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Abstract

Estimating the future event sequence conditioned on current
observations is a long-standing and challenging task in tem-
poral analysis. On one hand for many real-world problems
the underlying dynamics can be very complex and often un-
known. This renders the traditional parametric point process
models often fail to fit the data for their limited capacity. On
the other hand, long-term prediction suffers from the prob-
lem of bias exposure where the error accumulates and propa-
gates to future prediction. Our new model builds upon the se-
quence to sequence (seq2seq) prediction network. Compared
with parametric point process models, its modeling capac-
ity is higher and has better flexibility for fitting real-world
data. The main novelty of the paper is to mitigate the second
challenge by introducing the likelihood-free loss based on
Wasserstein distance between point processes, besides nega-
tive maximum likelihood loss used in the traditional seq2seq
model. Wasserstein distance, unlike KL divergence i.e. MLE
loss, is sensitive to the underlying geometry between samples
and can robustly enforce close geometry structure between
them. This technique is proven able to improve the vanilla
seq2seq model by a notable margin on various tasks.

Introduction

The ability of looking into the future is a challenging but lur-
ing task. People are willing to estimate the occurrence prob-
ability for their interested events so that they can take pre-
emptive action. For example, after reviewing the admission
history of patients, the doctors may give kind warning for the
patients who are at high risk of certain diseases. When hav-
ing access to working experience of job seekers, headhunters
can evaluate one’s future career path and recommend a suit-
able position at proper time. In these cases, the historical ob-
servations always provide us with important guidance to pre-
dict future events — not only the order of events but also the
time span between them contain useful information about
the underlying dynamics of the process. Therefore, we need
to predict the distribution of future events conditioned on the
partial historical observations and the estimated dynamics of
the process.
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However, this task is very challenging mainly for two rea-
sons: First, we have little knowledge on what model the
whole process actually follows. For real-world events, the
underlying generating process is often unknown. If a mis-
specified model is used to fit the observed data, its out-
of-sample generality would degrade. Therefore, a flexible
model with enough capacity to handle such a complexity is
necessary. Second, long-term prediction suffers from the so-
called bias exposure problem (Bengio et al. 2015) where the
error accumulates and propagates to latter prediction. Most
work relies on the one-step maximum likelihood estimation.
As a result, the high-order dependency over events for like-
lihood function has not been fully explored.

In this paper, we propose a new neural network-based se-
quential model and design a novel learning algorithm to ad-
dress the above two challenges, respectively. In particular,
our model is a kind of neural point process models (Du et al.
2016; Xiao et al. 2017c), which is very robust to the prob-
lem of model misspecification and has large capacity. In the
learning phase of our model, we design a new algorithmic
framework combining traditional maximum likelihood es-
timation (MLE) with Wasserstein distance-based learning.
Our learning method is based on the following two facts:
On one hand, MLE loss or KL divergence requires strict
matching between two probability distributions and is non-
biased estimation of parameters, which is sensitive to sam-
ple noise and outliers; on the other hand, unlike MLE loss,
which does not consider how close two samples are but only
their relatively probability, Wasserstein distance is sensitive
to the underlying geometry structure of samples but has bi-
ased gradients(Bellemare et al. 2017). To take advantage of
the strengths of these two methods and mitigate the bias
exposure in long-term prediction, our method incorporate
Wasserstein distance besides MLE — both the KL diver-
gence and the Wasserstein distance between generated and
real samples are minimized jointly.

In a nut shell, the main contributions of the paper are:

1. We develop a novel long-term time dependent event se-
quence prediction model by exploring the Wasserstein
loss besides the traditional MLE loss. Differing from
the very recent adversarial learning based point process
model (Xiao et al. 2017a), which can only estimate the
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overall intensity of a set of sequences, our model al-
lows for individual level in-sample forward prediction
of event sequence conditioned on its history. In partic-
ular, we pursuit long-term prediction via a sequence to
sequence model and boost its performance via adversar-
ial learning technique. To the best of our knowledge, this
is the first temporal event model for individual sequence
prediction based on adversarial learning.

2. Our model shows promising performance on various syn-
thetic data and real-world event sequences in different do-
mains. On one hand, our model can outperform state-of-
the-art neural network based event prediction methods in
terms of prediction error. On the other hand, our gener-
ator can fit well with various specified parametric point
process models and generates plausible event sequences,
which may bear high potential for other applications in-
volving domain-specific data synthesis, especially for the
cases that are sensitive and hard/expensive to collect data
e.g. medical records (Choi et al. 2017). In other words, our
predictive model provides a new framework to synthesize
event sequences from history observations.

