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Abstract—In estimating an unknown parameter vector in a
linear regression model, it is common to use linearly constrained
minimum variance estimators (LCMVEs). For a long time,
LCMVEs were studied in the context of stationary constraints
under both stationary or non-stationary environments. Recently,
a new family of non-stationary constraints leading to Kalman-
like recursive LCMVEs has been introduced for fully coherent
signal (FCS) sources. A noteworthy feature of this family is to
allow the possibility of, at each new observation, incorporating
new constraints. This article extends these results to the case
of partially coherent signal (PCS) sources. Indeed, without ad
hoc modifications of the Kalman-like recursion, estimation of the
amplitudes of PCS sources exhibit a performance breakdown
even for a slight loss of coherence. Last but not least, it is
shown that PCS sources introduce a lower limit in the achievable
performance in the large sample regime.

I. INTRODUCTION

In the signal processing literature, particularly that dealing
with parameter estimation, one of the most studied estimation
problems is the identification of the components of an N-
dimensional complex observation vector (y), being a linear
superposition of P individual complex signals (x) and com-
plex noisy data (v). That is, y = Hx+v, also known as linear
regression, where H € CN*P and v € CV. The importance of
this problem stems from the fact that a wide range of problems
in communications, array processing, and many other areas
can be recast in this form [1], [2]. In many practical problems:
a) v is zero mean; b) x and v are uncorrelated; ¢) both H and
the noise covariance matrix C,, are either known or specified
according to predefined parametric models. In this case, the

weighted least squares estimator of x given y [1] is'
xb :argmin{(y—HX)H C,! (y—HX)} (1a)

x a

= (H”C'H) oy : L2

which coincides with the minimum variance distortionless
response estimator (MVDRE) [1]-[3], X* = (W?®)?y, where

W' = arg min {WHCVW} st. WHEH =1
w

-1 He—1g7) 7! (1b)
— C;'H(HAC;'H) ",
and with the maximume-likelihood estimator [1], if x is de-

terministic and v is Gaussian. However, it is well known
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I'The superscript ® is used to remind the reader that the value under
consideration is the “best” one according to a given criterion.

that the MVDRE achievable performance strongly depends
on the accurate knowledge on the parametric model of the
observations, that is, H and C,, [1, § 6.7]. Linearly constrained
minimum variance estimators (LCMVEs) [3]-[5], where ad-
ditional linear constraints are imposed, have been developed
to make MVDREs more robust [1, § 6.7] [6],

Wt = arg min {WHC,W}stWH[H Q] =[I Y]

oy me (o ma) gy,

where € and Y are known matrices of the appropriate
dimensions. However, since additional degrees of freedom are
used by LCMVEs (2) in order to satisfy these constraints, this
implies an increase of the achievable minimum mean squared
error (MSE). Moreover, C,, may be unknown and must be
learned by an adaptive technique. Remarkably, if x and v are
uncorrelated, C, can be replaced by C, in (la), (1b), (2),
which means that either C,, can be learned from auxiliary
data containing noise only, if available, or Cy, can be used
instead and learned from the observations. Therefore, when
several observations are available, y; € C, 1 < [ < k, re-
cursive adaptive implementations of the LCMVE are available
resorting to constrained stochastic gradient [3], constrained
recursive least squares [7], [8] and constrained Kalman-type
[9] algorithms. The equivalence between the LCMVE and
the generalized side lobe canceller [4], [5] allows to resort
also on standard stochastic gradient or recursive least squares
[2]. However, these recursive algorithms allow to sequentially
update the LCMVE (2) in non-stationary environments (i.e.
when the observation model changes over time),

yvi=Hx +v;, 1<I1<k, 3)

only for a given set of linear constraints W [H Q] = [I Y]
[2]1, [3], [7]-[9]. This leads to the set of recursive LCMVEs
for stationary constraints.

On another note, in presence of FCS sources, i.e. x; = X,
one can concatenate the available observations (3) to obtain an
augmented observation model® of size N}, N}, = Zle Ny,

Ve = Hpx + 95, V5,9, € CVe, Hy e CVPL (4a)

2Throughout the present communication, the vector resulting from the
vertical concatenation of k vectors aj,...,ay is denoted aj. The matrix
resulting from the vertical concatenation of k matrices Aq,..., Ay of same
column number is denoted Ay. [A B] and [g] denotes respectively the
matrix resulting from the horizontal and the vertical concatenation of A and
B. E[] denotes the expectation operator.



