Modelling Mismatch and Noise Statistics
Uncertainty in Linear MMSE Estimation

Jordi Vila-Valls, Eric Chaumette, Frangois Vincent
Signal, Communication, Antennas, Navigation (DEOS/SCAN)
University of Toulouse - ISAE-SUPAERO, Toulouse, France
Email: {jordi.vila-valls, eric.chaumette, francois.vincent} @isae-supaero.fr

Abstract—Standard filtering techniques, such as Kalman,
sigma-point or particle filters, assume a perfect knowledge of
the system. This implies that both process and measurement
functions, and the system noise statistics, are assumed known
and fit the reality. Regarding the noise statistics this involves
knowing not only the distributions but also their parameters.
In this contribution, we explore the impact of system model
mismatch and uncertain noise statistics parameters into linear
minimum mean square error estimators for linear discrete state-
space models. Illustrative examples are shown to support the
discussion.

Index Terms—Wiener filtering, Kalman filtering, model mis-
match, system noise uncertainty, robustness.

I. INTRODUCTION: FROM WIENER TO KALMAN

We first recall the basics of Wiener filtering and its recursive
form for linear discrete state-space (LDSS) models, directly
related to the Kalman filter (KF), which in turn is the starting
point of the performance analysis provided in this contribution.

If x and y are two zero-mean complex random vectors, the
Wiener filter (WF) is the linear minimum mean square error
(LMMSE) estimator of x [1], that is, it minimises the error
covariance matrix P(L) = E [(Ly — x)(Ly — x)"]. If Cx,
Cy, Cxy, Cx‘y are the covariance matrices of x, y, cross-
covariance of x and y, and conditional covariance of x given
y, respectively, and Cy is invertible, then'

x'(y) = L'y, L’ = argmin{P(L)} = Cxy Cg', (1)

P(L") = Cyjy = Cx — CxyC,'CH . (2)

x|y

The best affine estimator in the MSE sense, x(y) = Ly +
a, which minimises the error covariance matrix P(L,a) =
E [(Ly + a—x)(Ly + a — x)], admits a similar WF form

R(y) = my + L(y — my), (3)
ab:mx—mey;mx:E[x];my:]E[y] 4)
L’ = argmin{P(L,a")} = CxyCy" ; P(L’,a") = Cyjy
The LDSS models of interest in this article are given by,
Xp = Fro1Xp—1 + wi_1 ;5 yr = Hgxg + v, (5)
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where x5, € C"=, y, € C™ (for k > 1) are the state vector
to be inferred and a measurement vector related to the states;
Fi_1 and Hj are the system model (process and measure-
ment) matrices; the process, wy, and measurement noise, v,
have mean vectors and covariance matrices respectively given
by my,, my,, Cyw, and C,,; in this case the WF estimate
of xj, using measurements up to time k, yi.x, is

quc =my, + LZ(yk - myk)v LZ = CXA-,JM-,CS:;,} (6)

with y! = [y{,...,y,]. Notice that in practice this is not a
useful solution as each estimate depends on the complete set
of observations. If the following minimum set of uncorrelation
conditions hold

Vk>2:Cw, ,3,.,=0andCy, g, , =0, 7

both state and measurement predictions are given by
XZ\k—l = kalﬁz—uk—l +Mmw, (®)
yZ\k—l = ka‘imq +my,, )

which leads to a convenient recursive predictor/corrector gen-
eral form (for k£ > 2) [2]
~b 2b b “b
Xppe = Xppe—1 + Le(Yr — Yip-1)
= (I -LyH)Fr 1%, ) + Liyk
+(I-L{Hy)my, , — Lim,,. (10)

The optimal gain and estimation error covariance are computed
in a general manner using the following recursion

b b H
Prieo1 =FraPpqp 1 Fioi + Cwy

+Fi1C8 s + Cwirxi Fi (11)
Shik1 = HiPhy  HY + Cy,

+H,CY .+ Cyx HY (12)
L} = Py HY +CJ ) (Shpm) ™ (13)
Py, = I—LYHL)PY, | —LiCy, x,, (14)

which are also valid for k = 1 if Pj, = Cx, and X, =
E{x¢}. If we consider zero-mean process and measurement
noise (i.e., my, , = 0 and my,, = 0) and the usual KF
uncorrelation conditions,

{ mewk =0, mevk =0, Cwl7wk‘ = kaafc

(15)
CVqu = Cvk(s;w CWL,Vk =0



then we recover the standard KF equations [3]. Notice that
only the first and second order moments are taken into account,
and nothing is said about the distribution of the noise, then,
both the general formulation above and the standard KF solu-
tion provide the LMMSE estimator even if the system noises
are not Gaussian distributed. Finally, from the recursions above
we can see that the KF is a recursive form of the WF.