Related Work

We perform a brief literature review focusing on a few as-
pects: i) temporal point processes for their dominant usages
in event sequence learning; ii) related work about genera-
tive adversarial networks as a similar framework used in this
paper; iii) miscellaneous event prediction approaches espe-
cially those based on recurrent neural networks which are
also the building blocks of our approach.

Temporal point processes

Point processes have been widely used to model and predict
time-dependent event sequences, e.g. earthquake and its af-
tershocks (Ogata 1988), finance transaction analysis (Bacry,
Mastromatteo, and Muzy 2015), medical health predic-
tion (Xu et al. 2017). Readers are referred to (Aalen, Bor-
gan, and Gjessing 2008) for a more comprehensive read-
ing for related concepts. Most previous models largely are
based maximum likelihood estimation, including the tradi-
tional parametric models that specify the parametric form of
the underlying conditional intensity function (Rubin 1972;
Lewis and Mohler 2011), as well as more recent literature
on recurrent network-based intensity function modeling (Du
et al. 2016; Xiao et al. 2017c; 2017b), in the hope of increas-
ing the modeling capability. In this paper we work with the
temporal event sequences using sequence to sequence net-
works, instead of explicitly modeling the intensity function
from the point process perspective, as our ultimate goal is
for long-term prediction. However, our model can be used
to generate event sequences fitting with different point pro-
cesses.

Generative adversarial networks (GANs)

GANs have been extensively studied since the seminal
work (Goodfellow et al. 2014), which has proven to be a
promising alternative to traditional maximum likelihood-
based models (Theis, van den Oord, and Bethge 2015). Its

learning procedure involves a minimax game between a gen-
erative model and a discriminative model. The vanilla GANs
paradigm in (Goodfellow et al. 2014) accepts a random in-
put signal to generate output data, aiming at fitting a certain
distribution. Recent studies (Arjovsky, Chintala, and Bottou
2017; Gulrajani et al. 2017) further present improved and
more stable learning techniques for GANs, which explain
GANs from the viewpoint of Wasserstein distance-based
learning strategy.

For sequential data, many approaches have resort to
GANs techniques for sequence generation (Press et al. 2017;
Zhang et al. 2017). For instance, text generation can be per-
formed without specified input and the generation perfor-
mance largely relies on expert judgment and vague statis-
tics like n-gram based blue-score. The methods in (Yu et
al. 2017) use reinforcement learning algorithm as unbiased
gradients for discrete sequence outputs. However, they suf-
fer from high variance of estimated gradients and high-cost
computation in practice. Note that all the methods above do
not deal with time stamps and only consider the order of
events in their learning phases. In contrast, learning the time
dependency over events is the main focus of this paper.

Our work is also related to the so-called conditional GAN
techniques, whereby the model output is conditioned on the
input. Examples include image super-resolution (Ledig et al.
2017), image to image translation (Isola et al. 2016). In gen-
eral, it performs relatively well in image to image transla-
tion with low stochasticity of outputs conditioning on in-
puts (Isola et al. 2016). Our approach can be regarded as a
conditional GANs model, whereby the output, i.e. predicted
event sequence, is conditioned on the input observed history
sequence. More specifically, we regard our model involves
conditional Wasserstein loss (Arjovsky, Chintala, and Bot-
tou 2017; Gulrajani et al. 2017) for learning.

One closely related work is the Wasserstein learning of
point processes in (Xiao et al. 2017a). However, because
that method aims to train a generator that can generate a
few event sequences fitting into the learned distribution, the
pipeline of that method is not conditional, i.e., its generator
cannot accept specified input to generate expected output.
In contrast, our generator need a partial observed sequence
and generate its future conditioned on the input history. As a
result, our approach is able to perform in-sample prediction
instead of mining the distribution for the training data as a
whole – which is individual sample agnostic.

Miscellaneous event sequence prediction models

Event sequence prediction is an active research topic in liter-
ature, and there have been a large amount of relevant meth-
ods based on different techniques. Among them, recurrent
neural networks (RNNs) have been recently applied to se-
quential modeling (Du et al. 2016; Bengio et al. 2015)
and achieved state-of-the-art performance. The former (Du
et al. 2016) employs one-step maximum likelihood estima-
tion and the later (Bengio et al. 2015) employs a curriculum
learning strategy in the training stage to mitigate the error
propagation problem. The authors in (Lian et al. 2015) pro-
pose a multi-task approach to deal with data sparsity, which
has high computational cost. Works use data-driven ap-
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proach to predict future activities given auxiliary data from
distributed sensors (Minor, Doppa, and Cook 2015), and em-
bedding time to robust features to event prediction (Li 2017).
All these methods do not involve adversarial learning, which
makes them inherently different from our approach. Mean-
while, the presented technique in this paper is general.

