
SMT Attack: Next Generation Attack on
Obfuscated Circuits with Capabilities and
Performance Beyond the SAT Attacks

Kimia Zamiri Azar, Hadi Mardani Kamali,
Houman Homayoun, and Avesta Sasan

ECE Department, George Mason University, Fairfax, USA,
{kzamiria,hmardani,hhomayou,asasan}@gmu.edu

Abstract.
In this paper, we introduce the Satisfiability Modulo Theory (SMT) attack on
obfuscated circuits. The proposed attack is the superset of Satisfiability (SAT) attack,
with many additional features. It uses one or more theory solvers in addition to its
internal SAT solver. For this reason, it is capable of modeling far more complex
behaviors and could formulate much stronger attacks. In this paper, we illustrate
that the use of theory solvers enables the SMT to carry attacks that are not possible
by SAT formulated attacks. As an example of its capabilities, we use the SMT attack
to break a recent obfuscation scheme that uses key values to alter delay properties
(setup and hold time) of a circuit to remain SAT hard. Considering that the logic
delay is not a Boolean logical property, the targeted obfuscation mechanism is not
breakable by a SAT attack. However, in this paper, we illustrate that the proposed
SMT attack, by deploying a simple graph theory solver, can model and break this
obfuscation scheme in few minutes. We describe how the SMT attack could be used in
one of four different attack modes: (1) We explain how SMT attack could be reduced
to a SAT attack, (2) how the SMT attack could be carried out in Eager, and (3)
Lazy approach, and finally (4) we introduce the Accelerated SMT (AccSMT) attack
that offers significant speed-up to SAT attack. Additionally, we explain how AccSMT
attack could be used as an approximate attack when facing SMT-Hard obfuscation
schemes.
Keywords: Reverse Engineering, Logic Locking, Boolean Satisfiability, Satisfiability
Modulo Theory, SMT, Theory Solver.

1 Introduction
The cost of building a new semiconductor fab was estimated to be $5.0 billion in 2015, with
large recurring maintenance costs [1][2], and sharply increases as technology migrates to
smaller nodes. To reduce the fabrication cost, most of the manufacturing and fabrication is
pushed offshore [1]. However, many of the offshore fabrication facilities are considered to be
untrusted. Manufacturing in untrusted foundries has raised concern over potential attacks
in the manufacturing supply chain, with an intimate knowledge of the fabrication process,
the ability to modify and expand the design prior to production, and an unavoidable access
to the fabricated chips during testing. Accordingly, fabrication in untrusted foundries
has introduced multiple forms of security threats from supply chain including that of
overproduction, Trojan insertion, Reverse Engineering (RE), Intellectual Property (IP)
theft, and counterfeiting [2].

To counter these threats, various hardware design-for-trust techniques have been
proposed, including watermarking, IC metering, split manufacturing, IC camouflaging, and
logic locking [3, 4, 5, 6, 7, 8]. The watermarking and IC metering techniques are passive
protection models that could be used to detect overproduction or illegal copies, however,
they cannot prevent IP theft or overproduction. The Camouflaging techniques use logic

mailto:{kzamiria, hmardani, hhomayou, asasan}@gmu.edu

2 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

Table 1: List of Abbreviations Frequently used in this Paper.
Term Description Term Description
SMT Satisfiability Modulo Theory SAT Boolean Satisfiability
CNF Conjunctive Normal Form DI Discriminating Input
DIP Discriminating Input Pattern DLL Delay + Logic Locking
TDK Tunable Delay Key-gate RLL Random Logic Locking
TDB Tunable Delay Buffer KPG Key Programmable Gates
KPC Key Programmable Circuit KDC Key Differentiating Circuit
DIVC DI Validation Circuit HD Hamming Distance

SH SAT-Hard Obfuscation HC High Corruption Obfuscation
TO Timeout RLL Random Logic Locking

gates (or other physical structures such as dummy vias) with high structural similarity, that
are indistinguishable from one another to protect against reverse engineering. However,
camouflaging is only effective against post-manufacturing attempt(s) of reverse engineering,
while it provides no limitations against a foundry’s attempt at reverse engineering, as a
foundry has access to all masking layers and is not trapped by structural ambiguity for
being able to logically extract a netlist. The obfuscation (logic locking) [8] on the other
hand, introduce limited programmability by inserting key programmable gates to hide or
lock the functionality. By using obfuscation, the target chip produces the correct output
only when the key inputs are correct. The purpose of obfuscation is to protect against
RE at an untrusted foundry. By using obfuscation, even by having all mask information,
the attacker cannot generate the correct functionality of a circuit without the correct key
values, and such key values are not shared with the manufacturer.

Shortly after the introduction of first published obfuscation schemes, a new and
powerful attack based on Boolean Satisfiability (SAT) was formulated and revealed [9, 10].
In this attack model, the attacker has access to a reverse engineered but obfuscated
netlist, and a functional and unlocked chip. Using this attack model, the formulated
Boolean Satisfiability Attack (SAT Attack) can effectively break all previously proposed
logic encryption techniques, including random insertion (RLL), fault-analysis (FLL),
interference-based logic locking (SLL), and logic barriers [8, 11, 12, 13, 14]. The SAT
solver iteratively eliminates sets of incorrect keys and finds the correct key within a small
time, and unlike Brute force attack that requires attack time exponential with respect
to the number of inputs, its execution time grows almost polynomially. Existing SAT
attack, which can be modeled with query-by-disagreement (QBD) or uncertainty-sampling,
minimizes the number of queries (inputs) required to learn (deobfuscate) the target function
(obfuscated logic). Also, SAT attack terminates when no more disagreeing inputs can be
found, at which time the attack guarantees to find the correct key. However, to defend
against powerful SAT attacks, different obfuscation schemes have been proposed, such as
SARLock and Anti-SAT [15, 16, 17]. However, further research illustrated that some of
these locking schemes are vulnerable to other types of attacks such as Signal Probability
Skew (SPS) and removal attacks [18].

In addition, introducing approximate-based attacks, such as AppSAT [28] or Double-DIP
[19] worsens the problem. Unlike the existing SAT attack, which needs exact learning
model, approximate-based attacks can be modeled using approximate learning problems,
such as the probably-approximately-correct (PAC) setting [29, 30]. Based on the PAC
model, an attack A, with a probability of λ, will provide an ε-approximation (approximately
correct) of the target function (obfuscated logic). Note that, an ε-approximation of the
target function is a function with only %ε (ε ∈ O(1

2n)) disagreement with correctly unlocked
circuit. Accordingly, the approximate SAT attacks can find an approximate key which
produces a very small error (%ε) in the behavior of the unlocked circuit in comparison
with a correctly unlocked circuit. The approximate attacks are shown to effectively find
an approximate key for SAT-resilient defenses including SARLock [16], and Anti-SAT [17].
Furthermore, Bypass attack [27] is also proposed for creating an auxiliary circuit that
recovers the flipped output(s) while approximate key is applied. Then it adds a bypass
circuit to correct the wrong output(s) when input pattern(s) cause incorrect output(s).
Consequently, it is able to eliminate even small error in the behavior of the unlocked circuit
by approximate key, and behave completely the same compared to correctly unlocked chip.

The SAT attack benefits from the Directed Acyclic Graph (DAG) based nature of input

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 3

netlist and the ability of SAT-attack to logically model the obfuscation into a satisfiability
problem. To counter the SAT attack, recently some design obfuscation schemes have
been proposed to violate these assumptions. For instance, in the approach adopted in
[21], the DAG nature of netlist is altered by introducing cycles into the netlist for the
purpose of trapping a SAT attack. Another example is the approach adopted in [22],
where the obfuscation, in addition to logical properties of the netlist, targets the setup
and hold properties (timing properties) of the circuit as a locking mechanism. Considering
that setup and hold time are not logical properties, they cannot be translated into CNF
statements for formulating a SAT attack. However, in this paper, we illustrate that even
using these non-logical properties for obfuscation, does not increase the security of an
obfuscated netlist, indicating the need for further study and exploration in this domain to
generate obfuscation schemes with provable security.

The contributions of this paper is as follows:
I) Introducing SMT Attack: We present Satisfiability Modulo Theory (SMT)-based

attack on obfuscated circuits, that expands the capabilities of previously proposed SAT
attack by assigning theory solvers to monitor the behavioral and non-functional properties
of the obfuscated circuit. To illustrate the capabilities of SMT attack, we use an SMT
solver and invoke a graph-theory solver to break the logic and timing obfuscation scheme
introduced in [22].

II) Introducing Accelerated SMT Attack: We illustrate that by adopting theory
solvers, not only we can observe, monitor and learn from the non-functional behavior of
an IC during an attack, but also we can significantly reduce the attack time in specific
obfuscation schemes. In this paper we use a BitVector theory solver to reduce the execution
time of SMT attack (compared to a SAT attack) by means of finding discriminating inputs
that have much higher pruning power over the SMT solver’s decision tree.

III) Approximate-based SMT Attack: We further equip our proposed Accelerated
SMT attack with logistic to discriminate between SAT-hard and non-SAT-hard obfuscations
if a hybrid-obfuscation scheme contains both. Using this approach, we quickly find the
non-SAT-hard obfuscation keys, detect the SAT-hard solution and without spending
exponential time, we exit and generate the approximate key. In addition, unlike previous
approximate SAT attacks, we can guarantee that the approximately unlocked circuit at
most have d bits of difference in the worst case (for any given input) with the correctly
locked circuit, with d being 1 for all previously proposed SAT-hard solutions.

The rest of the paper is organized as follows: Section 2 presents the background and
previous work related to the logic obfuscation and various attack models. The limitation
of SAT-based attacks is discussed in section 4. Section 5 explains the overall structure of
SMT solvers and their capabilities for attacking obfuscated circuits. Section 6 introduces
The SMT attack on obfuscated circuits and study four different modes of the SMT attack.
Section 7 captures our experimental and simulation results. Finally, Section 8 concludes
the paper.