Then, provided that the additive noise sequence {vy,..., vy}
is temporally uncorrelated, authors in [11] have recently in-
troduced the family of recursive LCMVE with non-stationary
constraints associated to (4a), that is X = (WZ)H ¥, where

WZ = arg min {WkHCkak} s.t. WkHXk =Ty, (4b)
Wy

Ap = [H Q), T = [I Y], which can be computed
according to a Kalman-like recursion [10, §1],

R =Xy + Wi (v — HyXy_y) (4c)

A particularly noteworthy feature of the recursive formulation
introduced in [11] is that it is a fully adaptive sequential esti-
mator, allowing for the incorporation of additional constraints
at each step. The addition can be, for instance, triggered
by a preprocessing of each new observation or via external
information on the environment.

The primary goal of this communication is to extend the
results derived in [11] to the case of non FCS sources, i.e.
when xj; # x;. Indeed, in real-life applications different
experimental factors may prevent from observing FCS sources
(see Section III). In that sense, we address the case of partially
coherent signal (PCS) sources where their amplitudes undergo
a partial random walk between observations,

P
x1=%, xy=F_ixj_1+w;_1, x1,x;,w;_1 € C, (5a)

and the random noise sequence {wi,...,Wg_1} iS zero-
mean, temporally white and uncorrelated with both x; and
the measurement noise sequence {vy,...,Vg},

Cw,wi = Cw,.0k, Cxywy =0, Cyyv = 0. (5b)

The main merits of the amplitude fluctuation model (5a) are
both its simplicity and its capability to model most cases
of PCS amplitudes, including the situation where Cy, is
invariant, i.e. Cx, = Cx,, with a tunable correlation matrix
Cy, x,_, between observations, which is obtained by setting
F,_1= (_‘J,<l7,(l71(3;11 and CW171 = (:Jx1 — Fl_lcxlFfil.
The significance of the derivation of a recursive LCMVE for
PCS sources is twofold: 1) if the parameters (F;_1, Cw,_, ) of
the fluctuation model (5a) are known, it allows for a recursive
computation of the optimal estimate X’ of the amplitude
xj of the sources and its covariance error matrix; and 2)
if the parameters (F;_1,Cw,_,) are unknown, it allows to
perform a parametric study of the robustness of the LCMVE
for FCS sources (4a) against partial coherency. This can be
done by comparing its performance assessed via Monte-Carlo
simulations and the best performance achievable for each
likely (or possible) value of the parameters (Fl,l, Cw,_l).

II. RECURSIVE LCMVES FOR PCS SOURCES

In this section, we consider a completely different approach
to the one previously taken in [11]. Indeed, we provide
a general definition — see (8) — of a distortionless linear
filter/estimator of the amplitude x;, of the sources at each time
index k, which encompasses the usual definition used in [11,
(6)] expressed by the non-stationary constraints WHﬁk =1

The combination of this general definition and an insightful
breakdown of the variance of the output equivalent noise
(10a-b) allows to prove that the LCMVE with non-stationary
constraints and PCS sources can also be computed according
to a Kalman-like recursion (4c).

A. Equivalent observation model
Since the partial random walk (5a) of the individual signals
X7 can be recast as, 2 <[ < k,

-1
x=Bixi +Gwi_1, GWi_1 = ) Biiiw,

=1
Fl_lFl_Q...Fi,l > 1
G eCP-DP B, = I =i,
0 <
the observation model (3) becomes
n; =vp

yi=Axi+n, A;=HB;;, _
n;>o = v + HiGiw;_

leading to the updated augmented observation model

Y1 H, Vi
_ Y2 Ay np _ B
Y = . = . X1+ . = Apx; + 1y
Yk Ay ny

B. Problem statement
Let W), = [ﬁv’{,;l], Dj_q € CNe-1xP W, € CNexP | Ag:
Wiy = (Wi &) x1+ Guwes )
+ Wfﬁk - GWi—1, (7)
a linear filter W, is distortionless iff
W, A, =By &
Wiy, =xp+ Wetg — Guwi_1. (8)
The aim is to look for the family of linear constraints
Wi A, =Ty, Ay =[A, Q4], T = By1 4], 9a)
yielding a LCMVE, %% = WZHEC, where

W, = argmin {P), (W)} st. W, Ay =Ty,  (9b)
Wi

P, (Wk) =F [i‘\ki‘\kH] R T, = W?ﬁk - GywWg_1,

where P, (W},) is the variance of the output equivalent noise,
which can be computed recursively as (4c), or equivalently as,

%0 = (I- WITH,) R0 + Wiy, (%)

Indeed, since WZ in (9b) is analogous to a linearly constrained
Wiener filter [2, §2.5], its “batch” form is given by [2, §2]

_ o -1

W = G5/ Ry (R G5 Ax) i+ (9d)

B — /—H _—\"l_g
AR



. o N
which reduces to WZ = C;:Ak (AkHC;klAk) ra,
Kk‘ = ,ﬁk ﬁk], I‘k,‘ = [I Tk], When kal = 0 [113 (7b)]
Nevertheless, the “batch” form (9d) is hardly likely to be
computable as the size of nj increases.