In the previous derivations, besides the different uncorrela-
tion conditions, the main assumptions are [3]:

o Known system matrices Fj, and Hy.
o Known 1st and 2nd order process and measurement noise
statistics, my,, , my,, Cy,, Cy,.
o e . . b _ ,\b _
o Perfect initialisation, Pg, = Cx, and X, = E{xo}.

The performance of LMMSE estimators for LDSS models
strongly depends on this knowledge [4], [5]. The main goal
of this contribution is to analyse the impact on the final
estimates of both modelling mismatch (i.e., error on the system
matrices) and system noise uncertainty (i.e., lack of knowledge
on the noise mean and covariance). Notice that we do not
pretend to provide a robust filtering solution to mitigate such
errors (see for instance [6]), but rather analyse the possible
performance degradation if we do not take them into account.
Mathematically, this can be translated to

. X =Fp1Xp-1+ W1
Mismatched LDSS - i 16
{ yi = HpXp + v (16)
X = (Fro1 +dFp_1) Xgp—1 + Wi
True LDSS 17
{ vi = (Hg + dHg) xj, + v an

Whef‘f ﬁlwk—l 7é Mwy 4> CWk71 # Ckav rhvk # My,
and C,, # C,,, which are unknown (up to a certain extent)
system noise Ist and 2nd order moments.

II. STANDARD KF UNDER UNCERTAIN NOISE STATISTICS

The standard KF solution is considered, that is, assuming
zero-mean noises and that both uncorrelation conditions (7)
and (15) are satisfied. First, the impact on the estimation
performance of system noise mismatch at time k is analysed,
assuming that no mismatch was present at the previous time
step k — 1 (Xp—qjp—1 = Xz_llk_l is an unbiased estimator
of xi_1). The filter assumes the LDSS model (16) but the
true one is given by (17). In this case, at £ — 1, there is no
system model mismatch, i.e., dFy_1 = dH; = 0. The noise
statistics parameters are unknown to a certain extent: while
{My,_,,my, } = 0 the true model is {my,_,,my, } # 0,
Cw,, = Cuw,_, + dCy,_,, and both noise covariances

C,, = Cy, +dC,, . At time k, considering (16),

Xijh—1 = Fr1Xp_1)k—1, (18)
Vipe—1 = HeXppoo1 = HeFeaXp g1, (19)
Xijk = Xg—1 + L (Y& — Yrp—1)

=F_ 1% 1 pp—1 + Le (Yo — HkFoo1Xp_qje-1) ,  (20)

and the estimation error (ey|;, = Xy|x — Xj) is then

eur = Fro1Xp_1jp—1 + Li (Hpxp + vi)

— Ly Fr X qp—1 — Fro1Xp—1 — Wi
(21
with A; = (I — L;H;). This is the error expected from a
standard KF, but in this case wi_; and v are not properly

characterised (i.e., the mismatched model assumes w_q and
Vi), directly impacting into the estimation performance.

= Ap(Fr1ep_1jk—1 — Wi—1) + Ly,

A. Estimator Bias under Noise Mismatch

The estimator bias is computed from

E{eyr} = ArFr 1 E{Xp_ 141 —Xp_1}
- Ak}mwk,1 + Lkmvk

= Lk)mvk - Akmwk,17

(22)

where the previous estimate was assumed unbiased, i.e.,
E{X)_1|k—1 —Xx—1} = 0. Then, unknown noise mean vectors
introduce a recursive bias into the estimation.

e From k to k +I:
From the previous expression at k, the general bias expression
at k41, taking into account that in the following steps the term
E{e)4i—1)k+1—1} is no longer zero, is given by

k41 k+1—1
Elextijpsi} = Z H A F; (Limy, — Ajm,,_, ),
i=k  j=i
k+1—-1

where the weighting term [[; ;" (I-L;11H;11)F; plays an
important role. In the time-invariant scalar case, under steady-
state conditions (Lj11 = L) and iff (1 — Lo cH)F < 1,
then

N

[[Q-LjH)F = (10— LoH)F)Y 0

Jj=1

(23)

which leads to a constant bias in steady-state conditions.
Finally, the bias can be expressed in a convenient form as

Bias, = A, F,_Bias,_1 + (Lkmvk_ — Akmwkfl) 24)
B. Error Covariance under Noise Mismatch

In the sequel, the impact on the MSE is analysed. First, the
noise mismatch implies that
H

W1

]E{wk—lwllcq—l} = kafl + dCkal + My, m
E{Vkv,lf} = Cvk +dCy, + mvkmf,{k.