2 Background
2.1 Boolean Logic Obfuscation
Logic locking and netlist obfuscation schemes introduce limited programmability into a
netlist by means of inserting additional key programmable gates at design time. After
fabrication, the functionality of the IC is programmed by loading the correct key-values.
The key-inputs could be stored in and driven by an on-chip tamper-proof memory [23].
The purpose of inserting key-gates is protecting the IC design from untrusted foundries.
Since the functionality of a design is locked with a secret key, the attacker cannot learn
the functionality of the obfuscated netlist after reverse engineering. Logic locking and
obfuscation schemes vary in terms of the usage of different key-gates types and key-gates
insertion policies [24, 25]. For combinational circuits, logic locking can be classified based on
key-gates types to different categories. XOR/XNOR based logic locking [12, 8], MUX based
logic locking, and LUT based logic locking [14, 15] are the most common mechanisms. Also,
there are different algorithms for inserting the key-gates in the circuit. Some of these policies

4 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

SAT-Resilient Locking Schemes

Before 2008 2008–2010 2010–2015 SAT

No Defense
Scheme
Against All
Threats

IP Piracy
Overproduction
Counterfeiting
Reverse
Engineering

2016 2018

Sensitization &
Justification2012
[12]

SAT
Attack2015
[9, 10]

2017

SARLock2016 [16]
Anti-SAT2016 [17]

Removal2016 [26]
SPS2016 [18]

SFLL2017 [20]

CycSAT2017

[32]
SMT

Cyclic Locking2016 [31]

AppSAT2017 [28]
Double-DIP2017 [19]
Bypass2017 [27]

RLL2008 [8]

FLL2015 [13]

SLL2012
[12]

Attack

SRCLock2018

DLL2017

[22]

Logical Locking

Reconfig.
Barrier2010
[11]

LUT-Lock2018 [15]

[21]

Figure 1: 10-Year History of Logic Obfuscation, the Defense Solutions, and Attack Models.

include random insertion (RLL), fault-analysis (FLL) insertion, and interference-based
logic locking (SLL) algorithms, SARLock, Anti-SAT , etc. [8, 12, 13, 16, 17].

Fig. 1 captures the evolving history of obfuscation defense schemes and attack
formulations since the year 2008 to the current date. After introduction of SAT attack,
in 2015 in [10, 9], as illustrated in this figure, researchers proposed various mechanisms
for building SAT hard obfuscation solutions. However, many of such obfuscation schemes
were later broken using newer attacks like as SPS, removal, bypass, and AppSAT [18, 19,
26, 27, 28], making the current defense schemes unreliable. After 2017, a new breed of
obfuscation schemes instead of building logical obfuscation schemes has been introduced,
relied on breaking the SAT assumptions for building SAT hard solutions without having
the vulnerabilities of the previous SAT-Hard solution. For example, Cyclic obfuscation
[31] and its improved defense, the SRCLock[21], by introducing cycles into netlist break
the SAT model as the netlist can no longer be represented by a Directed Acyclic Graph
(DAG). Alternatively, the Delay Logic Locking (DLL) [22] extends the reach of obfuscation
beyond logic and locks the circuit using its delay and timing properties, attempting to
build SAT hard solutions. In this paper, we introduce the SMT attack that could break
such locking and obfuscation mechanisms by means of parallel invocation of SAT and
theory solvers to model the non-logical and behavioral aspects of a circuit operation.

2.2 Behavioral logical obfuscation
As previously discussed, the logic-based obfuscation schemes that rely on extending the
Boolean behavior of a circuit can be broken by at least one of the state-of-the-art attacks,
including SAT, SPS, removal, bypass, and AppSAT [9, 10, 18, 19, 26, 27, 28]. Hence,
recent researches have been focused on obfuscation schemes that fundamentally violate
the assumptions of these attacks with respect to the nature of obfuscated circuit, or use
non-logical properties of a netlist to obfuscate its behavior [21, 22, 31].

For lack of EDA tool support and limited knowledge in designing cyclic Boolean logic,
most of all netlists designed and fabricated today are acyclic. One of the first attempts
to break the state of the art attacks, including SAT attack, was proposed in [31] which
suggested using cycles in combinational circuits, and illustrated that use of cycles results
in either a SAT solver being trapped, or it generates incorrect key even after timely
termination. This obfuscation scheme, however was shortly after broken by CycSAT attack
in [32]. In the CycSAT attack, the netlist is first pre-processed based upon which a set
of constraining clauses are generated. The CycSAT attack then uses these constraining
clauses, in the original SAT attack, allowing the SAT solver to effectively open the cycles
without being trapped, or incorrectly terminated. However, the limitation of [31] was
addressed in SRCLock [21] to prevent a pre-processor from extracting all needed constraints
from a cyclically locked circuit. SRCLock focuses on building an exponential relation
between the number of inserted feedbacks and number of generated cycles by means of
creating super cycles.

The second obfuscation of interest to this paper is the logic and timing obfuscation
scheme in [22]. In this obfuscation scheme, the delay properties of a circuit are obfuscated

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 5

Original Netlist

Obfuscation

Obfuscated IP

Verification Fabrication Packaging

LockedMasksGDSII

IC Design

Activation

IP Functional IC

Trusted
IP Owner

Untrusted
Design/Implementation

Trusted
Activation

Market

IC OwnerRTL Netlist

Figure 2: ASIC Design Flow Integrated with Obfuscation/Activation.

with the ultimate goal of introducing setup and hold violation if the correct key is
not applied. In this case, the obfuscation, in addition to the logical behavior of the
netlist, attempts to change its behavioral (timing) properties. Considering that timing is
not translatable to CNF, the SAT solver remains oblivious to the keys used for timing
obfuscation. Hence using a SAT attack to deobfuscated this circuit, result in a discovery
of all keys used for logic obfuscation, but random assignment to all keys used for timing
obfuscation and the circuit remains locked.

In this paper, we construct an attack based on Satisfiability Module Theory solvers,
and illustrate that the capability of this attack goes far beyond that of SAT attacks. More
precisely, with specific formulation, we illustrate that SMT attack on obfuscated circuits
could be significantly faster and more efficient compared to SAT attacks on Boolean logic
obfuscation. Additionally, it could be used to attack behavioral logic obfuscation schemes,
which is not possible by a pure SAT-based attack. To illustrate the second point, we attack
and break the timing-logic obfuscation scheme in [22], based on which we generalize and
illustrate how other similar SMT attacks could be formulated.

3 Attack Model
The SMT attack is an oracle-guided attack. We assume that the attacker has the
reverse engineered but obfuscated netlist and a functional IC (oracle) that is unlocked. The
attacker can query the oracle with any stimuli i, and observe its output o. The purpose of
the attack is to find the key inputs, that make the obfuscated netlist logically equivalent
to that of the unlocked netlist.

As it can be seen in Fig. 2, IP owner obfuscates the Original Netlist of IP. Assuming
that design integration, verification, fabrication, and packaging have been accomplished in
untrusted regime, attacker is able to obtain the obfuscated (locked) netlist from (1) the
IC design, or by reverse engineering the (2) synthesis/implementation (layout), (3) mask,
or (4) a manufactured IC. In addition, the attacker is able to buy the correctly unlocked
(activated) IC in the open market. Consequently, the attacker can apply arbitrary input
to activated IC and observe its corresponding output.

4 Limitation of SAT Attack
A SAT attack works perfectly fine if the logic obfuscation is of Boolean nature. This is
because any Boolean logic could be easily transformed into its Conjunctive Normal Form
(CNF) and be converted into a satisfiability assignment problem. But in case of Behavioral
logic obfuscation, the locking mechanism is designed to control aspects of circuit operations
that could not be translated to CNF as required by a SAT solver. The delay-locking (DLL)
scheme proposed in [22], cyclic-based obfuscation presented in [31], and SRCLock [21] are
good instances of such locking mechanism. For the purpose of locking, DLL uses a tunable
delay key-gate (TDK) which is illustrated in Fig. 3. TDK consists of a conventional
key-gate (XOR/XNOR) with a tunable delay buffer (TDB). The capacitive load of the
buffer is controlled by a transmission gate, where activating the transmission gate increases
the wire load capacitance of the internal wire, resulting in larger TDK propagation delay.
Hence, the functionality and propagation delay of a TDK, both, depends on the value of
its key-inputs.

In DLL, the TDK cells are used to control the setup and hold time violations such that

6 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

k1
k2
x

yTunable Delay
 key-gate

(TDK)

yk1
x

k2

C

Tunable Delay
Buffer (TDB)

k2

k1k2 f(x) Delay

00 y = x d0
01 y = x d1
10 y = x d0
11 y = x d1

(a) (b) (c)
Figure 3: Overall Structure of Tunable Delay Key-Gate (TDK) used in Delay Logic Locking
(DLL)[22]. (a) TDK Gate with Two Keys, one for Logic and one for Delay Locking. (b) Layout of
TDK with a Tunable Delay Buffer (TDB), (c) Functionality and Delay of the TDK

only one sequence of activation keys guarantees that circuit operates with no violation. To
apply the DLL, a design is first altered such that most timing paths are balanced to be
sensitive with respect to small changes in the path delay, such that a small variation in
delay causes setup or hold violations. This is achieved by means of carefully engineering the
clock skew, cell sizing, and Vth swapping. Then the TDK cells are inserted in the common
portions of setup and hold critical paths, such that attempting to only fix setup causes
hold violation, and attempting to fix hold causes setup violation with the exception of one
sequence of correctly configured TDK keys that assures all timing paths meet both setup
and hold check timing constraints. Considering that the delay is not a logical behavior,
the TDK cell behavior could not be completely captured by CNF, hence the delay locking
is not directly attackable by a SAT attack. In [22] it was illustrated that even a mixed
integer linear programming (MILP) based attack has up to 39% timing violation ratio
(TVR). However, as we will illustrate in this paper, by employing an SMT attack and by
instantiating an integrated graph theory solver along with its SAT engine, we could find
the keys to this obfuscation problem in few minutes.

5 SMT Solver
In this section, we first review the usage and capabilities of an SMT solver, and then we
illustrate how the SMT solver could be used to form an SMT attack on obfuscated circuits
regardless of obfuscation’s reliance on logical or non-logical properties of a circuit.

5.1 SMT Usage and Capabilities
A Satisfiability Modulo Theory (SMT) is used to solve a decision problem while honoring
constraints that could be expressed using first-order theories such as equality, reasoning,
arithmetic, graph-based deduction, etc. Hence, it could be considered as a solver for a
broad set of problems that could be categorized as Constraint Satisfaction Problems (CSP),
which is a superset of Boolean Satisfiability Problems (BSP) that are solvable by SAT
solvers. Additionally, the ability to express theories such as inequality (e.g. 3x+ y < z)
provides a much richer Application Programming Interface (API) to the end user to define
a problem compared to that of a SAT solver.