C. Recursive LCMVEs

Let Py (Wk) = Py (ﬁk_l,Wk). Then a key point to
solve the problem at hand is to notice that under the assump-
tions in (5b) we have that

Py (Di—1, Wi) = Qp—1 (Di—1, Wy) + (10a)
(I- WHH,) Cy,,_, (I- WIH,)" + WHC,, Wi,
where
Qi1 (D1, Wi) = E [Gr-1G5",] , (10b)
dr-1= 5kH,1ﬁk71 — (I-W/H) Fio1 G 1Wi—2
which reduces to [11, (9)]
Pir (Dy-1, Wi) = Qi1 (Di—1, W) + W Cy, Wy,
Q-1 (Di—1, Wi) = ﬁka1CV;¢_1ﬁk717
when wi_; = 0.
e First step
If we recast Ay = mk ﬁk} as A = Fq’;;l} where ®;_; =

[Aj_1 Q1] and @), = [A}; Q4], then an equivalent form
of (9a) is given by
Wi Ay, =T; & Dy &1 =T, WIa,. (1)

Therefore, according to (10a),
71) . R
D,_,= arg min {Qi—1 (D1, Wy) }
k—1

st. Dl &, =T — WH®,, (12a)
that is, provided that ®;._; and Cy,._, are full rank, (9d):

—b
D, , =

-1 = —H 1 = -1 - H
Car i1 (‘;'k—lcﬁk,l‘I)k—l) Ty — Wi ®) +
_ — —H 1 = -1 __pg B
Cﬁkl—l (I =@ (‘bkflcﬁkl_ltl)kfl) ‘ﬁlen:_l)
H
* Gy, iwoFhot (I WiTHE)™ . (12b)

It is remarkable that (12b) can be recast as
—b —b H
D, =W, Fi', (I-W/H;)" +

1 = —H 1 = 1
c:! @, , (@k_lcﬁk{l@k_l) o, (120

ng_1
where ®k71 = Fk —WkH@k — (I — W?Hk) Fk,lI‘k,l and
Wiy = arg min {Py_y (Wiy)}
Wi 1

st W, By, =Ty, (12d)

Thus, the LCMVE (9b) follows a Kalman-like recursion (9¢)
with separable solutions for Dy_; and Wy, iff, YWy

—b —b H
D1 =W, Fil, (I-W{H,)" &
G)k*l = 0 = Fk — W]{:_I@k - (I - W?Hk;) Fk‘flrkfl’
that is iff, YWy
Fk — Wqul’k = [Bk,l — W;?Ak Tk' - Wl?ﬂk]
= (Feo1 — WHHFj_1) Tiq,

which requires that T'y_1 = [Bg_11 Yi-1], YTi =
Fr 1Yy, 1, and Q = HyF;_1Yy_1. Ergo, the LCMVE
(9b) follows a Kalman-like recursion (9c¢) iff (12a),
—H —
D, &, =T, - Wli®,
= (I-W{Hg) Fr1[Br_11 Yia],

or equivalently, iff

Qi1
HyFp_ 1Yy

woH Kk—l

Ci: W, AL = [Bi,1 Fro1YXp_1],

(13)
and (12d) amounts to the following

W2—1 = arg _min {Pk—l (Wk—l)}
Wi_1

—H o — —
st. Wi_y [Ap_y Q1] = Bro1g Yioa], (14)

which means that X} |, = W, 5, , is an LCMVE as
well. The specific form of (13) reflects the fact that the linear
constraints at time k — 1 in (14) propagates at time k via C
in (13). Interestingly, additional linear constraints on W, can
be introduced on-line as shown in a second step.

e Second step
Let us notice that Py (ﬁzfp Wk) (10a) can be reformulated
as,
—b
P (Dj1, W) =
(I- WHH,) F,_,PL  FI (1- WiH,)" +
(I- WIH,) Cy,_, (T- WIH,)" + WHC,, Wy,

where P} = P, (WZ), or equivalently,

P, (ﬁi_l,wk) - wic,, W,
+(I-WHH,) UL, (1-WFH)", (15

where UY_| = F;,_1P} FZ | 4+ Cy, ,, which is analogue
to [11, (16)], provided that one replaces PZ—l with UZ—1~
Therefore two cases are possible:

1) no additional linear constraints on W} are introduced.
In that case, as shown at the first step, the LCMVE only
propagates at time k the existing linear constraints at time
k—1 (14) via C{ (13).