The estimation error covariance is obtained as follows
b H

Pi 11 = Elex—ijp—1(ex—1pp—1)" }

Pipa =Fra Py Fily + B{wiawil ) =

Fk—1Pk71|k71FkH—1 4+ Cyw,_, +dCy,_, + my, mi

Wi —1

P noise statistics mismatch

b
k|k—1
Pijp = ApPp1 A + LiE{vivi LY

= APy A + LGy L 4P, (25)

b
Pk|k:



where the recursive estimation error covariance term induced
by the process and measurement noise mismatch is

P.r = Ay(dCy,_, + my, mi HAf

Wi1)
k—1
+ Ly (dCy, + my,m L (26)

Agaln L) was computed to minimise the expected trace of
Pk|k’ using Pk|k , (e, Cy,_,) and C,, will be suboptimal
when model assumptions differ.

e From k to k + [

It is easy to show that Py = PZ+l|k+l +Pe gy, with
the corresponding error term at k + [ given by
k-+l k+1—1
> 1] AjnFi(AidCy
i=k j=t
+Am,, ml A +L,dC,L/

k+l—
+ L;m, mf L) H FIAL .
j =1

e k+l —

27)

As already stated for the bias computation, under certain con-
+z— k+z— H
ditions, both terms J[;* AJ_HF and [[;2; " F; AJ+1
tend to zero in the large sample regime, and then the steady-
state estimation error covariance P, reaches a constant value.
It is convenient to express the error term computation in a
recursive manner
H AH
Per=ArFi 1P 1Fi_ A}
H H
+ Ak(dcwkf1 + My, 1My 1)Ak
+ Ly (dCy, + my, mi L. (28)
III. GENERAL RECURSIVE LMMSE ESTIMATION UNDER
UNCERTAIN NOISE STATISTICS

If we consider the general predictor/corrector LMMSE
estimator form in (10)-(14), where only the minimum set of
uncorrelation conditions (7) are satisfied (i.e., the uncorrelation
between the states and both system noises in (15) are in general
not satisfied), the estimation error for the mismatched LDSS
model (16) is again

err = Fr1Xp_1k—1 + Li (Hpxp + vi)
— LBy Fr X qjp—1 — Fro1Xp—1 — Wiy
= Ap(Fr1€p_1jp—1 — Wi—1) + Ly (29)

Then, the recursive estimator bias expression in the general
case at time k is the same given in (24). But is the mismatched
MSE the same as in the standard mismatched KF? If the cross-
covariances Cy,, , x,_, and Cy, «, are assumed to be known,
the estimation error covariance is obtained as follows
b H
Pk71\k71 = E{ek—1|k—1(ek—1\k—1) },
b H H

Prpp—1 =FaPy_q 1 Fiog + E{wi_1wi_}

+F1CY 4, +C F

=Fy_1Pj_ 1lk— 1Fk 1+ ka 1+ 2F 1CWk 1,Xk—1

+dCy, , + my, ,mi (30)

Wg—17

Wk—1,Xk—1

noise statistics mismatch

where the first term corresponds to the prediction error covari-
ance without mismatch PZ\kqs and the updated covariance is

Pip = ArPreo1 A + LiB{vivi LY — 2A,Cy LY
= APy AT + LGy L — 2A,Cy, i L + Pey,
where again the left-hand term corresponds to PZW which is

the Joseph stabilised form of the estimation error covariance

matrix update, valid for any gain Ly, and the error term is
Pe k= Ak(dCWk Tt ka 1m£k—1)AkI;I
+ Li(dCy,, + my, m )L 31

then we have the same covariance error update as in (28).
o What if we have uncertainties on the cross-correlations?

ka—lyxk—l = cwk—ly + dWy_1,
Cvlmxk = Cvk,xk +dVy.

Xk—1

In this case, the covariance error term is
_ H H
Pe,k - A—k(dcwk,l + mwkflmwk,l)A'k

+ Ly(dCy,, + my, mI )L — 2A,dV L}

+ 2A,F)_1dWH  AH (32)

and the recursive error term computation at time k, assuming
that a possible mismatch is present at any time < k,

P.r = AFr Py FiL AT
+ Ak(dCWk71 + kaflmH )AkH

W1
+ Ly (dCy, + my,mi )L — 2A,dV, L}

+ 2A,F)_1dWH  AH (33)

which gives us a general recursive equation to assess the
impact on the MSE of any possible uncertainty in the system
model noise characterisation.

