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Abstract—Intractable integrals appear in a plethora of prob-
lems in science and engineering. Very often, such integrals involve
also a targeted distribution which is not even available in a
closed form. In both cases, approximations of the integrals must
be performed. Monte Carlo (MC) methods are a usual way
of tackling the problem by approximating the integral with
random samples. Quadrature methods are another alternative,
where the integral is approximated with deterministic points
and weights. However, the choice of these points and weights
is only possible in a selected number of families of distributions.
In this paper, we propose a deterministic method inspired
in MC for approximating generic integrals. Our method is
derived via an importance sampling (IS) interpretation, a MC
methodology where the samples are simulated from the so-called
proposal density, and weighted properly. We use Gauss-Hermite
quadrature rules for Gaussian distributions, transforming them
for approximating integrals with respect to generic distributions,
even in the case where its normalizing constant is unknown. The
novel method allows the use of several proposal distributions,
allowing for the incorporation of recent advances in the multiple
IS (MIS) literature. We discuss the convergence of the method,
and we illustrate its performance with two numerical examples.

Index Terms—Gauss-Hermite quadrature, importance sam-
pling, Monte Carlo, Bayesian inference

I. INTRODUCTION

Most inference problems require the approximation of in-
tractable integrals. Monte Carlo (MC) methods are a family
of statistical algorithms that allow for the approximation of
such integrals, typically involving a targeted distribution [1].
Importance sampling (IS) is a very flexible MC methodology
that approximates this kind of integrals by sampling from a
so-called proposal distribution, circumventing the simulation
from the often intractable targeted distribution which usually
can be evaluated only up to a normalizing constant [2].
Another common approach for approximating these integrals
is the use of quadrature methods (a.k.a. Gaussian quadrature
rules) [3]. Quadrature methods approximate a targeted integral
by selecting deterministically a set of N pairs of points (or
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nodes) and associated weights. Quadrature methods have been
successfully used in signal processing problems mostly in
the context of stochastic filtering in state-space models [4],
e.g., the Quadrature Kalman filter (QKF) [3], [5], [6] and
its adaptation for high-dimensional setups [7]–[9]. One of the
reasons that hinders a wider applicability in batch inference
is that the choice of points and weights is only clear for
few families of integrands, i.e., integrals that involve specific
families of probability density functions. For instance, Gauss-
Hermite methods are designed to integrate functions with re-
spect to (w.r.t.) Gaussian distributions [10]. Another limitation
of quadrature methods is their need to evaluate the integrand.
This is not always possible, e.g., in Bayesian inference the
targeted distribution is available only up to a normalizing
constant. In summary, the scope of quadrature methods is the
same as in IS methods, providing better performance in very
specific scenarios, but being restricted to a subset of problems
compared to IS.

In this paper, we extend the applicability and improve
the performance of quadrature methods by exploiting an IS
perspective. In particular, we transform intricate problems that
involve intractable integrals w.r.t. non-Gaussian distributions to
a problem where Gauss-Hermite quadrature can be applied.
This transformation is possible through the introduction of
an auxiliary Gaussian proposal distribution (both multiplying
and dividing in the integrand), similarly to the usual re-
arrangement in IS. Due to this similarity, we call our method
importance Gauss-Hermite (IGH). Then, we discuss the choice
of those parameters analyzing the similarities and differences
with the problem of choosing a proposal distribution in IS. We
show that the use of a unique proposal, like in IS, is usually
too constraining, and we extend the basic IGH framework
to the case where several Gaussian proposals are introduced.
Similarly to the case of multiple IS (MIS), the use of several
proposals opens the door for many possible schemes. We
propose and discuss two possibilities, inspired by the MIS
literature [11].

The rest of the paper is organized as follows. In Section II
we present the problem and briefly review Gauss-Hermite



quadrature and IS. In Section III we present the basic IGH
framework and the extension with several proposals. Finally,
we show two numerical examples in Section IV, and some
conclusions in Section IV.

II. PROBLEM STATEMENT AND BACKGROUND

This section provides insights on the basic problem we
address, the Gauss-Hermite rules, and a brief summary of
importance sampling. Building on those concepts, the next
section describes the proposed methodology.

A. Addressed problem

We are interested in computing the (possibly intractable
integral)

I =

∫
f(x)π̃(x)dx, (1)

where π̃(x) is a probability density function (pdf), and f is
an integrable function w.r.t. π̃(x). Very often, the normalizing
constant Z of π̃(x) is unknown, and one has access only to
the unnormalized non-negative function π(x), in such a way
that π̃(x) = π(x)

Z . For instance, in the context of Bayesian
inference, π̃(x) is the posterior distribution of some unknown
parameter x ∈ Rdx conditioned to the data (omitted in the
notation), π(x) is the product of likelihood and prior, and Z
is the marginal likelihood.