Then the solution of W = arg min {P;€ (D,C 17Wk)}
well known and given by [10, §1]

Xp =%+ Wi (yp —HX2_)),  (169)
U}, =Fi 1P}, F{' | +Cy,_,, (16b)
S, =H,U;_H{ + C,,, (16¢)
W} =S, 'H,U)_,, (16d)
P} = (I- W H,)U,_,. (16e)

2) additional linear constraints on Wy, i.e. W,ﬁl A, =Ty,

are introduced on-line and (13) must be updated to take them
into account, leading to,

Ay Q4 0
C2:W
b Tk [ Ar HyFp_ 1Y, Ak]
=[Br1 Fro1Yr—1 T, (A7)
Wb = argnvlvin{Pk (ﬁz_l,wk)} st. WHA, = T,
k

is then analogous to a linearly constrained Wiener filter [2,
(2.113)]. Thus (9b) follows a Kalman-like recursion given by

X =%+ W (ye —HiX} ), (18a)
Ut |, =F, P} FI 1+ Cu, ., (18b)
S, =H,U, HI{cC,,, (18¢)
Wy, =S, 'H,Ub_,, T,=T,-W/A,, (18d)
Wo =W, + S Ay (AFS;'AL) T TH (18¢)

P = (I- WIH,) UL, + T, (AFS;'A,) ™ T,
(18f)

In both cases,
P! . = min {Py_; (W,_
= min (P (We))

S.t. W}ngl gk71 ﬁkfl]

which means that the same rationale can be applied at time
k — 1 and so forth until time k = 2.

= [Br-1,1 Yi-1],

Note that if Cy, , = 0, then (16a-16e) reduce to [11,
(17a)-(17¢)], and (18a-18f) reduce to [11, (192a)-(19d)].
e Summary

The linear constraints (9a) allowing the LCMVE to follow
a Kalman-like recursion (4c)(9¢c) in presence of PCS sources
(5a), are built as follows:

> at time k£ = 1, a set of linear constraints of the form
WHA, =T, {A\=H,, T, =1}

or {Al = [Hl Ql], Fl = [I Tl]}7 (198.)

must be set, leading to
_ _ —1
= Wiy, Wi =cC_'A; (AfCMA) T,
_ —1
Py =T, (A{'C 'A,) T, (19b)

> at time k > 2:

a) either no additional linear constraints on W, are introduced
and X} must be computed according to (16a-16¢) in order to
propagate the existing set of linear constraints,

b) or additional linear constraints on Wy, i.e. WkH Ay =Ty,
are introduced on-line and §Z must be computed according
to (18a-18f) in order to propagate the updated set of linear
constraints.

III. ON THE IMPACT OF PCS SOURCES ON RECURSIVE
LCMVES PERFORMANCE

Let us consider a uniform linear array with N = 50 sensors
equally spaced at d=\ /2 (half-wavelength) and an impinging
signal source ; with broadside angle o = 10°, embedded in a

spatially and temporally white noise: y; = hy

h? (d,a) = (1 , Cy,.v, = I6%. The
signal source zi is random, Gaussian complex circular with
unit variance (C,, = 1), and is assumed to be fully coherent
(z = x1). However, fluctuation of the propagation medium
are sometime unavoidable during the whole observation time
interval, which prevents from observing a perfectly coherent
signal source. Indeed, the random fluctuation of the propa-
gation medium induces a random fluctuation of the signal
amplitude. If the propagation medium fluctuations are small,
then the mean power received from the signal source remains
unchanged [12], which can be modeled via (5a) as:

Cars |feo1l” <1,
= ka,wk—l/crk_1 = fk*la

where f;_1 is the correlation coefficient between xj;_1 and
x;, which fully characterizes the loss of coherence between
observation k£ — 1 and k.

First, we want to investigate the impact of a slight loss
of coherence of the signal source on the performance of the
recursive MVDRE computed under the hypothesis of an FCS
source [11, (17a)-(17c)]. To this end, we compute the MSE in
the estimation of x;, both for a FCS source (reference case)
denoted “MVDRE (FCS)”, and for a PCS source, denoted by
“MVDRE Mismatched to PCS”. Secondly, we also want to
assess the benefit of the proposed extension to [11], that is,
the ability to resort to a recursive MVDRE taking into account
(20), with f;,_; and Cy,,_, known. This method is denoted as
“MVDRE Matched to PCS” in the results.