IV. STANDARD KF UNDER MODEL MISMATCH

We consider again the standard KF solution, that is, zero-
mean noises and both uncorrelation conditions (7) and (15)
are satisfied. We analyse first the impact on the estimation
performance of a model mismatch at time k, assuming that
no mismatch was present at the previous time step k — 1. The
filter assumes the LDSS model (16) but the true one is given
by (17), whereas the true noise covariance matrices are known
(the noise mismatch is analysed in Sections II and III). At time
k, the estimation error is

epr = (I — LygHy)(Fr1€p_1x—1 — Wi—1) + Lpvy +ex,

b : feme
Lk without mismatch

where ezlk is the standard KF estimation error expression
without model mismatch, and the extra error term is
€y, = LpdH(Fr_1 + dFp_1)xp—1

— (I - LyHy)dF_1x,_1 + LidHwy_q, 34

which is zero if dFy_, and dH}, are null. For convenience we
define Dy = LydH(Fr_1 + dFx_1) — (I — LyHg)dFy_1.



A. Estimator Bias under Model Mismatch
From the previous error expression we can compute

E{eyr} = ArFr_1E{er_1jp—1} + E{ex}

=DiE{xt_1} = Dpmy, ,, (35)

again we have a recursive bias term due to model mismatch.

e From k to k + I:
k1 k+1—1

E{eriipsi} = Z H A, F,Dimy, ..

i=k j=i

(36)

where the estimate at kK — 1 was considered to be unbiased.

The bias at time k can be computed in a recursive form as
Bias, = A F,_1Biasg_1 + kaxk—l’ 37

which depends on the probably unknown mean value my, ,.

B. Error Covariance under Model Mismatch
The corresponding estimation error covariance is given by
H b
Pyjk = E{ek|kek\k} =Py
+E{efper } + Efen(efn)} + Efeer'

extra terms due to model mismatch

P} = APy Af + LiCy, L,

b _ b H
Prj—1 =FraPr_y 1 Fi1 + Cw, s

(38)

The extra covariance terms due to modelling mismatch are
E{ere’ } = DyE{xx_1x/_ }D} + LydH;Cy,_,dH/ LY
=Dy(Cp_1 +my, m? DI 4 L,dH,C,, dHILE,

o (39)
E{e}er } = AvFr1E{er_1jx_1x;_}D}
— AC,, dHILH
= Ap(Fr_1Py_y_1 DY — Cw,_, dH{'LY), (40)

where we used the orthogonality condition of the optimal
solution, E{(%4_15—1 — Xk—1)%;";_,} = 0. Then we can
rearrange P, = lek + P to get

Pcr=Dy(Cr_1 + mxk_lmfk_l)Df
+ 2Aka—1sz1|k71Dk‘H

+ (LpdHg — 2A4)Cy,_, dHI'LY, 1)

where we have three distinct contributions on the error term.
Again, notice that this covariance error term depends on the
covariance and mean values of x;_1.
e From k to k 4 [

In genera}l we have that PkJr.l|k+l = P}I;_+l\k+l + Pe iy, tl}en
the goal is to find the recursive expression for P ;,, taking
into account that the orthogonality condition is no longer
Veriﬁed, E{(f{k+”k+l - Xk+l.)kkH+l|k+l} # 0. After some
manipulations, the error term is computed as

k+l k+1-1 k4+l—1
Peen=) [ AjFeri+a0) [] FifAfL,
i=k j=i Jj=i

where
A; = E{eieiH} = Di(Ci—l + mxt—lmi—l)D{{
+LidHiCWi71dHiHL£{’
;= AiFFlE{ei—uz‘—ngﬁDfI - AicWi*ldHflLiH’

and the recursive error term computation at time k, assuming
that a possible mismatch is present at any time < k is

Por=AF, P (FIL AT 12T + A (42)

The system model mismatch for the general recursive
LMMSE estimator is not considered in this contribution,
mainly because the analytical expressions derived above are
only useful in some specific cases, that is, where both state
covariance and mean values are known, and the computation of
the term E{e;_);_1x/Z,} is available. An illustrative example
for model mismatch is shown in next Section V.