B. Gauss-Hermite quadrature for Gaussian distributions

Let us consider the integral of the form

I =

∫
h(x)N (x;µ,Σ)dx, (2)

where N (x;µ,Σ) is a Gaussian pdf with mean µ and co-
variance Σ, and h is an integrable function w.r.t. N (x;µ,Σ)
Note that Eq. (2) is a particular case of Eq. (1). It is noteworthy
that the integral in Eq. (2) can be efficiently approximated with
certain deterministic rules usually referred to as quadratures
for the one-dimensional case where dx = 1 or cubature, for
higher dimensions [12].1

Quadrature methods approximate the integral in Eq. (2) with
a set of N weighted points S = {xn, vn}Nn=1, where xn is
the n-th deterministically chosen point and vn its associated
quadrature weight. The integral is then approximated by

ÎQ =
N∑
n=1

vnh(xn). (3)

The way the points are selected goes beyond the scope of the
paper, but intuitively one can think that the selected points
are representative of the Gaussian distribution and the weights
ensure both a convergence when N grows, and a low error (or
even a perfect approximation) for a given N . In this paper,
and without loss of generality, we focus on Gauss-Hermite
quadrature for integrals in Rdx [13] although other rules could
be considered. In this scheme, α points per dimension are

1For the sake of brevity, in this paper we will use the term quadrature
indistinctly regardless the dimension.

selected according to a deterministic rule. Hence, N = αdx

points are chosen forming a lattice in a dx-dimensional space.
Note that the exponential growth of points with the dimension
can be alleviated with sparse methods [14]. For a polynomial
function h of order p in Eq. (2), the integral is computed
without error if p ≤ 2α − 1. In the case where p > 2α − 1,
then a bounded approximation error can found [15].

C. Importance Sampling (IS)

Importance sampling is another alternative for approximat-
ing Eq. (1) by first rewriting it as

I =

∫
f(x)π̃(x)dx

=

∫
f(x)π̃(x)

q(x)
q(x)dx, (4)

where q is a pdf with non-zero value for all x where f(x)π̃(x)
is not zero. Due to Monte Carlo arguments, the integral
in Eq. (4) can be approximated by a sampling-weighting
procedure. First, a set of N samples {xn}Nn=1 is randomly
simulated from the so-called proposal pdf, q. Second, an
importance weight is assigned to each sample as

wn =
π(xn)

q(xn)
, n = 1, . . . , N. (5)

Finally, the unnormalized IS (UIS) estimator is given by

ÎIS =
1

NZ

N∑
n=1

wnf(xn). (6)

We remind that Z is usually unknown, which precludes the
use of the UIS estimator in general. The alternative self-
normalized IS (SNIS) estimator approximates Eq. (1) by

ĨIS =

N∑
n=1

w̄nf(xn), (7)

where w̄n = wn∑N
j=1 wj

are the normalized weights. The choice
of the proposal is a hard but key problem since the variance
of UIS and SNIS estimators increase with the discrepancy
between π(x)|f(x)| and q(x) [11], [16], [17]. Hence, adaptive
schemes are usually implemented in order to iteratively in-
crease the efficiency of the method by improving the proposal
pdf [18].

III. GAUSS-HERMITE QUADRATURE FOR NON-GAUSSIAN
DISTRIBUTIONS

A. Basic importance Gaussian-Hermite (IGH) algorithm

Let us recall that in the targeted integral of Eq. (1), π̃ is in
general a non-Gaussian distribution, and hence, Gauss-Hermite
quadrature cannot be applied directly. However, we propose to
make use of the IS trick of Eq. (4) and re-write I as

I ≡
∫
h(x)q(x)dx, (8)

where we set q(x) = N (x;µ,Σ), with mean µ and covariance
Σ parameters, and h(x) ≡ f(x)π̃(x)

q(x) . Note that the Gaussian



pdf q plays a similar role as the proposal distribution in IS. The
problem now can be addressed with Gauss-Hermite quadrature
rules as in Eq. (2), since we have an integral of the form of a
nonlinear function times a Gaussian distribution. Algorithm1
summarizes the algorithm that we have named importance
Gauss-Hermite method. In Step 1, we select the set of points
according to Gauss-Hermite quadrature rules. In Step 2, we
compute the importance weights similarly to those used in
IS. In Step 3, we combine the importance and the quadrature
weights to construct the weights w′n. The multiplication factor
N becomes apparent in Step 4, where the unnormalized IGH
estimator ÎIGH has a clear parallelism with the estimator ÎIS
of the UIS of Eq. (6). Like in IS, the unnormalized estimator
can be used only when the normalizing constant Z is known.