The results are summarized in Fig. 1, where the empirical
MSEs (denoted “...(Sim)..””) are assessed with 10* Monte-
Carlo trials, whereas the analytic MSEs are assessed according
to (16a-16e). Three cases of very small loss of coherence are
considered (02, =02, € {107%,107°,107*}). Fig. 1 clearly
exemplifies the impact of a slight loss of coherence of the
signal source on the MVDRE performance in the large sample
regime, which introduces a severe performance breakdown
when the loss of coherence is not taken into account. Thanks to
the results derived in this article, we can also evaluate which is
the minimum achievable MSE when the amplitude fluctuation

(CZ 04) T+ Vi,

,el j2m(N—1)< sin(o)

T = fr—1Zp—1 +Wi—1, Cypy, = (20)

Py ,ay,



MSE (Lin)

—MVDRE (FCS)
10} MVDRE Matched to PCS: #°, = 1e-6 .

MVDRE Mismatched to PCS (Sim): rfa =1e-6
—MVDRE Matched to PCS: eri =1e5
- MVDRE Mismatched to PCS (Sim): o2, = 1e-5
1071 \VDRE Matched to PCS: o2 =1e4
o MVDRE Mismatched to PCS (Sim): o2, = 1e-4

100 10 10% 10°
Observation index k (Lin)

Fig. 1. MSE of the recursive MVDRE of z;, (20) versus &

model is known (20). Fig. 1 clearly shows that, when the signal
source amplitude becomes partially coherent, there exists a
lower limit in the achievable MSE, and an optimal number of
observations that can be combined to estimate the amplitude
with a nearly minimum achievable MSE.

107, '

10-2_

—Cal MVDRE (FCS)
----MisCal MVDRE (FCS,Sim)
107 £|-e- MisCal MVDRE Mismatched to PCS (Sim)
—MisCal LCMVE (FCS,Pred)
- MisCal LCMVE (FCS, Sim)

= MisCal LCMVE Mismatched to PCS (Sim)

MisCal LCMVE Matched to PCS (Pred)

—--MisCal LCMVE Matched to PCS (Sim)

10
10° 10 107 10°
Observation index k (Lin)

Fig. 2. MSE of the recursive LCMVE of x;, (20) versus k, 03_, =10 4

Let us assume now that, due to a calibration error, or array
deformation (e.g., thermal effects, aging, etc.), the actual inter-
sensor distance is d = 0.9975d, i.e. d —d = A/400. Thus, we
are in the presence of a parametric modelling error in mea-
surement vectors hy, (d, o) which leads to the computation of

a recursive MVDRE that does not match the true observations.
The effect of such kind of “miscalibration” on the MVDRE
is shown in Fig. 2 where we compare the performance of
MVDRE:s based on recursions [11, (17a)-(17¢c)] computed with
the true value d (“Cal MVDRE (FCS)”) and with the assumed
value c?(“MisCa] MVDRE (FCS,SIM)™) for an FCS source. It
is usual to add derivative constraints in order to mitigate the
effect on hy, (d, @) of a small change in the system parameter
d [1, §6.7.1], leading to a recursive LCMVE [11, (19a)-(19d)]

where at each iteration the constraint 8hy, (d, o) /8d = 0 is

taken into account (“MisCal LCMVE (FCS,SIM)™).

In this context also, we assess the impact of a PCS source on
recursive LCMVE performance by considering the amplitude
fluctuation model (20) where o2, = 10~%. For this purpose, we
compare the performance of the recursive LCMVE computed
under the hypothesis of FCS source [11, (19a)-(19d)], denoted
by “MisCal LCMVE Mismatched to PCS (SIM)” in Fig.
2, and the proposed extension (18a-18f), that is the ability
to resort to a recursive LCMVE taking into account (20),
denoted by “MisCal LCMVE Matched to PCS (SIM)” in
Fig. 2. Again, even a slight loss of coherence introduces
a severe LCMVE performance breakdown when the loss of
coherence is ignored, breakdown which can be mitigated when
the amplitude fluctuation model (20) is taken into account
thanks to the proposed results. Last but not least, in case of a
“small” miscalibration effect, the analytic LCMVE recursion
(18a-18f) provides a tight prediction of the actual behaviour
of the LCMVE, both in presence of an FCS source (“MisCal
LCMVE (FCS,Pred)”) and of a PCS source (“MisCal LCMVE
Matched to PCS (Pred)”).
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