In general, there are two different approaches for solving an SMT problem. The first
approach is based on translating the problem into a Boolean SAT instances denoted by
Eager approach; In this approach the existing Boolean SAT solvers are used as is. However,
the SMT solver has to work a lot harder for solving some problems that are otherwise very
obvious (e.g. for checking the equivalence of two 32-bit values). However, by deploying a
theory solver, this could be achieved in no time. For this reason, many SMT solvers follow
another approach which referred to as the Lazy Approach. The Lazy approach integrates the
Boolean satisfiability solvers, which are based on the Davis-Putnam-Logemann-Loveland
(DPLL) in modern SAT, and theory solvers that decide the satisfiability of formulas over
specific theories. Each theory solver provides two capabilities: (1) theory propagation
among various theory solvers for checking possible conflicts on partial assignments, and
(2) clause learning result of which is shared by the SAT solver to speed-up pruning
the decision tree. Additionally, since several applications of SMT deal with formulas
involving two or more theories at ones, modern SMT solvers provide the capability of

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 7

combining theory solvers using Nelson-Oppen [33] or Shostak [34] method to support a
more expressive language. In combining theory solvers, if two theories Γ1 and Γ2 are both
defined axiomatically, their combination can simply be defined as the theory axiomatized
by union of the axioms of the two theories, Γ1 and Γ2. For example, Consider Γ1 and
Γ2 are two different theories, it is possible to define Γ1 ⊕ Γ2 as a combined theory of Γ1
and Γ2, where Γ1 ⊕ Γ2 is the set of all models that satisfy Γ1 ∪ Γ2. This is adequate if
the signatures of the two theories are disjoint. Otherwise, if Γ1 and Γ2 have symbols in
common, one has to consider whether a shared function symbol is meant to stand for
the same function in each theory or not. In the latter case a proper signature renaming
must be applied to the theories before taking the union of their axioms. in [36] they have
described general conditions for the combination of theories that may have symbols in
common. The ability to combine theory solvers proves extremely useful when dealing with
applications such as model checking and predicate abstraction-based model check in which
we need to check the satisfiability of formulas over several data types.

Theories are defined as classes of models with the same signature. More precisely, a
Σ-theory Γ is a pair of (Σ, A) where Σ is a signature and A is a class of Σ-models. In
general a theory solver for a theory Γ is a procedure which takes as input a collection of
Γ-literals µ and decides whether µ is Γ-satisfiable. A theory (Γ-solver) to be effectively used
within an SMT solver should have the following properties [35]: (1) Model Generation:
theory solver should be able to produce a Γ-model of the problem description µ. (2)
Conflict Set Generation: when the theory solver reaches inconsistency, it should be able
to produce a subset η of µ which has caused the inconsistency. The subset η is referred
to as theory conflict. (3) Incrementality: The Γ-solver should be able to save and keep
its status across invocation calls to avoid recomputation. (4) Backtrackability: it is
important for theory solver to has the ability to undo the step if it is needed. Equality with
Uninterpreted Functions (EUF), linear real arithmetic (LRA), linear integer arithmetic
(LIA), Mixed Integer and Real Arithmetic, Difference Logic, Bit Vectors, Arrays, etc. are
the examples of theories commonly used in SMT.

In this paper, we use an SMT solver and formulate some attacks against specific
obfuscated circuits, illustrating the power of adapting various theory solvers for extending
the capabilities of attack by constraining and monitoring non-logical properties of a netlist.
For this purpose, and to illustrate that SMT attack is a super-set to the SAT attack, we
first illustrate that the original SAT attack against obfuscated circuits could be effectively
formulated using an SMT solver, resulting in similar performance. Then we illustrate
how the SMT solver could be used to attack logic obfuscation problems out of the reach
of pure SAT attacks, and for that purpose we break the logic and timing obfuscation in
[22] which is not possible by a pure SAT attack. We illustrate that this attack could be
achieved using both Eager and Lazy approach of SMT attack. Then we illustrate how the
SMT attack could become significantly more efficient than a SAT attack by adopting the
capabilities of theory solvers like BitVector, and formulate an accelerated SMT attack, that
requires substantially smaller iterations and runtime compared to a SAT attack against
specific obfuscation schemes. In addition, we formulate the accelerated SMT attack to be
capable of approximate attacks.

6 SMT Attack
When building an SMT attack on obfuscated circuits, as illustrated in Fig. 4, the SMT
attack could be invoked with any number and combination of theory solvers, and a SAT
solver. In order to use the SMT solver to formulate an attack, few preliminary steps should
be taken. The first step is to make a minor modification to an extracted netlist after
reverse engineering, providing the capability of testing various behaviors of the obfuscated
circuit to the SAT or SMT solver. The transformation is simply replacing the obfuscated
cells with their equivalent Key Programmable Gates (KPG). A KPG performs the same
function as the obfuscated cell, however, it allows building a key controlled representation
of the logical behavior of the obfuscated cell for the purpose of logical-model building.
Fig. 5 captures the KPG translation gates for each type of the gates that have previously

8 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

Bit-vectors Arrays Equality Graph...

Theory-n
extraction

...
Theory-2

extraction

Translation
module

Obfuscated netlist Circuit
extraction

Graph
extraction

SAT
solver

Update
TLC

Update
SMTLC

Update
SATCC + LLK

Quantifier-free
SMT solver

SMT solver

SAT/UNSAT

Graph
solver

Theory solvers

Figure 4: Overall Architecture of SMT Attack for Circuit Deobfuscation. In SMT attack multiple
theory solvers could be simultaneously invoked along with a SAT solver to model complex attack
scenarios.

TDK

k0 k1

k1

k0

LUTn

i0 i1 i2 in-1
i0 i1 i2 in-1

k0
k1

k2

k2
n

-1

...

...

i0

i0

Key Gate Translated Gate

1. Tunable Delay Gate

2. Look-Up-Table

Key Gate Translated Gate

k1

i1

i1

i2

4. Camouflaged Gate

5. XOR Gate

k1i1
i2

k1

i1

AND/XOR

Key Gate Translated Gate

k1
k1

3. MUX

i1
i1

i2
i2

k1

i1

6. XNOR Gate

k1

i1

Figure 5: Translation Table for Converting the Camouflaging and Obfuscation Gates to Key
Programmable Gates (KPG).

used in recent literature for the purpose of obfuscation. For example, when attacking a
camouflaged cell that could be either an AND gate or an XOR gate, it is replaced with
its KPG which is simply a MUX with each of its input tied to one of the camouflaged cell
possibilities. The function performing the KPG replacement in the algorithms described
in this paper is ReplaceKPG(Nobf) that replaces all obfuscated cells in an obfuscated
module with their KPGs equivalent based on translation table in Fig. 5.

When using an SMT solver, before invoking a theory solver, the input model or input
behavior should be translated to a model µ which is understood by that theory solver. As
illustrated in Fig. 4, the translation step may be different for each theory solver used. As
an example, to break the Delay Logic Locking in [22], we use a graph theory solver and
translate the obfuscated netlist to a graph model that is understood by the graph-theory
solver. The required translation step (µ← Netlist) is simply the inversion of the netlist
under attack to its graph representation, where each gate is a node in the graph, and each
net an edge. We have additionally included the functionality to compute the logical effort
in our graph translation routine, that annotate each edge with the logical effort needed to
drive that edge as a measure of its delay. We could alternatively use a second theory solver
to capture the static timing of the netlist and exchange information with the graph theory
solver for more accurate results. The final step before invoking the SMT/SAT attack is
the translation of the netlist under attack into its CNF form as described in [10].

After building model µ for each Theory and SAT solver, the SMT attack is formulated
based on the flow of information exchange between theory and SAT solver. In General,
the formulation of the SAT portion of SMT solver is similar to that of pure SAT attack
as described in [10]. However, in addition to the SAT solver, each theory solvers is then
tuned by declaration of theory constraint. At this stage, invoking the SMT solver returns
a satisfiable assignment and a list of learned theory and conflict clauses for theory solver
and SAT solver respectively. The SMT attack is then achieved by composing the correct
control flow for invocation of theory and SAT solver(s), and by managing the intermediate
sequence of CNF-based information exchange. The general flow of information in an SMT

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 9

SAT Circuit
(SATC)

Obfuscated
Circuit

CLocked (X, Y)

Y
X

KPG
KPG

KPG

KPG

KPG

C(X,K,Y)

Y

X

K

Key-
Programmable
Circuit (KPC)

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2)

KPC

KPC

X

DI Validation
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

(a) (b) (c) (d) (e) (f)

Figure 6: (a) Obfuscated Circuit (b) Translated to KPC (c) Generating KDC (d) Validation
Circuit for Discriminating Inputs (DIVC) (e) Generating SKCVC (f) constructing The final
Satisfiability Circuit (SATC) for finding a new DI.

formulated problem, including that of SMT attack, is illustrated in Fig. 4.

6.1 Attack Mode 1: SMT reduced to SAT Attack
As was mentioned previously, the SAT attack finds a functionally correct key for an
obfuscated circuit by checking a small subset of all input patterns, hence removing the
need for brute-force testing of all input patterns. Considering that SMT solver is a superset
of SAT solver and contains a SAT solver, any attack formulated for SAT could be similarly
formulated for an SMT solver.

Alg. 1 illustrates the SAT attack that could be similarly implemented in a SMT solver.
The formulation of attack remains similar to that of original attack proposed in [9, 10].

Algorithm 1 SMT Reduced to SAT Attack in [9, 10]
1: function SAT_Attack(Obfuscated_Netlist Nobf , Functional_Circuit Corg)
2: KPC ← ReplaceKPG(Nobf);
3: C(X, K, Y) ← Circuit_Translation_to_CNF(KPC);
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 6= Y2);
5: SCKVC = TRUE;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE; . Learned Clauses
8: SMTLC ← SATC ;
9: while (((XDI , K1, K2, CC) ← SMT.Solve(SMTLC))= TRUE) do

10: Yf ← Corg(XDI);
11: DIVC = C(XDI , K1, Yf) ∧ C(XDI , K2, Yf);
12: SCKVC = SCKVC ∧ DIVC ;
13: LC = LC ∧ CC
14: SMTLC = KDC ∧ SCKVC ∧ LC ;
15: Key ← SMT.Solve(SMTLC);

The SAT attack in Alg. 1 follows the steps illustrated in Fig. 6. In this algorithm, the
obfuscated gates are first replaced with key programmable gates (KPG) to create the Key
Programmable Circuit (KPC). Then the CNF representation of the circuit is generated.
Two KPCs are then used to generate a Key Differentiating Circuit (KDC). The KDC
receives an input and two different keys and determines whether they generate the same
output or not. The KDC is then used as the first SMT satisfiability problem represented by
SMTLC for the first invocation of SMT solver. Calling the SMT solve function on the posed
formula then return an assignment for keys K1, K2, and the discriminating input XDI

such that the formulated SMTLC is satisfied. In addition, the SMT solver returns a list of
learned Conflict Clauses (CC). In line 10, the correct output (Yf) for the discriminating
input XDI is found. In the next step, the SMT formula needs to be updated to use the
discriminating input and learned clauses to further constrain the satisfiability problem.
This is done in multiple steps. In line 11, the discriminating input found in the current
iteration is used to create a Discriminating Input Validation Circuit (DIVC) which is
illustrated in Fig. 6(d). The DIVC circuits formed at each iteration are ANDed together to
create a circuit that checks the correctness of a key for all previously found discriminating
inputs. This circuit is referred to as Set of Correct Key Validation Circuit (SKCVC). In
line 13, the currently found Conflict Clauses are added to the set of previously found

10 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

µ

Theory

SAT Solver

µ*

SAT/UNSAT
(a)

µ

Theory SAT Solver

SAT/UNSAT

(b)
Figure 7: Execution Flow of (a) SMT Eager vs. (b) SMT Lazy approach

TDK TDK

i1

i2
i3
i4 K0 K1

g1 g2

g3

g4

y

K2 K3

(a)
i4

i2
i3

K0

K1 K3

i1 y

K2

(b)

i1
i2
i3
i4

g1
K1 = 0

K1 = 1

g2 g3
g4 y

(c)
Figure 8: Converting a (a) netlist obfuscated with TDK cells to a (b) Key Programmable Circuit
(KPC), and (c) the representative graph of the netlist annotated with TDK cell delays.