Proposed Framework

Given an observed time-dependent event sequence ζn =
t1, t2, . . . , tn, the task is to learn a generative model that
follows the optimal distribution P (tn+1, . . . , tn+m|ζn). To
achieve this aim, we design a discriminative learning algo-
rithm based on Wasseratein loss combined with maximum
likelihood estimation.

Generative model gθ(·)

Our forward prediction model follows the sequence-to-
sequence approach (Sutskever, Vinyals, and Le 2014) as
depicted in Figure 1. The generator firstly encodes the
partial observation into compact representation. Then, the
decoder recurrently outputs decoded sequence. If the in-
put and output sequences are ζ = {t1, . . . , tn} and ρ =
{tn+1, . . . , tn+m}, the seq2seq model learns a mapping
gθ(ζ) = ρ, which maximizes the distribution of real data.

The RNN recurrently embeds the inputs to an interme-
diate fixed-dimensional representation hi incorporating the
history information before time ti, and then maps to the pre-
diction ti+1, according to the following equations:

hi = φh
g (A

h

g ti +B
h
ghi−1 + b

h
g ), (1)

ti+1 = φx
g(B

x
ghi + bxg), (2)

where φh
g , φx

g are activation functions. In practice, our RNN
is an LSTM, which can capture long range temporal depen-
dencies and we follow the same structure as in (Sutskever,
Vinyals, and Le 2014).

The RNN estimates the probability P (ρ|ζ) by recursively
computing the conditional probability according to

P (ρ|ζ) =

n+m−1∏

i=n

P (ti+1|hi, t1, . . . , ti). (3)

The RNN iteratively generates the outputs by select-
ing the value that maximizes the conditional probability
P (ti+1|hi, t1, . . . , ti).

By maximizing P (ρ|ζ) given training pairs < ζ, ρ > of
real data, the model parameters can be learned via maxi-
mum likelihood estimation. In the learning stage, true data
ρ are feed to the RNN to compute the probability while in
the inferring stage, previously generated steps are taken as
input to RNN. The discrepancy between learning and infer-
ring process can propagate errors to the subsequent gener-
ated sequence as conjectured and analyzed in (Bengio et al.
2015). To mitigate this problem, we propose to add Wasser-
atein loss to the original problem. This brings a major ad-
vantage that the whole generated sequences can be taken into
consideration for learning in the spirit of minimizing the dis-
tance between the distribution of generated sequences and

Figure 1: Our generator follows the sequence to sequence
recurrent network in line with (Sutskever, Vinyals, and Le
2014). Different from the traditional MLE based learning
loss, we update the seq2seq LSTM via a fused loss including
both MLE and Wasserstein losses.

real data. We believe this can be complementary to the MLE
loss.

Motivated by the above observation, we devise Wasser-
atein loss-based conditional GAN techniques and aim to
learn a joint loss as described in the subsequent subsections.

Wasserstein loss and discriminative model fw(·)

Let X be a compact metric set where each element ξ ∈ X
is one realization of point processes and P(X ) denotes the
space of probability measures defined on X . Now we can
define the divergence between two point process distribu-
tion Pr,Pθ ∈ P(X ). The Wassestein distance between two
distributions Pr and Pθ can be defined as:

W (Pr,Pθ) = inf
γ∈Π(Pr,Pθ)

E(ξ,η)∼γ [c(ξ, η)]

= inf
γ∈Π(Pr,Pθ)

∫

X×X

c(ξ, η)dγ(ξ, η), (4)

where Π(Pr,Pθ) denotes the set of all joint distributions
γ(ξ, η) whose marginals are respectively Pr and Pθ, and
c(ξ, η) is the cost function c: X × X �→ R

+.
Solving Equation 4 directly is intractable, thus we turn to

its Kantorovich-Rubinstein duality in accordance with (Ar-
jovsky, Chintala, and Bottou 2017):

W (Pr,Pθ) = sup
||f ||L≤1

Eξ∼Pr
[f(ξ)]− Eη∼Pθ

[f(η)], (5)

where the supremum is over all the 1-Lipschitz functions
f : X �→ R.