B. Discussion
Note that Algorithm 1 could be re-written by simply evaluat-

ing h in all points, instead of separating the evaluation of π̃(x)
q(x)

and f(x). However, this formulation (inspired in IS) allows
us to go beyond the simple re-arrangement of Eq. (8). For
instance, now we are able to build the self-normalized IGH
estimator

ĨIGH =
N∑
n=1

w̄′nf(xn) (9)

where w̄′n =
w′
n∑N

j=1 w
′
j

. The estimator ĨIGH can be used even if
Z is unknown. In this case, the normalizing constant Z can
be approximated with the estimator

ẐIGH =
1

N

N∑
n=1

w′n (10)

at no extra cost, since it only requires the weights w′n of Step 3.
Note that ĨIGH can be derived by substituting ẐIGH in ÎIGH,
when Z is unknown, which ensures its convergence with N .
In the re-arrangement of Eq. (8) that leads to Algorithm 1, we
have introduced the auxiliary Gaussian pdf q, which requires
selecting the parameters µ and Σ. Similarly to what happens
in IS, a low error in the IGH estimator depends on an
appropriate choice of µ and Σ. The optimal IS proposal is
q(x) ∝ π(x)|f(x)|, which yields zero variance estimators
[16]. In general, the use of this proposal is not possible, and
the strategy is usually in selecting a proposal that minimizes
the mismatch w.r.t. π(x)|f(x)|. In Gauss-Hermite quadrature,
the integral is perfectly computed if the function h(x) is
polynomial with order p ≤ 2α − 1. Then, an appropriate
criterion is selecting q(x) in such a way h(x) = f(x)π̃(x)

q(x)
can be approximated with a low order polynomial. Note
that, if we apply the optimal (and unfeasible) IS proposal
q(x) ∝ π(x)|f(x)| to Algorithm 1, then h(x) = I , i.e., it
is a constant with the true value, yielding both ÎIGH and ĨIGH
estimators with the exact value. As a general note, this novel
IS interpretation for applying Gauss-Hermite rules in a non-
Gaussian problem allows us to use recent advances in the IS
literature for improving the performance of the basic IGH
method and enlarging its range of applicability beyond the
restrictive case of Gaussian distributions.

Algorithm 1 Basic importance Gaussian-Hermite (IGH)
Input: Number of points N = αdx , and parameters µ and Σ

1: Select S = {xn, vn}Nn=1 according to Gauss-Hermite
rules.

2: Compute the importance weights

wn =
π(xn)

q(xn)
, n = 1, . . . , N (11)

3: Compute the quadrature important weights

w′n = wnvnN (12)

4: The unnormalized estimator is built as

ÎIGH =
1

ZN

N∑
n=1

w′nf(xn) (13)

when Z is known.
Output: {xn, w′n}Nn=1

C. Standard multiple IGH (SM-IGH)

The IS interpretation opens the door for extending the basic
IGH algorithm of previous section to more complicated setups,
making use of recent advances in multiple IS (MIS) [11]. In
previous section, we discuss that when q approximates well the
integrand, then the IGH estimators improve their performance.
However, π̃ can be skewed, multimodal, or with different tails
than a Gaussian. While the Gaussian restriction is limiting, it is
widely accepted that under mild assumptions, a non-negative
function can be approximated by a mixture of Gaussians
[19], [20]. Let us then consider a set of M Gaussian pdfs
{qm(x)}Mm=1, with qm(x) = N (x;µm,Σm). In this case, a
re-arrangement similar to Eq. (8) is possible such that

I =
1

M

M∑
m=1

∫
f(x)π̃(x)

qm(x)
qm(x)dx (14)

=
1

M

M∑
m=1

∫
hm(x)qm(x)dx, (15)

where hm(x) = f(x)π̃(x)
qm(x) . We can solve the M integrals

in Eq. (8) by performing M IGH algorithms in parallel as
described in previous section, each with N quadrature points.
We denote this quadrature algorithm as standard multiple IGH
(SM-IGH), where ÎSM-IGH is built as an equally weighted com-
bination of the M IGH algorithms, and the self-normalized
ĨSM-IGH normalizes the set of MN weights before combining
all points. Note that this re-arrangement is similar to the MIS
interpretation of known algorithms, such as the PMC algorithm
[21]. However, note that if π̃ is complicated (i.e., it does not
have a standard form), regardless the choice of parameters, all
Gaussians qm(x) will be unable to mimic the target, yielding
hm(x) very different from a low-order polynomial. This can be
a problem regardless the number M of employed Gaussians.
Interestingly, the re-arrangement of (14) is inspired in the
standard multiple MIS scheme (SM-MIS), a.k.a. N1 scheme
in [11], which is known to show a poor performance in terms



of variance w.r.t. other advanced MIS schemes (see also the
discussion in [22, Section 4.1.1.]).