Learned Clauses (LC). Note that this step is done implicitly for SMT is a stateful solver.
Finally, in line 14 the SMT satisfiability problem is constrained by ANDing together the
KDC, SCKVC and LC clauses. The SAT attack formulated using SMT solver continues
until the SMT solver returns UNSAT. A final call to the SMT solver returns the correct
key. Note that this SMT attack is a one-to-one translation of the original SAT attack
in [9, 10]. In the result section of this paper, we illustrate that the formulation of SAT
attack using SMT solver results in very similar performance to that of pure SAT attack.
However, the SMT attack could further benefit from the usage of SMT solvers to extend
its capabilities to attack obfuscation schemes that could not be logically modeled.

6.2 Attack Mode 2: Eager SMT Attack
Theory solvers could be used to extend the capabilities and performance of SMT solver
compared to that of a SAT solver. This, as illustrated in Fig. 7 could be done by (1) using
the theory solver to extract all required clauses that complete the CNF description with
respect to the obfuscation scheme and then to perform a SAT attack, referred to as the
SMT Eager approach. This could be thought (2) by invoking the theory and SAT solver
in parallel to simultaneously model and solve the problem, referred to as Lazy approach.

In this section, we illustrate how the Eager approach of SMT attack could be used to
attack the obfuscation schemes that could not be broken or understood by a pure SAT
attack. For this purpose, we formulated an SMT attack on the delay-locking (DLL) scheme
proposed in [22]. Notice that the proposed approach could be used in formulating attacks
on other obfuscation techniques that rely on non-logical properties of circuit obfuscation
such as timing, power, delay, etc. by using the appropriate theory solvers.

Fig. 8 illustrates the translation steps for converting a DLL[22] obfuscated circuit
(using translation table in Fig. 5) to its key programmable circuit and captures its graph
representation. As illustrated in Fig. 8(b), K1 effectively has no impact on the logical
behavior of the circuit and only changes its delay properties. Hence, subjecting this
obfuscated circuit to a SAT attack results in a random assignment to K1. Therefore, by
having k TDK cells, which have 2k keys in total, a SAT solver returns one logically correct
key sequence among 2k different set of such logically correct keys that control the TDK
cells, however, only one of such keys doesn’t result in setup and hold violations. Hence, a
correct attack should consider the delay and timing properties of the netlist in addition to
its logical correctness.

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 11

Common

Launch

Capture

Data
tcs-lr tpd

t
se

tu
p

tcs-cr

tcq

Figure 9: The Naming Convention for Different Sections, and Various Delay Components of a
Timing Path

The shortcoming of SAT attack to capture the delay and timing properties of the netlist,
when attacking DLL obfuscation, is remedied in an SMT attack by means of using a graph
theory solver. To illustrate this, we formulate an Eager and a Lazy SMT attack on DLL
obfuscation. In the Eager approach, we use the theory solver as a mean of pre-processing
the netlist by which we deduct the complete set of Valid-Path Constraint Clauses (VPCC)
between all primary inputs and outputs of the obfuscated netlist. This VPCC is a CNF
presentation of all valid assignment of the keys, such that no setup or hold violation is
created. Note that among many such possibilities, only one possibility has both the correct
timing and the correct logical behavior.

To build the VPCC clauses, we should compute the setup and hold constraints on
every timing path. The setup and hold timing checks for a timing path is expressed using
the following inequalities:

tcs−lr + tclk−q + tp + tsetup + U ≤ tcs−cr + Tclk (1)
tcs−lr + tclk−q + tcd ≥ thold + tcs−cr + U (2)

In this equation which uses the notation in Fig. 9, the tcs−lr is the clock source
to launch register delay, tcs−cr is the clock source to capture register delay, U is the
clock jitter/uncertainty, tclk−q is the clock to q delay of the launch register, tsetup is the
capture-register setup time, thold is the hold time requirement for the capture register, tp
is the propagation delay through the longest path in the timing path, and finally the tcd is
the propagation delay through the shortest pah in the logic. Considering that the DLL
logic is only inserted on Data sections a of timing path (according to the tormentingly in
Fig. 9), it can only affect the tp and tcd. Note that it is also possible to enhance the DLL
obfuscation beyond that described in [22] and use the TDK cells for building clock skew
in the clock network, however, a similar attack still could be formulated. For now, let’s
consider that DLL, as described in [22], only affects the Data section of timing path. The
equations 1 and 2 could be re-written as:

tp ≤ Tclk + (tcs−cr − tcs−lr)− tclk−q − tsetup − U = Upper (3)
tcd ≥ thold + (tcs−cr − tcs−lr)− tclk−q + U = Lower (4)

Before performing any reverse engineering, we know the TCLK from the functional
chip purchased on market. Note that a functional chip (the oracle) is needed to perform
the SAT or SMT attack as explained in section 3. Now let’s consider a netlist obtained
after reverse engineering. The end-point and start-point registers for each timing path are
known. Hence, by means of spice simulation, the register could be characterized and the
tclk−q, tsetup and thold are extracted. Note that there are limited type of registers used in
a physical design, and at this step only a handful of registers need to be characterized.
Extracting a measure for uncertainty could be also achieved by means of spice simulation.

At this point, considering that a TDK cell can change the delay of a timing path, the
delay of each timing path (Dj) could be divided into a constant delay (Cj) and a variable
delay (Vj(K)), where the variable delay is a function of the number of TDK cells in that
timing path, and the key assumed for each TDK. Hence, Delay of Timing path j from
start point s to endpoint p (Ds→p

j) that passes through N TDK cells each with delay
Ds→p

T DK(i), depending on the value of key Ki is obtained from:
Ds→p

j = Cs→p
j + V s→p

j (k) (5)

Ds→p
j = Cs→p

j +
N∑

i=1

Ki ×Ds→p
T DK(i) (6)

For a given timing path, and by using the equation 6, we could rewrite the delay
constraints in equations 3 and 4 as:

12 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

∀j| Ds→p
jmax

= Cs→p
jmax

+
N∑

i=1

Ki ×Ds→p
T DK(i) ≤ Upper (7)

∀j| Ds→p
jmin

= Cs→p
jmin

+
N∑

i=1

Ki ×Ds→p
T DK(i) ≥ Lower (8)

These inequalities capture the lower and upper bound delay constrain for every pair of
input-output pins in a design, and collectively capture the model µ of the graph theory
solver. Based on this formulation, the number of added inequalities is M × N, in which M
is the number of primary inputs, and N is the number of primary outputs. However, one
inequality bounds all timing paths between the selected input-output pin pair, removing the
need to express the inequality for every timing path in the design as needed in MILP-based
attack that was suggested in [22].

After writing these inequalities for each input-output pair, a call to the SMT solve
function returns all key combinations for which all paths constraints/inequalities are
satisfied. In the other word, by assuming any of the returned key combinations, the circuit
will not violate its setup and hold timing checks. However, note that only one (or few)
of these key values is logically correct. The correct key value then could be extracted by
invoking a SAT solver, and by providing the set of key combinations (in CNF format) as a
constraint to the logical circuit satisfiability problem. This process is illustrated in Alg. 2.
As it can be seen in Alg. 2, function GenTLC is responsible for generating all inequalities.
Line 7-8 of GenTLC function generates inequality (7) and (8) for each input (Sp) to each
output (Ep).

Algorithm 2 Eager SMT Attack on DLL [22]
1: function SMT_Eager_Att(Obfuscated_Netlist Nobf , Functional_Circuit Corg)
2: KPC ← ReplaceKPG(Nobf);
3: C(X,K,Y) ← Circuit_Translation_to_CNF(KPC);
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 6= Y2);
5: SCKVC = TRUE;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE; . Learned Clauses
8: G(X,K) ← Graph_Translation(Nobf);
9: TLC ← GenTLC(G(X,K)); . Theory Learned Clauses

10: SMTLC ← SATC ∧ TLC ; . SMT Clauses
11: while (((XDI ,K1,K2,CC) ← SMT.Solve(SMTLC))= TRUE) do
12: Yf ← Corg(XDI);
13: DIVC = C(XDI ,K1,Yf) ∧ C(XDI ,K2,Yf);
14: SCKVC = SCKVC ∧ DIVC ;
15: LC = LC ∧ CC
16: SMTLC = KDC ∧ SCKVC ∧ LC ;
17: Key ← SMT.Solve(SMTLC);

Pre-Processing step by using a graph theory solver for SMT attack (Eager)

1: function GenTLC(Graph G)
2: Inputs ← G.find_start_points();
3: Outputs ← G.find_end_points();
4: TLC ← []
5: for each (Sp in Inputs) do
6: for each (Ep in Outputs) do
7: Upper(Sp,Ep)(K) ← !(distance_leq(Sp, Ep, tcd));
8: Lower(Sp,Ep)(K) ← distance_leq(Sp, Ep, tp);
9: TLC ← SMT.solve(Upper(Sp,Ep)(K) ∧ Upper(Sp,Ep)(K) ∧ TLC);

10: return TLC

This algorithm is similar to Alg. 1, with the additional step of using a theory solver for
pre-processing the netlist in line 8, extraction of all key combination resulting in correct
timing behavior in line 9, and providing these constraints to the SAT solver in the next
step in line 10. Note that the solve function in the Eager approach is called in two places;
first for generating the timing valid key combination clauses (inside GenTLC function),
and then iteratively inside the SAT attack while loop.

For some obfuscation methods, the pre-processing step of Eager approach may become
extremely time consuming or computationally impossible. An example of such obfuscation
problem is the SRCLock [21]. The authors have shown that the obfuscation is SAT hard,

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 13

since without pre-processing the cycles, the SAT solver will be trapped or produce an
incorrect key. Additionally, they have suggested two mechanisms by which the number
of cycles in a netlist could exponentially grow with respect to the number of inserted
feedbacks. For attacking cyclic logic, as suggested by CycSAT attack [32] we need to
pre-process the netlist and extract the No Cycle Conditions to prevent the SAT solver
from being trapped. However, in SRCLock[21] the number of cycles grow exponentially,
and therefore the runtime of pre-processing step also grows exponentially, preventing us to
ever reach the SAT attack. For such problems, the Eager approach that relies on reduction
of the problem to a SAT problem does not work. However, the Lazy approach of the SMT
attack provides a solution.