For our conditional generator that generates ρ̂ = gθ(ζ)
based on ζ, the Wasseratein distance can be rewritten as:

W (Pr,Pθ) =

sup
||f ||L≤1

E{ζ,ρ}∼Pr
[f({ζ, ρ})]− Eζ∼Pr

[f({ζ, gθ(ζ)})], (6)

where {ζ, ρ} represents the long sequence generated by
stitching the observation ζ with the prediction ρ.

The key part of Wasserstein learning is the design of the
1-Lipschitz function f . In theory, the function space of 1-
Lipschitz function is very large. In practice, it’s hard to fully
explore the whole space of 1-Lipschitz function but we can
apply a neural network to approximate the function and learn
it under the 1-Lipschitz constraint. In this work, we present
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Figure 2: Our discriminator’s structure follows a one-
dimensional CNN architecture in line with (Gulrajani et al.
2017). The input is l length sequence, where each element
has k features. In the figure k = 2, while in our paper, k = 1,
which is the inter-event time duration.

the design and implementation for the discriminator module
fw(·) with parameters w. Specifically, we choose the Resid-
ual convolutional neural network (CNN) (He et al. 2016)
shown in Figure 2 to approximate the 1-Lipschitz func-
tion fw(·), which proves to work efficiently (Gulrajani et al.
2017). The parametric approximation of function fw(·) with
direct connection is highly flexible and has much power to
approximate a large scope of functions. The network con-
sists of two layered residual blocks, where each block is
CNN-based residual network, and the final layer is a fully
connected forward network.

Final objective for minmax learning

Previous work (Isola et al. 2016; Gulrajani et al. 2017)
shows that in general it may be beneficial to mix the
maximum likelihood loss and adversarial loss (specifically
Wasserstein loss W (·, ·) in this paper). In the context of se-
quence learning, we believe the benefit is more direct and
perceivable as the MLE is based on recursive prediction
from one step to the next, while the Wasserstein loss can
measure the deviation between two sets of sequences as a
whole. Therefore, the combined loss can be written by:

W (Pr,Pθ)− σ log(Pθ(ρ|ζ)) (7)

where σ is the trade-off between Wasserstein loss and nega-
tive log-likelihood.

In summary, our objective function is a minmax problem
whose objectives can be optimized alternatively. Following
the work in (Gulrajani et al. 2017), the 1-Lipschitz constraint
of function fw can be converted as a regularization term to
the Wasserstein loss, leading to the final loss function re-
garding with the generator’s parameter θ and discriminator’s

Figure 3: The overall framework of conditional genera-
tive model. The discriminator (embodied by CNN in the
paper) computes real-valued scores for both synthetic se-
quences by the generator and real sequences, which are
used to compute the Wasserstein loss. The real sequences
(τ1, τ2, . . . , τn, . . . , τn+m) are randomly sampled from the
real data pool. Our approach falls in the conditional gener-
ative model family because the generator’s output is condi-
tioned on the specific input: (t1, . . . , tn).

parameter w:

min
θ

max
w

L∑

l=1

fw({ζl, ρl})−
L∑

l=1

fw({ζl, gθ(ζl)})

︸ ︷︷ ︸

Wasserstein loss between two distribution

− λ|f ′
w(x̂)− 1|

︸ ︷︷ ︸

1-Lipschitz regularizer

−σ log (Pθ(ρ|ζ))
︸ ︷︷ ︸

MLE loss

(8)

where x̂ is the interpolation of {ζl, ρl} and {ζl, gθ(ζl)} and
the hyper-parameter λ is the regularization weight.

The working flow of our discriminator is illustrated in
Figure 3. The overall learning procedure is given in Algo-
rithm 1.

Experiments
Our experiment involves various public real-world datasets,
and synthetic dataset simulated by popular point process
models. We verify our approach on tasks for both predic-
tion as well as the so-called cycle consistency check: train
the generator using specified parametric models and its sim-
ulated data, and then learn the model parameters from the
fake data generated by the trained generator.

