
]

FL
L 

[1
9

]

SL
L 

[1
8

]

SA
R

Lo
ck

 [
1

1
]

A
n

ti
SA

T 
[2

7
]

T
TL

o
ck

 [
3

1
]

LU
T

-L
o

ck
 [

4
]

SF
LL

 [
3

0
]

C
ro

ss
-L

o
ck

 [
7

]

Fu
ll

-L
o

ck

Figure 7: Average Clauses to Variables Ratio for Different Logic Locking
Schemes.

In order to show the SAT-hardness of PLRs, we explore differ-

ent sizes/numbers of PLRs to find the smallest size and the smallest

number of PLRs (the lowest power/area overhead) that is required

to provide resiliency against SAT. Table 5 shows the best solution of

Full-Lock in terms of area/power/delay for each benchmark circuits.

As shown, in all benchmark circuits, Full-Lock needs smaller/fewer

PLRs compared to the required numbers of crossbar in Cross-Lock.

As an instance, in apex4, only having two PLRs with a 32×32 CLN

and another PLR with a 8×8 CLN can break SAT while its timeout

is set to 2×106
Seconds. However, for the same circuit, Cross-Lock

inserts 11 32×36 crossbars to make it resilient against SAT.

In addition, in order to show that PLRs are SAT-hard instances that

significantly increase the number (M) and computational complexity

(T
Avд
DPLL ) of DPLL calls in each SAT iteration, we calculate the average

clauses to variables ratio using MiniSAT for different logic locking

schemes during deobfuscation. As it can be seen in Fig. 7, clauses to

variables ratio in Full-Lock is 3.77. However, for all other methods this

value is much lower. Across all logic locking schemes, LUT-Lock and

Cross-Lock have higher clauses to variables ratio. Since LUT-Lock

uses key-programmable LUTs for obfuscation, the translated CNF is

MUX-based. However, since they have no back-to-back connection,

the depth of MUX tree is low, which results in reducing the value of

this ratio. The only technique with a close clauses to variables ratio

is Cross-Lock, which is an interconnect locking with a tree of MUX.

However, this ratio is almost 4 (3.77) in Full-Lock.

4.2.2 Security Against Removal Attack. As was mentioned pre-

viously, Cross-lock [7] as a layout-based interconnect locking scheme,

used high-density cone-based selection strategies, such as k-cut and

wire-cut, to decrease the possibility of using removal attack, which

restricts in selecting the wires to insert the crossbar. However, since

the logic of the gates leading each CLN can be negated, even having

the possibility of removing CLN, and finding the functionality of LUTs

does not produce correct functionality, which shows that Full-Lock

has no vulnerability against removal attacks.

4.2.3 Security Against Algebraic Attack. CLN can be expressed

as an affine transformation function of the data input X , of the form

y = A · X + B, where A is an N × N matrix and B is an N × 1 vector,

with all elements dependent on the key input. Although recovering

A and B is not equivalent to finding the key input, it may enable the

successful deobfuscation of CLN. Since Full-Lock replaces the the

preceding gates of selected wires with LUTs, it cannot be transformed

to an affine function. So, it is safe against SAT-based algebraic attacks.

5 CONCLUSIONS
In this paper, we proposed Full-Lock as a SAT-resistant logic locking

solutions. Full-Lock creates a SAT-hard obfuscated netlist by replacing

parts of logic and routing in the design with one or more sets of fully

programmable logic and routing blocks (PLRs). The PLRs are designed

to push the clauses to variables ratio in their CNF representation

close to 4 to create insanely hard circuit SAT problems. With this

mechanism, Full-lock SAT resistance comes from forcing the number

of required recursive DPLL calls in each iteration of the SAT solver to

a very large number, forcing each iteration to take a very long time

to complete. Unlike previously SAT-hard solutions, Full-Lock exhibit

high output corruption if a wrong key is used for activation. Finally,

Since logic locking is twisted into interconnect locking in Full-Lock,

it is resilient against removal and algebraic attacks.

REFERENCES
[1] P. C. Cheeseman, B. Kanefsky, and W. M. Taylor. 1991. Where the really hard

problems are.. In IJCAI, Vol. 91. 331–340.
[2] F. A. Aloul et al. 2002. Solving difficult SAT instances in the presence of symmetry.

In Proc. of the Design Automation conf. (DAC). 731–736.
[3] G.-J. Nam et al. 2004. A comparative study of two Boolean formulations of FPGA

detailed routing constraints. IEEE Trans. Comput. 53, 6 (2004), 688–696.
[4] H. M. Kamali et al. 2018. LUT-Lock: A Novel LUT-Based Logic Obfuscation for

FPGA-Bitstream and ASIC-Hardware Protection. In 2018 IEEE Computer Society
Annual Symp. on VLSI (ISVLSI). 405–410.

[5] H. Zhou et al. 2017. CycSAT: SAT-based attack on cyclic logic encryptions. In Proc.
of the Int’l Conf. on Computer-Aided Design (ICCAD). 49–56.

[6] K. Shamsi et al. 2017. AppSAT: Approximately deobfuscating integrated circuits. In

Hardware Oriented Security and Trust (HOST), IEEE Int’l Symp. on. 95–100.
[7] K. Shamsi et al. 2018. Cross-Lock: Dense Layout-Level Interconnect Locking using

Cross-bar Architectures. In Proc. of the Great Lakes Symp. on VLSI (GLSVLSI). 147–
152.