6.3 Attack Mode 3: Lazy SMT Attack
Using the Lazy approach of SMT attack relaxes the requirement of Eager approach to
complete the pre-processing step before invoking the SAT attack. In the Lazy approach
the SAT solver and theory solver(s) simultaneously check different models of a unified
satisfiability problem, exchange clauses, and check each other’s literal assignment. This
could significantly prune the decision tree of a SAT solver search space for finding a
satisfying assignment and remove the need for a complete and unbounded execution of
theory solver as it only has to check the validity of constraints for SAT assigned literals.

Algorithm 3 Overall SMT Attack (Lazy Approach)
1: function SMT_Lazy_Att(Obfuscated_Netlist Nobf , Functional_Circuit Corg)
2: KPC ← ReplaceKPG(Nobf);
3: C(X,K,Y) ← Circuit_Translation_to_CNF(KPC);
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 6= Y2);
5: SCKVC = TRUE;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE; . Learned Clauses
8: G(X,K) ← Graph_Translation(Nobf);
9: TCE(K) ← GenTCE(G(X, K)); . Theory Constraint Expressions (Not Solved)

10: TCE(K1, K2) ← TCE(K1) ∪ TCE(K2) ;
11: while (((XDI ,K1,K2,CC) ← SMT.Solve(SATC, TCE(K1, K2)))= TRUE) do
12: Yf ← Corg(XDI);
13: DIVC = C(XDI ,K1,Yf) ∧ C(XDI ,K2,Yf);
14: SCKVC = SCKVC ∧ DIVC ;
15: LC = LC ∧ CC
16: SMTLC = KDC ∧ SCKVC ∧ LC ;
17: Key ← SMT.Solve(SMTLC ,TCE(K));

Initialization of constraints for SMT attack (Lazy Approach)

1: function GenTCE(Graph G)
2: Inputs ← G.find_start_points();
3: Outputs ← G.find_end_points();
4: TCE(K) ← []
5: for each (Sp in Inputs) do
6: for each (Ep in Outputs) do
7: Upper(Sp,Ep)(K) ← !(distance_leq(Sp, Ep, tcd));
8: Lower(Sp,Ep)(K) ← distance_leq(Sp, Ep, tp);
9: Range(Sp,Ep)(K) ← Lower(Sp,Ep)(K) ∧ Upper(Sp,Ep)(K);

10: TCE(K) ← TCE(K) ∪ Range(Sp,Ep)(K);
11: return TCE(K)

In order to illustrate the Lazy approach of SMT attack, in this section, we formulate an
SMT attack to again break the DLL [22] obfuscation. The Lazy approach of SMT attack
on DLL [22] is illustrated in Alg. 3. The big difference in the Lazy and Eager approach is
that after model generation for theory solver, the SMT solve function is not called. This is
illustrated in line 9 of this algorithm, where the constraining expressions are only defined
for the theory solver by making a call to GenTCE function. The returned constraining
expressions are then duplicated for Key K1 and K2. The SMT solve function is then called
to find an assignment for a discriminating input XDI , and two different keys K1 and K2
such that generated outputs are different at least in one bit, however both keys generate a
valid timing scenario. Since the SAT model (SATC) and Theory models (TCE(K1,K2))
share literals and are subjected to a unified set of constraints, the decision tree and search
space for the SMT solvers is significantly reduced.

14 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

6.4 Attack Mode 4: Accelerated Lazy SMT Attack (AccSMT)
In this section, we argue that re-formulating the Lazy SMT which benefits from capabilities
of BitVector theory solver allows us to build a more efficient attack.

6.4.1 Motivation:

Our modification to the SAT attack is inspired by the observation that higher output
corruption, reduces the SAT hardness of an obfuscation scheme. A discriminating input
XDI , is an input capable of sensitizing the logic paths of the netlist under study, such
that (1) some of the differences in the values of internal nodes in the result of application
of two different keys K1 and K2 are propagated to at least one output. (2) none of the
previously found DIPs (that were used in building a DIVC) were able to propagate the
generated inconsistency to a primary output. This mechanism is continued until the
number of sensitized paths, reaches a point where any inconsistency that from application
of two different keys is propagated to the primary outputs using the constructed set of
DIVC circuits. At this point, the set of previously found XDIs form a complete set of
discriminating inputs, such that if a key generates the correct output for all inputs in this
set, it will generate the correct output for all other inputs.

Different DIPs have different pruning power. A DIPs strength could be assessed based
on the number of inconsistencies that it could sensitize to the primary outputs conditioned
that previous DIPs were incapable of doing so. Hence, depending on the pruning power of
DIPs, the size of the complete set of DIPs could be different. A minimal complete set of
DIPs is the smallest set of DIPs that could de-obfuscate the circuit. In our Lazy approach
for SMT attack, we propose a mechanism to reduce the size of the complete set of DIPs
pushing it towards the minimal set. Since in each SAT or SMT iteration one DIP is found,
having a smaller number of DIPs result in smaller number of iterations.

In SAT attack, it requires only a single bit difference in the output for generation
of a DIP. In SMT attack, we could make a stronger requirement for the generation of
DIPs. This could be achieved by forcing the SMT solver to find DIPs with the largest
possible Hamming distance of primary outputs of the KPC circuits when for the same
input, two different keys are applied. Such a DIP has a much higher pruning capability,
and is able to sensitize a larger number of key-related inconsistencies to the output. The
discovery of such powerful DIPs reduces the number of required DIPs that is needed to
form a complete set of DIPs that could de-obfuscate the circuit. This is because when
the hamming-distance is larger either the KPC circuits differ in (1) key-bit(s) that are
located close to the inputs, or (2) large number of assumed key-bits (in the middle of
timing paths or close to primary outputs) are different in two KPC circuits, or (3) the
combination of two scenarios. In both cases, the added DIP and the resulting learned
clauses eliminate the cause of obtaining such large hamming distance, resulting in the
elimination of a large number of inputs as possible future DIPs while eliminating a larger
set of keys as potential correct keys. Hence, when such a DIP is added to a DIVC, it poses
a much stricter restriction on the requirements for finding the next DIP and reducing the
attack time by almost an order of magnitude.

6.4.2 Using BitVector Theory Solver:

Assessing DIPs based on hamming distance of the primary output is easily implementable
in SMT solver by using a BitVector theory solver. The bitVector theory solver allows
us to perform integer-oriented arithmetic operations such as addition, subtraction, and
multiplication. The Hamming Distance (HD) of output Y1 and Y2 is obtained using:

HD(C(XDI , K1), C(XDI , K2)) = HD(Y1, Y2) =
N∑

i=1

Y1(i)⊕ Y2(i) (9)

The HD is then used to write the constraining expressions that are posed on the
BitVector theory solver using the formulation:

T hLower ≤ HD(Y1, Y2) ≤ T hUpper = Size(Output) (10)

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 15

encrypted
circuit

scrambler
comparator mask

IN
K1

K2
OUT

Figure 10: A hybrid obfuscation scheme consists of a SAT Hard (SH) obfuscation (SARLock) and
a High Corruption (HC) Logic Locking scheme

The upper threshold ThUpper is kept constant equal to the size of output pins, but
the lower threshold ThLower is defined as a variable, allowing us to sweep the hamming
distance constraint posed on BitVector theory solver from a maximum value of the number
of output bits to a minimum value of 1. The lower bound could be reduced every time
the SMT solver returns UNSAT, indicating there is no other DIP that satisfies the HD
requirement poset on theory solver. The process terminates when the SMT cannot even
find a DIP that causes HD of 1. Adaption of this constraint forces the SMT solver to find
DIPs with higher pruning power, reducing the size of a complete set of DIPs.

6.4.3 Using TimeOut:

For an SMT or a SAT attack, the execution time is determined based on the formula,∑N
i=1 t(i), where t(i) is the execution time of the ith iteration of an SMT attack. Hence,

by just reducing the number of SAT iterations N , we cannot guarantee a shorter execution
time, because finding a DIP with tighter constraint may pose a more difficult problem
to the SMT solver and increase t(i). For this purpose, we can limit the time allowance
for finding a DIP in each iteration. The timeout limit TO prevents the SMT solver from
spending a long time for finding a DIP with large HD, when finding such DIP has become
excessively difficult. By adapting the timeout feature, during an SMT attack, the HD
requirement is reduced when either (1) the SMT solver returns UNSAT, indicating there
exist no such input, or when (2) we encounter time-out interrupt. In this case, the HD
constraints posed on BitVector theory solver is reduced by one and the SMT solver is
called. Note that the time interrupt is supported by MonoSAT [38] used in this paper,
and many other freely available SMT solvers. Also, note that use of time interrupt pushes
the final solution away from a minimal complete set of DIPs. However, our experiments
illustrate that this usually results in considerably smaller execution time.

6.4.4 Enabling Approximate Attacks:

Our objective is to enable the SMT attack to be carried against a netlist similar to that of
Fig. 10, which is obfuscated by both SAT Hard (SH) and high Corruption (HC) obfuscation
schemes, to find all keys for the HC obfuscation, and to detect the trap of SH obfuscation
and exit while generating an approximate key.

The SAT hard obfuscation mechanisms suggested in recent literature, such as SARLock,
Anti-SAT, and SFLL [16, 17, 20], have a very small output corruption, and the SAT
hardness is maximized when there is only a single input for a given key that results in an
incorrect output. The pruning power of DIPs found in each iteration of the SAT solver for
SH obfuscation solutions is very small, and each DIP eliminates a single key value. Hence,
the number of SAT or SMT iterations increases exponentially with respect to the key size.
This is used as a mechanism to trap the SAT solver. To increase the corruption, the SH
obfuscation is combined with a HC obfuscation. The purpose of approximate attacks is to
find the correct key for the HC obfuscation without being trapped by SH obfuscation.

The accelerated SMT attack could significantly improve the performance of approximate
attacks. Since HC obfuscation schemes result in high output corruption, finding DIPs that
lead to larger HD at the output biases the SMT attack to find the HC related obfuscation
keys in the earlier iterations. The remaining problem is the design of a termination strategy
for the accelerated and approximate SMT attack to detect the trap of SH obfuscation,
exit and report the approximate key. For this purpose, we use a constraint on the number
of allowed repetitions R when HD is very small (e.g. 1). If the remaining and un-found
keys are only the SH keys, the SMT keeps finding weak DIPS (HD of 1) and iterations are

16 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

completed very quickly. By setting the repetition limit R to an appropriately large value,
we can detect the trap and terminate the attack.