D. Deterministic mixture IGH (DM-IGH)

Let us define the mixture ψ(x) ≡ 1
M

∑M
m=1 qm(x) of

all previously defined Gaussian proposals. An alternative re-
arrangement is

I =

∫
f(x)π̃(x)

ψ(x)
ψ(x)dx

=

∫
f(x)π̃(x)

ψ(x)

1

M

M∑
m=1

qm(x)dx (16)

=
1

M

M∑
m=1

∫
h(x)qm(x)dx, (17)

where h(x) = f(x)π̃(x)
ψ(x) does not depend on m. First, note

Eq. (16) is inspired in the MIS scheme known as deter-
ministic mixture MIS (DM-MIS), a.k.a. N3 scheme in [11],
that has been recently shown theoretically to provide the best
performance in terms of variance of the UIS estimator [11].
Second, the M integrands share the same function h(x), where
all Gaussians appear at its denominator. This facilitates the
search of a set of M Gaussians in such a way h(x) can
be approximated by a low-order polynomial. The search of
a good mixture approximation of a given distribution can be
performed with algorithms such as EM [23]. Ideally, if the
mixture of Gaussians ψ(x) ∝ |f(x)|π̃(x), then the integration
is perfect, unlike in SM-IGH. Algorithm 2 describes the DM-
IGH method with the so-called DM weights of Eq. (18), where
all the Gaussian proposals appear in the denominator of all
weights (unlike in SM-IGH).

IV. NUMERICAL EXAMPLE

A. Example 1: Unimodal unidimensional example

Let us consider a unidimensional generalized Gaussian dis-
tribution (GGD) as a target pdf, i.e., π̃(x) = GG(x; ν, c, β) ≡
κ exp

(
−
(
|x−ν|
c

)β)
, where κ = β

2cΓ( 1
β )

, and Γ(·) is the

gamma function. In this example, we set ν = 0, c = 1, and
β = 4. We test the single proposal IS method of Section II-C,
and the basic IGH for approximating the mean of the target,
with Gaussian proposal q(x) = N (x;µ, σ) of parameters
µ = 1, and σ = 1.3. Figure 1 shows the (mean) absolute error
of the unnormalized and self-normalized estimators when we
increase the number of samples N . The error decreases with
N in all estimators, and that IGH obtains a better convergence
rate in this example. Note that in this setup, there is a target-
proposal mismatch in the location, the scale, and the tails.

B. Example 2: Multimodal bivariate example

Let us consider that the pdf we want to integrate from is a
mixture of five bivariate Gaussians,

π̃(x) =
1

5

5∑
i=1

N (x;νi,Ci), x ∈ R2, (22)

Algorithm 2 Deterministic mixture IGH (DM-IGH)
Input: Number of points N = αdx , and {µm,Σm}Mm=1

1: Select Sm = {xm,n, vm,n}Nn=1 for each qm(x) =
N (x;µm,Σm) according to Gauss-Hermite rules.

2: Compute the importance weights

wm,n =
π(xm,n)

1
M

∑M
j=1 qj(xm,n)

,
n = 1, · · · , N,
m = 1, · · · ,M (18)

3: Compute the quadrature important weights

w′m,n = wm,nvm,nN,
n = 1, · · · , N,
m = 1, · · · ,M (19)

4: The unnormalized estimator is built as

ÎDM-IGH =
1

ZMN

M∑
m=1

N∑
n=1

w′m,nf(xm,n), (20)

when Z is known, and the self-normalize estimator as

ĨDM-IGH =
M∑
m=1

N∑
n=1

w̄′m,nf(xm,n), (21)

with w̄′m,n =
w′
m,n∑M

j=1

∑N
i=1 w

′
j,i

.