Dataset and Implementation Details

Synthetic datasets. We simulate data from some classic and
wildly-used point processes: inhomogeneous Poisson pro-
cess (IP), self-exciting process (SE), i.e., Hawkes process
in (Hawkes 1971), self-correcting process (SC) in (Isham
and Westcott 1979). The detailed settings are specified as
follows:

1. Inhomogeneous Poisson process (IP). The intensity
function is independent from history and specified by a
multi-modal function comprised of k Gaussian kernels:

λ(t) =

k∑

i=1

αi

(
2πσ2

i

)−1/2
exp

(
−(t− ci)

2/σ2
i

)
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Algorithm 1 Conditional Wasserstein estimator (CWE)
with MLE loss for event sequence prediction. The default
values α = 1e−4, β1 = 0.5, β2 = 0.9, m = 256, ncritic = 5.

Require: the trade-off coefficient σ, the regularization coefficient
λ for direct Lipschitz constraint. the batch size, m. the number
of iterations of the critic per generator iteration, ncritic. Adam
hyper-parameters α, β1, β2.

Require: w0, initial CNN discriminator fw’s parameters. θ0, ini-
tial seq2seq LSTM generator gθ’s parameters.

1: while θ has not converged do
2: for t = 0, ..., ncritic do

3: Sample {ζ(i), ρ(i)}mi=1 ∼ Pr from real data.
4: Generate {ζ, gθ(ζ)}.
5: x̂ = z{ζ, ρ} + (1 − z){ζ, gθ(ζ)} where z ∼

Uniform(0, 1).

6: Lw ←
∑L

l=1 (fw({ζl, ρl})− fw({ζl, gθ(ζl)})) −
λ|f ′(x̂)− 1|.

7: w ← Adam(∇wLw, w, α, β1, β2)
8: end for
9: Sample {ζ(i), ρ(i)}mi=1 ∼ Pr from real data.

10: Lθ =
∑

m

i=1
fw({ζl,gθ(ζl)})

m
− σ logPθ(ρ

(i)|ζ(i))
11: θ ← Adam(−∇θLθ, θ, α, β1, β2)
12: end while

for t ∈ [0, T ) where ci and σi are respectively
fixed center and standard deviation, and αi is impor-
tance weight of kernel i. Specifically, we set k =
6, c = [3, 6, 9, 12, 15, 18], σ = [5, 5, 5, 5, 5, 5], α =
[14, 18, 13, 17, 10, 13].

2. Self-exciting process (SE). It is also called Hawkes pro-
cess (Hawkes 1971) which assumes the past events in-
crease the rate of future events. The effect decays over
time captured by a decaying kernel g. Its conditional in-
tensity function can be specified by

λ(t) = μ+ β
∑

ti<t

g(t− ti)

where g is a nonnegative kernel function. Note μ is the
exogenous rate of firing events and β is the coefficient for
the endogenous rate. Here we specify g(t) = exp(−ωt)
for some ω > 0, and set μ = 1.0, β = 0.8 and the decay-

ing kernel g(t− ti) = e−(t−ti).

3. Self-correcting process (SC). In this process, the inten-
sity increases over time, while the past occurred event will
decrease the occurrence probability in future. The condi-
tional intensify function can be specified as:

λ(t) = exp(ηt−
∑

ti<t

γ).

The exp(·) ensures that the intensity is positive, while η
and γ are exogenous and endogenous rates. We set η =
1.0, γ = 0.2 in our experiment.

To further test the generalization ability of the proposed
model in the case of predicting multi-modal data, we create
3 more datasets by a uniform mixture of the tuples above,
namely IP+SE, IP+SC, SE+SC. They are used to testify
the mode dropping problem of learning a generative model.

For each synthetic dataset mentioned above, total 20, 000
sequences with each 60 events are simulated.

Real-world datasets. We evaluate our approach against
peer methods on four real-world datasets from different do-
mains: health-care records from MIMIC-III, job-hopping
records from LinkedIn, IPTV users’ watching records, and
NYSE stock exchanges. Without loss of generality, the time
scale for all real data are scaled to [0, 15], and the details are
as follows:

1. MIMIC. MIMIC-III (Medical Information Mart for In-
tensive Care III) is a large, publicly available dataset. It
contains the health-related data of over 40, 000 anony-
mous patients from 2001 to 2012. We perform test on the
patients who have at least three admission records, result-
ing in 2246 patients. Their admission timestamps are col-
lected as event sequences. The dataset was downloaded
from https://mimic.physionet.org.

2. LinkedIn. The LinkedIn data (Xu, Luo, and Zha
2017) is crawled online, which contains the job hop-
ping records of over 3, 000 LinkedIn users in more
than 80 Information Technology (IT) companies, re-
search institutes and universities. Each user’s on-
board timestamps corresponding to different affilia-
tions are recorded as an event sequence. The data
can be found at https://github.com/HongtengXu/Hawkes-
Process-Toolkit/blob/master/Data/LinkedinData.mat, and
more details are available in (Xu and Zha 2017).