The unique feature of accelerated approximate attack is that if we remove the timeout
(TO) requirement, then the approximate attack guarantees that the HD of the approximately
unlocked circuit and that of the functional circuit is at most HDLow bits different, with
HDLow being the hamming distance requirement in which the R repetition is taken place.
This could be proven as follows: Suppose that there exists an undiscovered discriminating
input and two keys that cause larger than HDLow bit difference (HDLow+D) in the
primary outputs. Hence, the SMT solver when constrained by bitVector theory solver
expression for finding HD = HDLow+D should return SAT. This contradicts the SMT
previous execution control state where the SMT attack for that HD has returned UNSAT,
otherwise the HD constraint was not reduced.

Algorithm 4 Accelerated SMT Attack
1: function AccSMT_Attack(Obfuscated_Netlist Nobf , Functional_Circuit Corg)
2: HDHigh = Number of output bits; . Upper hamming distance limit;
3: HDLow = HDHigh - 1; . Lower hamming distance limit;
4: TO = 50s; . Timeout constraint;
5: R = 20; . Repetition limit;
6: RHD = 1; . Repetition condition;
7: Rcount = 0; . Repetition count variable;
8: KPC ← Replace_KPG(Nobf);
9: C(X,K,Y) ← Circuit_Translation_to_CNF(KPC);

10: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 6= Y2);
11: SCKVC = TRUE;
12: SATC = KDC ∧ SCKVC ;
13: LC = TRUE; . Learned Clauses
14: BV(X,K) ← Circuit_Output_to_BitVector(Nobf);
15: BVS(X, K1, K2) = SUM_of_1s(BV(X,K1) ⊕ BV(X,K2))
16: TCE ← BVS(X,K1,K2) ≥ HDLow; . Theory constraint expression;
17: TCE ← TCE ∪ (BVS(X, K1, K2) ≤ HDHigh);
18: while HDLow ≥ 1 do
19: while (((XDI ,K1,K2,CC) ← SMT.Solve(SMTLC , TCE, TO)) = T) do
20: Yf ← Corg(XDI);
21: DIVC = C(XDI ,K1,Yf) ∧ C(XDI ,K2,Yf);
22: SCKVC = SCKVC ∧ DIVC ;
23: LC = LC ∧ CC
24: SMTLC = KDC ∧ SCKVC ∧ LC ;
25: if (HDLow ≤ HDR) then
26: if (Rcount == R) then
27: Break;
28: Rcount ++;
29: HDLow--;
30: Key ← SMT.Solve(SMTLC);

6.4.5 Accelerated SMT attack formulation:

Alg. 4 demonstrates the reformulated Lazy approach of SMT attack on obfuscated circuits.
In this algorithm, the HDHigh, and HDLow are the high and low threshold requirement
for hamming distance on primary outputs, TO is the timeout limit per iteration, R is
the repetition allowance before exiting and generating an approximate key, and RHD is
the hamming distance after which the repetition condition is checked. The BitVector
theory solver input model is defined in lines 14 and 15, and converted to theory constraint
expressions in lines 16 and 17. The TCE poses an upper and lower bound on the hamming
weight difference of the outputs of two instances of the same circuits with the same input,
but two different keys. The SMT attack sweeps the hamming distance in the first while
loop, while the second while loop formulate the modulo satisfiability theory attack. The
SMT solver receives the SMTLC model, the BitVector theory solver constraint TCE and
the timeout allowance TO and check whether there is a valid assignment for SMTLC

conditioned that TCE is valid withing TO time allowance. If it exists, the while loop
is satisfied. Additionally, it returns the discriminating input XDI , the two keys found
(K1,K2) and a list of learned conflict clauses CC. Then the XDI , similar to the original
SAT attack is used to construct additional DIVC and update the satisfiability model
SMTLC . At the end of each iteration, the algorithm checks whether the hamming distance
is reduced to the limit, where the repetition condition for SH problems is checked. In this

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 17

Table 2: ISCAS-85 Benchmarks and Their Characteristics.
Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552

of Inputs 36 41 60 41 33 233 50 178 207
of Outputs 7 32 26 32 25 140 22 123 108
of Gates 120 162 320 506 603 872 1179 1726 2636

Table 3: Comparing the Execution Time and the Number of Iterations of SMT Attack in SAT
Attack mode (Attack Mode 1) with a Pure SAT Attack based on Lingling Solver [10] on ISCAS-85
Benchmarks Obfuscated using Random XOR/XNOR Insertion (RLL) [8] (50%-50%).
Circuit c2670 c3540 c5315 c7552

SAT SMT SAT SMT SAT SMT SAT SMT
#iter time #iter time #iter time #iter time #iter time #iter time #iter time #iter time

1% 3 0.102 5 0.474 10 0.513 8 1.31 9 0.405 10 0.441 11 0.577 19 0.806
5% 45 1.514 57 3.589 19 1.502 25 1.249 32 1.354 24 2.433 67 5.271 42 4.261
10% 312 14.08 342 15.752 36 1.782 36 2.973 59 3.798 57 4.881 97 15.82 94 15.67
25% 781 114.5 692 108.6 77 9.796 65 8.462 95 19.63 107 22.48 215 225.6 228 270.8

case, if the repetition count reaches the specified threshold value R, the SMT attack is
terminated. additionally if for HD of 1, the SMT solver can no longer find a satisfying
assignment, the SMT attack is terminated. A final call to SMT solver with the constructed
satisfiability module theory model generates the key.

7 Experimental Results
For evaluating different modes of SMT Attack, we used a farm of desktops with 4-core Intel
Core-i5 CPU, running at 1.8GHz, with 8 GB RAM. The operating system on desktops
was Ubuntu Server 16.04.3 LTS. For a fair comparison, and to reduce the impact of the
operating system background processes, we dedicated one desktop to each SMT solver at a
time. For benchmarking, we used most of ISCAS-85 benchmarks, characteristics of which
is listed in Table 2. Since MiniSAT has been used in the SMT Solver as its built-in SAT
solver, we use the default values of resource limits in MiniSAT as resource limits of the
SMT attack (68 years for the CPU time limit and ≈ 2147 TB for the memory usage limit).
As the baseline for comparing SMT attack performance against a pure SAT attack, we
employed the Lingeling-based SAT attack by [10]. In addition, for each attack we ran the
solvers Five times on SMT and SAT solvers [39] and reported the average runtime.
7.1 Evaluation of SMT reduced to SAT Attack
As explained in section 6.1, and explained by Alg. 1 the SMT solver could be used for a
SAT attack using the same formulation as the original SAT attack as proposed in [9, 10].
In this section, we evaluate the performance of SMT attack when used in this mode. The
purpose of this sections is to illustrate that attack formulate using the SMT solver is a
superset of SAT attacks, and with the same formulation provides similar performance. For
this comparison, we employed two obfuscation methods: (1) random XOR/XNOR insertion
(RLL) [8], and (2) obfuscation using nets with unbalanced probabilities (IOLTS’14) [37].
ISCAS-85 benchmarks are obfuscated using these schemes with obfuscation overhead
ranging from 1% to 25%.

Table 3 compares the execution time of SMT attack and the SAT attack proposed
in [9, 10] when RLL obfuscation is deployed. As captured in this table, the execution
time of the SMT attack when reduced to SAT Attack is approximately equivalent, in
terms of number of iteration and execution time, with that of an original SAT attack
across all benchmarks and all ranges of obfuscation overhead. Fig. 11 illustrates the same
comparison when the IOLTS’14 obfuscation method is deployed. As illustrated, the SMT
reduced to SAT, in terms of performance, behaves similar to the SAT attack.

7.2 Evaluation of Eager SMT Attack
We used the Delay Logic Locking scheme [22] in our case study to show the extended
capabilities of the SMT attack in solving obfuscation problems that cannot be modeled in a

18 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

10-2

10-1

100

101

102

1% 5%10%25%

Ex
ec

u
ti

o
n

Ti
m

e
(s

)
SMT
SAT

Obfuscation Overhead

1% 5%10%

25%

1% 5%10%

25%

1% 5%

10%25%

1% 5%

10%25%

C1908 C2670 C3540 C5315 C7552

(a)

100

101

102

So
lv

er
 It

er
at

io
n

s

1% 5%10%25%

Obfuscation Overhead
C1908

1% 5%10%25% 1% 5%10%25% 1% 5%10%25% 1% 5%10%25%

C2670 C3540 C5315 C7552

SMT
SAT

(b)
Figure 11: Comparing the Performance of SMT-attack when Reduced to a SAT Attack (Attack
Mode 1) with that of original SAT-attack that uses Lingling solver [10]. The ISCAS-85 Benchmarks
are obfuscated using IOLTS’14 Insertion [37]: (a) Comparison of the Execution Times, (b)
Comparison of the Number of Iterations

Table 4: Execution Time of the SMT Attack in the Eager Mode (Attack Mode 2) on ISCAS-85
Benchmarks with Different Overhead when Obfuscated using DLL[22]+ RLL[8] (50%-50%)
Obfuscation Schemes.

Circuit c1908 c2670 c3540 c5315 c7552

1% 0.077 + 1.663 0.068 + 170.0 0.053 + 4.054 1.291 + 114.6 0.580 + 138.6
2% 0.016 + 1.919 0.221 + 175.6 0.200 + 5.001 1.535 + 144.6 1.808 + 185.5
3% 0.054 + 2.161 0.337 + 212.7 1.359 + 6.328 3.057 + 160.4 2.247 + 245.9
5% 0.075 + 2.810 0.495 + 248.4 1.553 + 8.325 3.891 + 256.9 7.812 + 353.3
10% 0.499 + 3.812 38.78 + 407.1 1.524 + 14.35 16.19 + 550.3 33.92 + 782.7
25% 8.951 + 21.71 112.4 + 972.5 9.459 + 92.42 60.30 + 1567 2920 + 5244
SMT execution time = x + y, x : The execution time of the SAT engine of the SMT Solver,

y : The execution time of the theory engine of the SMT Solver

SAT attack. The Eager approach of SMT attack is evaluated in this section, and the Lazy
approach is evaluated in the following section. Additionally, to increase the obfuscation
difficulty and demonstrate the strength of the SMT attack, in addition to obfuscation
using DLL, we obfuscated the circuit with additional MUX and XOR gates using gate
insertion policy in IOLTS’14 [37], such that 50% of the keys are used for DLL, and 50%
for IOLTS’14 obfuscation. Finally, we used some of the keys for both logic and delay
obfuscation to create dependencies such that the solvers could not divide and conquer the
attack.

The Eager attack against DLL was formulated in Alg. 2. As the algorithm suggests,
the Eager approach attacks the obfuscation in two separate phases. In the first phase,
the theory solver models and constrains the problem and calls the SMT solver to extract
all valid key combinations. The key combinations are converted into CNF statement,
which is passed to the SAT solver. In the second phase, the SAT solver attacks the
circuit satisfiability problems augmented with these additional CNF clauses on valid key
combinations, and make a new round of calls to the SMT solvers. As illustrated in Fig.
7(a), the invocation of theory and SAT solver, and the overall SMT attack is serialized.
Accordingly, in order to reflect our experimental results for evaluating of Eager approach,
we separate the execution time of theory solver and that of the SAT solver.