V. ILLUSTRATIVE EXAMPLES
A. Case I: Noise Statistics Mismatch

To illustrate the validity of the derivation provided in
Section II, a scalar autoregressive (AR) process estimation
example is considered. The mismatched LDSS is given by

Bk = adig_1 + g, W ~N(0,Q)
i = Tk + O, Tk ~ N (0, R)

withF ' =a =09, H=1, Q = 0.5 and R = 1. The simulated
bias and covariance are obtained from 1e3 Monte Carlo runs.

o Estimator bias: the true LDSS model has non-zero mean
noises, with m,, = 3 and m, = 1. The results obtained
are shown in Fig. 1 (top), where the theoretical bias
computed from (24) coincides with the simulated one.

e Estimation error covariance (MSE): the true LDSS has
zero-mean noises but Q = Q + dQ, R = R + dR,
dQ = —0.2Q and dR = —0.8R, which implies that
the mismatched LDSS considers overestimated system
noise covariances. The results obtained are shown in Fig.
1 (bottom), where the theoretical MSE computed from
Py = lek +P, 1 and P, 1 in (28), coincides with the
simulated one.

In the case of noise statistics uncertainty, if a rough knowl-
edge of the system noise first and second order moments is
available, the expressions provided in Section II and III enable
to predict the maximum performance degradation with respect
to the optimal LMMSE estimator.

B. Case 2: System Model Mismatch

A simple array processing example is considered to il-
lustrate the system model mismatch case. A fully coherent
random Gaussian complex circular source, i.e., T = Tx_1,
with unit variance, C, = 1, is received with a uniform linear
array of N equally-spaced sensors.

The mismatched observation model is

yi = H(d, a)zy, + vi, (43)
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Fig. 1. Simulated and theoretical estimation bias (top) and MSE (bottom),
with and without noise statistics mismatch.

where d = \ /2 is the sensor spacing, « is the broadside angle
of the impinging signal xj, v is spatially and temporally
white noise, Cy, =1, and

H(d, Oé) _ [1’ ejZﬂ%sin(a)’ . ejQﬂ(N—l)%sin(a)} T (44)

Due to a possible calibration error or array sensors aging, there
exists a small inter-sensor spacing error, then the true LDSS is
given by (43) but with d = Bd, B < 1. Notice that the impact
on the estimation depends on the number of sensors N, the
impinging angle a and the mismatch in d. In the following
results, the simulated bias and covariance are obtained from
le3 Monte Carlo runs.

Both simulated and theoretical estimator bias computed
from (37), for different values of the inter-sensor spacing
mismatch 3, are shown in Fig. 2, where N = 10 sensors and
a broadside angle @ = 15° were considered. Notice that while
the optimal estimator bias tends to zero when more samples
are considered, the mismatched estimator tends to a non-zero
bias. It is remarkable that a very small model mismatch has a
nonmarginal impact on the estimator performance.

Notice that in this example the term E{e;_;j;_1x,} is
not available, then the analytical mismatched MSE cannot be
computed. Anyway, for completeness, Fig. 3 shows the impact
of model mismatch into the MSE. Again, a very small error
severely degrades the estimator performance, and while the
optimal MSE tends to zero, the mismatched MSE tends to a
constant value in the large sample regime.

0.25 T T
—— Bias without Mismatch
— =Zero-bias
02 Mismatch 3=0.99 1

— -Bias (37) 5=0.99
—— Mismatch 3=0.98
Bias (37) 3=0.98 n

3 — Mismatch 3=0.97
B o4 — -Bias (37) #=0.97 -
. \ —— Mismatch 3=0.96
e — Bias (37) 3=0.96 -
0.05 K ,
0____‘____‘____‘____‘____’
0 200 400 600 800 1000

Fig. 2. Simulated and theoretical bias with and without model mismatch, for
N = 10 sensors, broadside angle o = 15° and different values of 3.

—— Optimal MSE (sim)
— -Optimal MSE (theory)
Mismatched MSE 3=0.995 3
—— Mismatched MSE (3=0.99
—— Mismatched MSE (3=0.98
Mismatched MSE 3=0.97
107 ‘ :
10° 10° 102 108
MSE

Fig. 3. Simulated MSE with and without model mismatch, considering N =
10 sensors, broadside angle o = 15° and different values of 5.

VI. CONCLUSIONS

In this contribution, we considered linear discrete state-
space models with a possible model or system noise statistics
mismatch. The impact on linear minimum mean square error
estimators’ performance due to such model/noise mismatch
were theoretically analysed and analytical expressions on the
bias and mean square error performance loss were provided.
These equations can be useful in assessing the estimation
performance degradation in uncertain (to a certain extent)
environments, as discussed through illustrative examples.
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