Output: {xm,n, w′m,n}
N,M
n=1,m=1.
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Fig. 1. Ex. 1. Mean absolute error in the approximation of the target
distribution with IS and IGH estimators.

with parameters ν1 = [−10,−10]>, ν2 = [0, 16]>,
ν3 = [13, 8]>, ν4 = [−9, 7]>, ν5 = [14,−14]>,
C1 = [2, 0.6; 0.6, 1], C2 = [2, −0.4;−0.4, 2],
C3 = [2, 0.8; 0.8, 2], C4 = [3, 0; 0, 0.5], and C5 =
[2, −0.1;−0.1, 2]. We first use the M-PMC algorithm [24],
which implements an integrated stochastic EM algorithm for
approximating the target, imposing a set of isotropic Gaus-
sians {qm(x|µm, σ2

mI2)}Mm=1, where I2 is the bi-dimensional
identity matrix. We run this M-PMC with 500 samples per
iteration, T = 5 iterations, and M ∈ {1, 10}. Then, we apply
standard IS and IGH with the proposal resulting from a M-
PMC run (with M = 1), and the methods SM-MIS, DM-MIS,
DM-IGH, and SM-IGH by using the proposals produced with



Algorithm IS SM-MIS DM-MIS IGH SM-IGH DM-IGH

Î (M-PMC) 2.26 1.45 0.42 0.26 1.94 · 10−7 8.28 · 10−7

Ĩ (M-PMC) 3.71 0.21 0.18 1.74 2.36 · 10−7 9.34 · 10−7

Î (inflated) 5.86 2.07 0.05 6.46 0.2002 0.0004
Ĩ (inflated) 6.12 0.07 0.06 11.74 0.1837 0.0003

TABLE I
EX. 2. MSE/SE IN THE APPROXIMATION OF THE TARGET MEAN FOR THREE SAMPLING (LEFT) AND THREE QUADRATURE (RIGHT) METHODS. IN THIS

FIRST TWO ROWS, ALL METHODS USE AS PROPOSALS THE RESULT OF AN STOCHASTIC EM ALGORITHM (M-PMC), WHILE IN THE LAST TWO ROWS, WE
INFLATE THE STANDARD DEVIATION OF THE PROPOSALS BY A FACTOR OF 1.25.

a M-PMC run (with M = 10). All the six methods are run
with a total number of 500 samples. Table I shows the mean
squared error (MSE), averaged over both dimensions, in the
unnormalized Î and self-normalized Ĩ estimators of the target
mean. In the first two rows, the proposals are those obtained
from the M-PMC run (as described above), while in the last
two rows, the standard deviation of the proposals, σm, are
inflated by a factor of 1.25 to increase the mismatch between
target and proposal. The best performance is obtained by both
SM-IGH and DM-IGH when we use the M proposals coming
from M-PMC (that are the same we use for SM-MIS and
DM-MIS). We remark that those proposals do not perfectly
reconstruct the target (we use M = 10 proposals instead of
the 5 modes of the target, and we impose isotropic structure).
We see that inflating the proposals deteriorates the quadrature
methods although they still show the best performance. IGH
shows an intermediate performance in this multimodal exam-
ple due to the use of a single proposal. It is interesting to
see that the self-normalize estimator Ĩ obtains always similar
results, improving even the unnormalized estimator Î in some
cases, without needing to know the normalizing constant.

V. CONCLUSIONS

In this paper, we have presented a novel framework for
applying Gauss-Hermite quadrature to non-Gaussians integra-
tion problems. In its basic form, the new IGH method re-
parametrizes the integral by introducing a Gaussian distribu-
tion inspired in the IS methodology. This new perspective
allows for a new estimator, the self-normalized IGH estimator,
and extensions to the case where more than one proposals are
introduced. In particular, we have proposed and numerically
evaluated the SM-IGH and the DM-IGH methods that allows
for approximating problems with intricate distributions in
a more flexible manner. The achieved performance in the
reported example is promising, providing orders of magnitude
improvement over state-of-the-art IS methods.

REFERENCES

[1] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. Springer,
2004.

[2] J. S. Liu, Monte Carlo strategies in scientific computing. Springer
Science & Business Media, 2008.

[3] K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,”
IEEE Trans. on Automatic Control, vol. 45, no. 5, pp. 910–927, May
2000.

[4] P. Stano et al., “Parametric Bayesian filters for nonlinear stochastic
dynamical systems: a survey,” IEEE Trans. on Cybernetics, vol. 43,
no. 6, pp. 1607 – 1624, Dec. 2013.

[5] I. Arasaratnam, S. Haykin, and R. J. Elliot, “Discrete-time nonlinear
filtering algorithms using Gauss-Hermite quadrature,” Proc. of the IEEE,
vol. 95, no. 5, pp. 953–977, 2007.

[6] I. Arasaratnam and S. Haykin, “Square-root quadrature Kalman filter-
ing,” IEEE Trans. Signal Processing, vol. 56, no. 6, pp. 2589–2593, June
2008.

[7] P. Closas, C. Fernández-Prades, and J. Vilà-Valls, “Multiple Quadrature
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