Table 4 captures the results of Eager SMT attack for different ISCAS-85 benchmarks
with different obfuscation overhead. The theory execution time indicates the time required
by graph theory to find the all possible and valid key combinations (where only one of
them is valid). Similarly, SAT execution time demonstrates the time taken by SAT solver
to find a valid key, given the additional theory solver generated constraining clauses. As
illustrated in this table, the SMT attack, in all cases is concluded and reported the correct
key. The result of the pure SAT attack is not reported, as it always produces the wrong
key for being oblivious to the DLL key values. Hence, the SMT solver in this respect
extends the attack capability by means of including various theory solvers.

Note that the execution time of the SAT solver (the x value in each column of reported
data in Table 4) depends on the (1) size of the circuit, and (2) the percentage of obfuscated
cells. Hence the circuit c7552, for being larger than c1908 has a longer SAT attack time
across all percentage obfuscation points. In addition, the increase in the SAT attack time

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 19

Table 5: Execution Time of SMT Attack in the Lazy Mode (Attack Mode 3) on ISCAS-85
Benchmarks with Different Obfuscation Overhead, Obfuscated using DLL[22]+RLL[8] (50%-50%).

Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552

1% 0.033 0.177 0.263 0.567 0.466 20.44 0.983 11.53 13.07
2% 0.049 0.262 0.325 0.676 0.596 21.86 3.443 11.76 17.83
3% 0.065 0.329 0.350 0.877 0.723 23.39 2.436 15.27 19.04
5% 0.049 0.340 0.517 1.085 1.456 28.87 2.587 38.87 45.96
10% 0.204 0.503 1.195 5.622 3.334 83.06 6.712 94.80 319.6
25% 0.599 1.481 2.036 297.2 95.67 2706 126.3 552.8 8045

Table 6: Comparing the Execution Time and the Number of Iterations of the Accelerated Lazy
SMT Attack (AccSMT) (Attack Mode 4) with that of Original SAT Attack (based on Lingling
solver) in [10] on ISCAS-85 Obfuscated Circuits using RLL[8] Obfuscation Policy.

Circuit c2670 c3540 c5315 c7552
SAT AccSMT SAT AccSMT SAT AccSMT SAT AccSMT

#iter time #iter time #iter time #iter time #iter time #iter time #iter time #iter time

1% 3 0.102 2 0.316 10 0.513 3 0.185 9 0.405 2 0.163 11 0.577 3 0.374
5% 45 1.514 11 3.589 19 1.502 6 0.761 32 1.354 6 0.408 67 5.271 17 2.607
10% 312 14.08 26 5.817 36 1.782 11 1.236 59 3.798 12 1.753 97 15.82 19 4.721
25% 781 114.5 107 24.05 77 9.796 16 1.606 95 19.63 27 7.916 215 225.6 24 23.52

is only slightly super-linear (close to polynomial) with respect to increase in the degree
of obfuscation. On the other hand, the execution time of the theory solver (the y value
in each column of reported data in Table 4) depends on (1) the number of input, (2)
the number of outputs, and (3) the degree of obfuscation. Hence, a circuit with larger
number of IOs has a longer execution time for its theory solver, but the execution time is
bounded by O(NM), with M and N being the number of inputs and outputs respectively.
This indicate that the run-time of theory solver (unlike the MILP-based attack that was
suggested in [22]) does not exponentially increase with respect to number of timing paths
in a netlist, as it only depends on the number of IOs and not the total number of timing
paths. In addition, as illustrated, by increasing the degree of obfuscation, similar to SAT
attack, the execution time of theory solver grows slowly with a close to polynomial paste.

7.3 Evaluation of Lazy SMT Attack
The Lazy approach of SMT attack, as illustrated in Fig. 7(b), uses the SMT solve function
to simultaneously solve the theory and circuit SAT problem. In this approach, the theory
model is defined but is not solved. In many applications, the Lazy approach outperforms
the Eager solution. In addition, there are situations, where the Eager solution faces
exponential runtime if solved separately. As an instance, SRCLock [21] focus on posing
exponential runtime on pre-processor needed for detection of cycles, Hence, the Eager
approach is not even applicable. However, the parallel invocation of the theory and SAT
solver, and the resulting literal exchange, and the additional constraints posed on the
solver could result in significant reduction in the time needed to explore the problem’s
decision tree, and removes the need to complete the pre-processing before starting the SAT
attack. Hence, if the execution time of theory solver poses a runtime beyond acceptable,
the problem could only be attacked by the Lazy SMT approach.

Table 5 shows the Lazy SMT attack execution time on ISCAS-85 benchmarks that
were obfuscated using the process that was explained in the previous section (mixing 50%
DLL+ 50% IOLTS). Considering the SAT and theory solver are invoked simultaneously,
we have a single execution for the entire SMT problem, and unlike Eager approach we
cannot separate the execution time of theory solver and the SAT solver. As illustrated,
in comparison with the Eager approach, in most cases the Lazy approach finds the key
obfuscation key in shorter time.

In the Lazy approach, the number of iterations decreases drastically compared to the
Eager approach. However, the execution time of each iteration increases. This is because

20 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

Set of Invalid Keys
Set of Correct Keys

DIP1 DIP2 DIPn

Complete Set of DIPs = {DIP1, DIP2, DIP3, ..., DIPn}

Figure 12: Set of potentially valid keys (the Remaining Keys to be Evaluated) reduces in each
iteration of SMT or SAT attack when a new Discriminating Input (DI) is discovered and is added
to the Discriminating Input Validation Circuit (DIVC).

20

24

28

212

216

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
o

rr
e

ct
 K

e
ys

DIPs (Iterations)

AccSMT SAT
Faster
(Exponentially)
Key Reduction
Rate in AccSMT

So
lv

e
d

!

(a)

20

23

26

29

212

215

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

C
o

rr
e

ct
 K

e
ys

DIPs (Iterations)

AccSMT SAT
Below Exponential
Key Reduction Rate
in Traditional SAT
 Depending on

 Obfuscated Circuit

So
lv

e
d

!

(b)
Figure 13: Rate of Reduction in the Number of Potentially Valid Keys (Remaining Keys) in
each Iteration of the Original SAT Attack and the AccSMT Attack, when Attacking ISCAS-85
Benchmarks Obfuscated using RLL[8] Obfuscation Scheme: (a) C2670 (b) C7552.

each DIP needs to satisfy both the theory constraints and the circuit SAT formulation.
However, when a DIP is found, it is a stronger DIP with higher pruning power.

By comparing the results of Eager and Lazy approach of SMT attack in Table 4 and
Table 5 we observed that in majority of cases, the Lazy approach outperforms the Eager
approach. However, in some cases (e.g. for Benchmark C1908 with 50% overhead), the
Lazy approach may become slower than Eager approach, indicating that Lazy approach
doesn’t always result in the stronger attack. However, note that there exist a set of
problems (such as SRCLock [21]), that the Eager approach is not even applicable, since
the pre-processing alone (sole invocation of theory solver) cannot conclude in a reasonable
amount of time, leaving the Lazy approach as the only solution forward.

7.4 Evaluation of Lazy AccSMT Attack

7.4.1 Ability to find stronger DIPs:

Before invoking the SMT or SAT attack, any key could be considered as a potentially
valid key. The strength of a DIP comes from its ability in reducing the size of this set in
each iteration. After finding each DIP, as illustrated in Fig. 12, the size of potentially
valid key set reduces. When reaching a complete set of DIPs, any key left in this set is a
correct key. As discussed in section 6.4, a stronger DIP could sensitize a larger number
of inconsistencies (due to application of a discriminating input and two different keys) to
the primary outputs. Hence, its natural for such a DIP to have a higher pruning power
in reducing the number of potentially valid keys. To evaluate this claim, we profiled the
number of potentially valid key after each iteration of SMT and SAT attack, when working
on the same obfuscation problem. Fig. 13 illustrates the key reduction rate in three
ISCAS-85 benchmarks obfuscated by RLL[8]. In all scenarios the DIPs found by AccSMT
solver are stronger, as the number of remaining keys is reduced at a significantly higher
rate. As illustrated, the number of iterations is also significantly reduced because the
complete set of DIPs, when the pruning power of DIPs is higher, is of smaller size.

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 21

Table 7: Execution Time and the Number of Iterations of Accelerated Lazy SMT Attack (AccSMT)
(Attack Mode 4) on SARLock + IOLTS’14 for finding K1 (Traditional Keys).

Circuit c1908 c2670 c3540 c5315 c7552
#iter time #iter time #iter time #iter time #iter time

1% 7 0.512 16 3.075 8 1.304 3 0.384 7 2.905
5% 18 0.701 25 11.91 15 1.681 11 1.707 33 17.56
10% 31 4.085 51 26.47 21 3.779 35 7.402 61 44.07
25% 71 8.605 105 76.8 66 22.91 56 16.64 88 58.32

7.4.2 Stronger and shorter attack:

The stronger DIPs found by the AccSMT attack, result in significant reduction of the
number of DIs needed for a complete discriminating input set. Each DI is found in one
iteration, Hence, smaller number of DIs indicates a smaller number of iterations. Table 6
compares the execution time and the number of iterations between the SAT solver and the
AccSMT solver. The ISCAS-85 benchmarks for this simulation are obfuscated using RLL
[8] obfuscation scheme with the overhead of 1% to 5%. As reported in this table, across
all attacks, the AccSMT attack is carried in a smaller number of iterations and requires
order(s) of magnitude smaller execution time.

7.4.3 Ability to carry approximate attack:

As described in section 6.4.4, the AccSMT attack is able to distinguish between SAT-hard
(SH) and high-corruption (HC) obfuscation. It quickly finds the correct keys for HC
obfuscation, detects the SH trap, exits, and reports the approximate key.

To evaluate the approximate mode of the AccSMT attack, we have obfuscated the
ISCAS-85 benchmarks using SARLock + IOLTS14 as suggested in [16]. The overall
structure of the obfuscated circuit is illustrated in Fig. 10. In this hybrid obfuscation
scheme, the SARLock is the SH obfuscation, and the RLL is the HC obfuscation protocol.
The invocation of the original SAT attack in [10][9] results in a timeout, due to SARLock
trap. However, the AccSMT can very quickly find all the keys for HC obfuscation, detect
the SH trap, and report the approximate key. Table 7 depicts the number of iterations and
execution time of AccSMT attack for finding the approximate keys for each instance of
the obfuscated circuit under attack. Note that repetition count (R=20 in our case study)
is excluded from this table.