3. IPTV. The IPTV (Internet Protocol Television) log-
data (Luo et al. 2014; 2015) is collected from a large-scale
IPTV provider of Shanghai Telecomm Inc. The log-data
records TV watching behaviors of 7, 100 users, which
is composed of anonymous user logs, time stamps (at
the precision of one second) of the beginnings and the
endings of watching sessions (only those whose dura-
tion is more than 20 minutes are recorded), and TV pro-
grams which can be categorized into 16 classes. The data
can be found at https://github.com/HongtengXu/Hawkes-
Process-Toolkit/blob/master/Data/IPTVData.mat.

4. NYSE. The dataset contains 0.7 million high-frequency
transaction records at a stock market in one day.
The transactions are evenly divided into 3, 200 se-
quences with equal durations. The data can be found at
https://github.com/dunan/NeuralPointProcess/tree/master
/data/real/book order.

The data for each type is divided into train, validation
and test parts according to 0.7, 0.1, 0.2 ratio. The regu-
larization term’s weight λ for the 1-Lipschitz function fw
and the MLE loss’s weight σ are determined by validation
data. All temporal sequences are transformed into time du-
ration between two consecutive events, i.e., transforming
the sequence ξ = {t1, . . . , tn} into {τ1, . . . , τn−1}, where
τi = ti+1 − ti. The transformed sequences are statistically
identical to the original sequences, which can be used as the
inputs of our neural network1. For synthetic data, a half of

1In fact, we can go further to embed the time duration into a
low-dimensional vector feature, which is easy to handle for neural
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events are taken as observations. For the three mixed syn-
thetic data, the model’s parameters is separately learned with
their related generated sequences. For real data, sequences
are padded with zeros to the same length and a half of each
sequence are taken as observations. The implementation is
based on TensorFlow and all experiments are executed on
12 Nvidia Tesla K80 GPUs.

Competitors and evaluation metrics

We compare our conditional Wasserstein estimator (CWE)
with existing maximum likelihood-based methods on learn-
ing and predicting the parametric point processes men-
tioned in the previous subsection. Specifically, the com-
petitors of our method include the MLE-based estimators
of inhomogeneous Poisson process (MLE-IP), self-exciting
process (MLE-SE) and self-correcting process (MLE-
SC). Additionally, the recurrent network (Du et al. 2016)
whose learning are all based on the traditional MLE loss
(MLE-NN), the MLE based sequence-to-sequence model
(Seq2Seq) (Sutskever, Vinyals, and Le 2014), and sched-
uled sampling model (SS) in (Bengio et al. 2015) are also
considered.

We use all the above solvers to learn the model and predict
forward sequences. For the synthetic data which we know
the underlying generative models, we use the generated se-
quences to learn their parameters and compare our estima-
tions with the ground truth. The deviation of learned param-

eters θ̂ and the ground truth θ� is defined as:

Pa.Dev. =
||θ̂ − θ�||2
||θ�||2

. (9)

Additionally, we can compare the error over the predicted
sequence with the real sequence, which is defined as:

Pr.Dev. = ‖ξ − η‖� (10)

=
∑n

i=1
|ti − τi|+

∑m

i+1
T − τi+1,

where ξ = {t1, . . . , tn} is the predicted sequence and η =
{τ1, . . . , τm} is the real sequence. For the real-world data,
we only use Pr.Dev as the metric because the ground truth
is unavailable.

Comparisons and analysis

Synthetic data. Table 1 shows the mean and standard de-
viation for 10 round runs of estimators and compares the
learning ability of different estimator when the ground-truth
data is generated via different types of point process. We
first compare the deviation of parameters in the top row. The
CWE generates higher quality sequences conditional on par-
tial observation with no prior information about underlying
process. Even compared with the estimators that do not suf-
fer to model misspecification (i.e., the numbers with under-
lines in Table 1), CWE still has competitive performance.
Whenever the model is misspecified (i.e., we don’t know

networks. Now the time duration works well, we leave the time
duration embedding for the future work.

the parametric formulations or right priori) CWE outper-
forms other competitors, including those neural network-
based ones (i.e., the bold numbers in Table 1). CWE per-
forms better than Seq2Seq solved by MLE method justify
the Wasserstein loss which consider the whole underlying
structure between samples helps the generation process.