[8] K. Z. Azar et al. 2019. SMT Attack: Next Generation Attack on Obfuscated Cir-

cuits with Capabilities and Performance Beyond the SAT Attacks. IACR Trans. on
Cryptographic Hardware and Embedded Sys.s (TCHES) 2019, 1 (2019), 97–122.

[9] K. Z. Azar et al. 2019. Threats on Logic Locking: A Decade Later. In Proc. of the
Great Lakes Symp. on VLSI (GLSVLSI). 6.

[10] M. Soos et al. 2009. Extending SAT solvers to cryptographic problems. In Int’l Conf.
on Theory and Applications of Satisfiability Testing (SAT). 244–257.

[11] M. Yasin et al. 2016. Sarlock: Sat attack resistant logic locking. In Hardware Oriented
Security and Trust (HOST), IEEE Int’l Symp. on. 236–241.

[12] M. Yasin et al. 2017. Removal attacks on logic locking and camouflaging techniques.

IEEE Trans. Emerging Topics in Computing 1 (2017), 1–1.

[13] M. Yasin et al. 2017. Security analysis of anti-sat. In Design Automation conf. (ASP-
DAC), Asia and South Pacific. 342–347.

[14] P. Subramanyan et al. 2015. Evaluating the security of logic encryption algorithms.

In IEEE Int’l Symp. on Hardware Oriented Security and Trust (HOST). IEEE, 137–143.
[15] S. Roshanisefat et al. 2018. Benchmarking the capabilities and limitations of SAT

solvers in defeating obfuscation schemes. In IEEE Int’l Symp. on On-Line Testing And
Robust System Design (IOLTS). 275–280.

[16] S. Roshanisefat et al. 2018. SRCLock: SAT-Resistant Cyclic Logic Locking for Pro-
tecting the Hardware. In Proc. of the Great Lakes Symp. on VLSI (GLSVLSI). 153–158.

[17] D. Mitchell, B. Selman, and H. Levesque. 1992. Hard and easy distributions of SAT

problems. In AAAI, Vol. 92. 459–465.
[18] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. 2012. Security analysis of logic

obfuscation. In Proc. of the Design Automation conf. (DAC). 83–89.
[19] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri.

2015. Fault analysis-based logic encryption. IEEE Transactions on computers 64, 2
(2015), 410–424.

[20] M. Rostami, F. Koushanfar, and R. Karri. 2014. A primer on hardware security:

Models, methods, and metrics. Proc. of the IEEE 102, 8 (2014), 1283–1295.

[21] J. A. Roy, F. Koushanfar, and I. L. Markov. 2010. Ending piracy of integrated circuits.

Computer 43, 10 (2010), 30–38.
[22] Y. Shen and H. Zhou. 2017. Double dip: Re-evaluating security of logic encryption

algorithms. In Proc. of the on Great Lakes Symp. on VLSI (GLSVLSI). 179–184.
[23] D.-J. Shyy and C.-T. Lea. 1991. Log/sub 2/(N, m, p) strictly nonblocking networks.

IEEE Trans. Commun. 39, 10 (1991), 1502–1510.
[24] H. S. Stone. 1971. Parallel processing with the perfect shuffle. IEEE trans. comp. 100,

2 (1971), 153–161.

[25] G. Tseitin. 1968. On the complexity of derivation in propositional calculus. Studies
in Constructive Mathematics and Mathematical Logic (1968), 115–125.

[26] P. Tuyls, G.-J. Schrijen, B. Škorić, J. V. Geloven, N. Verhaegh, and R. Wolters. 2006.

Read-proof hardware from protective coatings. In International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES). 369–383.

[27] Y. Xie and A. Srivastava. 2016. Mitigating sat attack on logic locking. In Int’l Conf.
on Cryptographic Hardware and Embedded Sys.s (CHES). 127–146.

[28] Y. Xie and A. Srivastava. 2017. Delay locking: Security enhancement of logic locking

against ic counterfeiting and overproduction. In Proc. of the Design Automation conf.
2017 (DAC). 9.

[29] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte. 2017. Novel bypass attack and

BDD-based tradeoff analysis against all known logic locking attacks. In Int’l Conf.
on Cryptographic Hardware and Embedded Sys.s (CHES). 189–210.

[30] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. V. Rajendran, and O. Sinanoglu.

2017. Provably-secure logic locking: From theory to practice. In Proc. of the ACM
SIGSAC Conf. on Computer and Communications Security (CCS). 1601–1618.

[31] M. Yasin, A. Sengupta, B. C. Schafer, Y. Makris, O. Sinanoglu, and J. V. Rajendran.

2017. What to lock?: Functional and parametric locking. In Proceedings of the Great
Lakes Symposium on VLSI (GLSVLSI). 351–356.

[32] A. Yeh. 2012. Trends in the global IC design service market. DIGITIMES research
(2012).


	Abstract
	Introduction and Background
	A New Perspective of SAT Hardness
	Full-Lock
	Logarithmic Networks for SAT-Hardness
	Strongly Twisted CLN into LUT/Logic
	Inserting SAT-hard PLRs into Design

	Experimental Results
	Blocking vs. almost non-Blocking CLN
	Full-Lock Security Against Various Attacks

	Conclusions
	References