8 Conclusion
In this paper, we introduce a class of Satisfiability Modulo Theory (SMT) attacks on
obfuscated circuits. The SMT attack benefits from the expressive nature of theory solvers,
that allow the attacker to express constraints that are difficult or even impossible to express
using CNF, including timing, delay, power, arithmetic, graph and many other first-order
theories. We first illustrated that a SAT attack could be easily implemented using SMT
solver to prove that SMT attack is a superset of the SAT attack. Then we proposed
two variants of SMT attack on obfuscated circuits using Eager and Lazy approach of
SMT solver. We illustrated that using the Eager and Lazy approach, we could break the
Delay Logic Locking [22] obfuscation that cannot be broken by a SAT attack, proving
that SMT attack’s capabilities go beyond a SAT attack. It shows that by only using
non-logical properties of a netlist for obfuscation, we not provably increase the security of
an obfuscated netlist, indicating the need for further study and exploration in this domain
to generate obfuscation schemes with provable security. Then we proposed the Accelerated
SMT attack (AccSMT), and we illustrated that by using theory solvers (BitVector theory
solver in this paper), we could significantly speed-up the attack against specific obfuscated
circuits, and reported significant reduction in the execution time of the AccSMT compared
to SAT attack. Finally, we illustrated that with a small modification, the AccSMT could
be used as an approximate attack, allowing us to find an approximate key for obfuscation
schemes that combine a SAT hard obfuscation with high corruption obfuscation.

22 SMT Attack: Next Generation Attack on Obfuscated Circuits ...

References
[1] A. Yeh (DIGITIMES Research), "Trends in the global IC design service market," online

http: // www. digitimes. com/ news/ a20120313RS400. html? chid= 2 , 2013.

[2] U. Guin, D. Forte and M. Tehranipoor, "Anti-counterfeit Techniques: From Design to Resign,"
in Int’l Workshop on Micro Test and Verification (MTV), pp. 89-94, 2013.

[3] Yousra M. Alkabani and F. Koushanfar, "Active Hardware Metering for Intellectual Property
Protection and Security," in Proc. of the 16th USENIX Security Symp., pp. 1-20, 2007.

[4] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M. Potkonjak,
P. Tucker, H. Wang, and G. Wolfe, "Watermarking Techniques for Intellectual Property
Protection," in Proc. of Design and Automation Conf. (DAC), pp. 776-781, 1998.

[5] H. M. Kamali, S. Hessabi, "A Fault Tolerant Parallelism Approach for Implementing
High-Throughput Pipelined Advanced Encryption Standard," in Journal of Circuits, Systems
and Computers (JCSC), vol. 25, no. 9, 1650113 (1-14), 2016.

[6] F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara, "Securing Computer Hardware Using
3D Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation," in Proc. of
the 22nd USENIX Conf. on Security, pp. 495-510, 2013.

[7] Ronald P. Cocchi, Lap Wai Chow, James P. Baukus, and Bryan J. Wang, "Method and
apparatus for camouflaging a standard cell based integrated circuit with micro circuits and
post processing," in US Patent, 2013.

[8] J. A. Roy, F. Koushanfar, and I. L. Markov, "Ending Piracy of Integrated Circuits," in
Computer, vol. 43, no. 10, pp. 30-38, 2010.

[9] M. El Massad, S. Garg, and M. V. Tripunitara, "Integrated Circuit (IC) Decamouflaging:
Reverse Engineering Camouflaged ICs within Minutes," in NDSS, pp. 1-14, 2015.

[10] P. Subramanyan, S. Ray and S. Malik, "Evaluating the security of logic encryption algorithms,"
in IEEE Int’l Symp. on Hardware Oriented Security and Trust (HOST), pp. 137-143, 2015.

[11] A. Baumgarten, A. Tyagi, and J. Zambreno, "Preventing IC Piracy Using Reconfigurable
Logic Barriers," in Computer, vol. 27, no. 1, pp. 66-75, 2010.

[12] J. Rajendran and Y. Pino and O. Sinanoglu and R. Karri, "Security analysis of logic
obfuscation," in ACM/EDAC/IEEE Design Automation Conf. (DAC), pp. 83-89, 2012.

[13] J. Rajendran et al., "Fault Analysis-Based Logic Encryption," in IEEE Transactions on
Computers, vol. 64, no. 2, pp. 410-424, 2015.

[14] T. Winograd, H. Salmani, H. Mahmoodi, K. Gaj, and H. Homayoun, "Embedded
reconfigurable logic for ASIC design obfuscation against supply chain attacks," in
ACM/EDAC/IEEE Design Automation Conf. (DAC), pp. 1-6, 2016.

[15] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, "LUT-Lock: A Novel
LUT-based Logic Obfuscation for FPGA-Bitstream and ASIC-Hardware Protection," in IEEE
Computer Society Annual Symp. on VLSI (ISVLSI), pp. 1-6, 2018.

[16] M. Yasin, B. Mazumdar, J. J. V. Rajendran and O. Sinanoglu, "SARLock: SAT attack
resistant logic locking," in IEEE Int’l Symp. on Hardware Oriented Security and Trust (HOST),
pp. 236-241, 2016.

[17] Y. Xie and A. Srivastava, "Mitigating sat attack on logic locking," in Int’l Conf. on
Cryptographic Hardware and Embedded Systems (CHES), pp. 127-146, 2016.

[18] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, "Security Analysis of Anti-SAT,"
in Asia and South Pacific Design Automation Conf. (ASP-DAC), pp. 342-347, 2017.

[19] Y. Shen and H. Zhou, "Double DIP: Re-Evaluating Security of Logic Encryption Algorithms,"
in Proc. of the on Great Lakes Symp. on VLSI (GLSVLSI), pp. 179-184, 2017.

http://www.digitimes.com/news/a20120313RS400.html?chid=2

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan 23

[20] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. V. Rajendran, and O. Sinanoglu,
"Provably-Secure Logic Locking: From Theory To Practice," in Proc. of the ACM SIGSAC
Conf. on Computer and Communications Security (CCS), pp. 1601-1618, 2017.

[21] S. Roshanisefat, H. M. Kamali, and A. Sasan, "SRCLock: A SAT Resistance Cyclic Logic
Obfuscation," in Proc. of the on Great Lakes Symp. on VLSI (GLSVLSI), pp. 1-6, 2018.

[22] Y. Xie and A. Srivastava, "Delay locking: Security enhancement of logic locking against IC
counterfeiting and overproduction," in ACM/EDAC/IEEE Design Automation Conf. (DAC),
pp. 1-6, 2017.

[23] P. Tuyls, G. -J. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, R. Wolters, L. Goubin, and
M. Matsui, "Read-Proof Hardware from Protective Coatings," in Int’l Conf. on Cryptographic
Hardware and Embedded Systems (CHES), pp. 369-383, 2006.

[24] M. Rostami, F. Koushanfar, and R. Karri, "A Primer on Hardware Security: Models, Methods,
and Metrics," in Proc. of the IEEE, vol. 102, no. 8, pp. 1283-1295, 2014.

[25] M. Majzoobi, F. Koushanfar, and M. Potkonjak, "Testing Techniques for Hardware Security,"
in IEEE Int’l Test Conf., pp. 1-10, 2008.

[26] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, "Removal Attacks on Logic Locking
and Camouflaging Techniques," in IEEE Transactions on Emerging Topics in Computing, vol.
PP, pp. 1-1, 2017.

[27] X. Xu, B. Shakya, M. Tehranipoor, and D. Forte, "Novel bypass attack and BDD-based
tradeoff analysis against all known logic locking attacks," in Int’l Conf. on Cryptographic
Hardware and Embedded Systems (CHES), pp. 1-1, 2017.

[28] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, "AppSAT: Approximately
deobfuscating integrated circuits," in IEEE Int’l Symp. on Hardware Oriented Security and
Trust (HOST), pp. 95-100, 2017.

[29] A. Ehrenfeucht et al., "A General Lower Bound on the Number of Examples Needed for
Learning," in Information and Computation, pp. 247-261, 1989.

[30] H. Sayadi, N. Patel, S. M. P D, A. Sasan, S. Rafatirad, and H. Homayoun, “Ensemble
learning for effective run-time hardware-based malware detection: a comprehensive analysis
and classification," in Proc. of the 55th Design Automation Conf. (DAC), pp. 1-6, 2018.

[31] K. Shamsi et al., "Cyclic Obfuscation for Creating SAT-Unresolvable Circuits," in Proc. of
the on Great Lakes Symposium on VLSI (GLSVLSI), pp. 173-178, 2017.

[32] H. Zhou, R. Jiang, S. Kong, "CycSAT: SAT-based attack on cyclic logic encryptions," in
Proc. of Int’l Conf. on Computer-Aided Design (ICCAD), pp. 49-56, 2017.

[33] G. Nelson and D. C. Oppen, "Fast Decision Procedures Based on Congruence Closure," in
Journal of ACM, vol. 27, no. 2, pp. 356-364, 1980.

[34] Robert E. Shostak, "Deciding Combinations of Theories," in Journal of ACM, vol. 31, no. 1,
pp. 1-1, 1984.

[35] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, "Satisfiability Modulo Theories," in
Armin Biere, Hansvan Maaren, and Toby Walsh (Eds.). Vol. 4. IOS Press, Chapter 8, 2009.

[36] C. Tinelli and C. Ringeissen, "Unions of non-disjoint theories and combinations of satisfiability
procedures," in Theoretical Computer Science, 290, 1, pp. 291-353, 2003.

[37] S. Dupuis, P. S. Ba, G. Di Natale, M. L. Flottes, and B. Rouzeyre, "A novel hardware logic
encryption technique for thwarting illegal overproduction and Hardware Trojans," in IEEE
Int’l On-Line Testing Symp. (IOLTS), pp. 49-54, 2014.

[38] S. Bayless, et al., "SAT Modulo Monotonic Theories," in AAAI, pp. 3702-3709, 2015..

[39] S. Roshanisefat, H.K. Thirumala, K. Gaj, H. Homayoun and A. Sasan, "Benchmarking the
Capabilities and Limitations of SAT Solvers in Defeating Obfuscation Schemes," in IEEE 24th
Int’l On-Line Testing Symp. (IOLTS), pp. 1-6, 2018.

	Introduction
	Background
	Boolean Logic Obfuscation
	Behavioral logical obfuscation

	Attack Model
	Limitation of SAT Attack
	SMT Solver
	SMT Usage and Capabilities

	SMT Attack
	Attack Mode 1: SMT reduced to SAT Attack
	Attack Mode 2: Eager SMT Attack
	Attack Mode 3: Lazy SMT Attack
	Attack Mode 4: Accelerated Lazy SMT Attack (AccSMT)

	Experimental Results
	Evaluation of SMT reduced to SAT Attack
	Evaluation of Eager SMT Attack
	Evaluation of Lazy SMT Attack
	Evaluation of Lazy AccSMT Attack

	Conclusion