The second row of Table 1 compares the predicted se-
quences deviations. Similarly, the MLE-based parametric
models can predict future events well in the case that we
know the parametric formulations where the data comes
from. Otherwise, the quality of generated sequences de-
grades considerably when the model is misspecified. We can
observe our CWE produces better accuracy and performs ro-
bustly across different types of point process data.

To testify that CWE can deal with multi-modal data and
cope with mode dropping, mixtures of data from three differ-
ent point processes are designed. Models with specified form
(e.g., IP, SE and SC) lack flexibility and fail to learn from di-
verse data sources. The third and forth row of Table 1 shows
deviations of parameters and predicted sequences from the
mixtures of data. CWE produces better sequences than its
competitors, which fail to capture the heterogeneity in data.

In summary, our CWE method outperforms the other
MLE-based methods except those having right prior knowl-
edge of the parametric formulations. It should be noted that
in most of practical situations, it is questionable to assume
that the predefined models have no problem about model
misspecification. From this viewpoint, CWE is superior in
terms of performance and more feasible and robust to prac-
tical applications. The experiments on real-world datasets
further demonstrate the superiority of our CWE method.

Real-world data. Table 2 shows the deviations between
generated sequences and the ground truth. For real-world
data that not necessarily obey the specific assumption by
parametric point process models, CWE outperforms para-
metric point process models like MLE-IP, MLE-SE and
MLE-SC by a notable margin because these competi-
tors have high risks of model misspecification. Note the
LinkedIn data has many doubly-censored short sequences,
which makes the prediction harder as the training data is
sparse and incomplete. Our CWE method still obtains en-
couraging prediction results in this case, which demonstrates
its robustness to imperfect observations.

Moreover, CWE tends to outperform the Seq2Seq model
which basically uses the same RNN architecture as ours but
trained using MLE. This phenomenon is another evidence
that considering Wasserstein distance-based loss is benefi-
cial for us to learn a powerful generator. As aforementioned,
MLE-based learning strategy may suffer from mode drop-
ping or get stuck in a bad local optimum in the learning
phase since maximizing likelihood is asymptotically equiv-
alent to minimizing the Kullback-Leibler (KL) divergence
between the data and model distribution. Adding the Wasser-
stein distance-based loss can mitigate this inherent pitfall.

Robustness to parameters

Finally, we use the data of self-exciting process to analyze
the robustness of our CWE method to the 1-Lipschitz reg-
ularization term λ of function fw and the trade-off term σ
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Table 1: Deviation of parameters and prediction for ground-truth and learned model by applying different methods on the
synthetic data generated by different point processes.

Model
Estimator

MLE-IP MLE-SE MLE-SC MLE-NN Seq2Seq SS CWE

P
a.

D
ev

.

IP 0.03 (3.0e-5) 0.45 (5.0e-4) 0.67 (3.6e-4) 0.36 (3.5e-2) 0.31 (2.6e-3) 0.21 (5.6e-2) 0.09 (5.2e-3)

SE 0.31 (4.6e-5) 0.02 (3.3e-4) 0.29 (1.5e-5) 0.24 (7.8e-3) 0.19 (2.3e-3) 0.15 (3.9e-2) 0.02 (4.2e-3)

SC 0.94 (7.4e-4) 0.82 (7.4e-4) 0.04 (8.8e-5) 0.10 (2.6e-3) 0.12 (3.3e-3) 0.09 (3.5e-2) 0.07 (6.4e-3)

P
r.

D
ev

. IP 0.48 (1.3e-4) 0.79 (8.9e-5) 0.93 (3.4e-5) 0.72 (5.8e-2) 0.68 (6.6e-3) 0.64 (3.4e-2) 0.45 (5.2e-3)

SE 1.55 (6.7e-5) 0.94 (1.9e-5) 1.52 (3.7e-4) 1.29 (4.5e-2) 1.27 (6.2e-3) 1.24 (8.2e-2) 0.96 (9.1e-2)

SC 0.58 (7.3e-4) 0.76 (3.1e-5) 0.33 (9.9e-4) 0.44 (3.4e-3) 0.47 (5.2e-3) 0.40 (6.2e-3) 0.36 (6.3e-3)

P
a.

D
ev

.

IP+SE 0.48 (6.2e-5) 0.36 (3.6e-5) 0.32 (6.7e-4) 0.23 (2.3e-2) 0.21 (3.4e-3) 0.18 (2.7e-2) 0.08 (8.3e-3)
IP+SC 0.76 (5.3e-5) 0.88 (3.6e-4) 0.87 (6.2e-5) 0.28 (1.6e-2) 0.29 (7.5e-3) 0.23 (6.2e-3) 0.11 (6.7e-3)
SC+SE 0.51 (7.2e-4) 0.69 (2.6e-4) 0.55 (6.3e-4) 0.32 (6.3e-2) 0.35 (7.5e-3) 0.29 (4.6e-2) 0.15 (1.2e-3)

P
r.

D
ev

. IP+SE 1.65 (5.4e-5) 1.41 (2.3e-5) 1.83 (5.3e-4) 1.03 (5.9e-2) 0.93 (3.1e-3) 0.89 (7.5e-2) 0.76 (6.8e-3)
IP+SC 1.03 (3.0e-4) 0.98 (3.2e-4) 0.95 (0.9e-5) 0.43 (3.9e-3) 0.48 (6.2e-3) 0.40 (4.9e-3) 0.31 (3.8e-3)
SC+SE 1.62 (4.5e-4) 1.43 (2.3e-5) 1.28 (6.7e-4) 0.89 (8.2e-2) 0.92 (4.6e-3) 0.85 (3.1e-2) 0.63 (2.7e-3)

Underlined numbers correspond to the results obtained when the real models are given.

Bold numbers correspond to the best results.

Table 2: Deviation of prediction for real-world data.

Data
Estimator

MLE-IP MLE-SE MLE-SC MLE-NN Seq2Seq SS CWE

MIMIC 0.25 (2.5e-5) 0.15 (5.3e-4) 0.26 (7.3e-5) 0.19 (2.3e-2) 0.17 (5.3e-3) 0.16 (4.1e-3) 0.10 (2.5e-3)
LinkedIn 0.24 (3.1e-4) 0.19 (4.8e-4) 0.17 (9.3e-4) 0.14 (9.1e-3) 0.14 (4.1e-3) 0.12 (8.9e-2) 0.11 (9.4e-2)
IPTV 1.46 (3.4e-5) 1.24 (2.8e-5) 1.52 (8.1e-5) 1.21 (2.8e-3) 1.19 (4.2e-2) 1.13 (8.4e-3) 0.95 (4.9e-3)
NYSE 2.25 (4.1e-5) 1.96 (6.5e-4) 2.34 (7.3e-5) 1.57 (4.8e-2) 1.55 (2.9e-3) 1.47 (7.3e-3) 1.23 (2.8e-3)

(a) sensitivity on λ (b) sensitivity on σ

Figure 4: The changes of Pa.Dev with respect to (a) λ (fix
σ = 10) and (b) σ (fix λ = 0.01) on the synthesized test
data generated by self-exciting process.

between Wasserstein and MLE loss, respectively. In Fig-
ure 4(a), we can find that the performance of CWE to λ is
less sensitive — only slight fluctuation of Pa.Dev happen
in a narrow range when changing λ in a wide range. This
phenomenon happens across all datasets and coincides with
the results in (Gulrajani et al. 2017), which verifies the ro-
bustness of our method to the selection of discriminator.

The appropriate σ keeps a balance between Wasserstein
loss and MLE loss, which is more important for our method.
In Figure 4(b), we can find that when σ is too small (i.e.,
< 10), the final results are degraded because the Wasser-
stein loss is dominant, which may lead to biased results.
On the contrary, when σ is too high (i.e., > 10), the re-
sults become bad as well, which implies that the MLE loss

is just a complementary component in complicated learning
problems because merely considering the statistical similar-
ity between high-dimensional distributions is not enough in
these situations. Actually, Table 1 has shown that when just
using MLE loss for Seq2Seq model which is equivalent to
σ = +∞, CWE performs better than MLE loss.

Conclusion and Future Work

We have developed an adversarial learning technique for
(long-term) time dependent event sequence prediction. Our
model can be seen as a conditional Wasseratein loss learn-
ing approach for event prediction. The proposed loss differs
from the traditional MLE based one by adding a Wasseratein
loss to measure the distance between two distribution real-
ized by long-range event sequences. Extensive experiments
on both synthetic and real-world data collaborate the effi-
cacy of our method. In future work, online learning of the
proposed model for being continuously updated for stream-
ing data will be explored. Introducing the hidden Markov
model (HMM) (Rabiner and Juang 1986) into our frame-
work for high-dimensional event sequence learning is also
an interesting venue for further study.
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