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Decoupled Learning for Factorial Marked Temporal
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Weichang Wu, Junchi Yan*, Member, IEEE, Xiaokang Yang, Senior Member, IEEE, Hongyuan Zha

Abstract—This paper introduces the factorial marked temporal
point process model and presents efficient learning methods. In
conventional (multi-dimensional) marked temporal point process
models, event is often encoded by a single discrete variable i.e.
a marker. In this paper, we describe the factorial marked point
processes whereby time-stamped event is factored into multiple
markers. Accordingly the size of the infectivity matrix modeling
the effect between pairwise markers is in power order w.r.t. the
number of the discrete marker space. We propose a decoupled
learning method with two learning procedures: i) directly solv-
ing the model based on two techniques: Alternating Direction
Method of Multipliers and Fast Iterative Shrinkage-Thresholding
Algorithm; ii) involving a reformulation that transforms the
original problem into a Logistic Regression model for more
efficient learning. Moreover, a sparse group regularizer is added
to identify the key profile features and event labels. Empirical
results on real world datasets demonstrate the efficiency of our
decoupled and reformulated method. The source code is available
online.

Index Terms—Factorial Temporal Point Process, Decoupled
Learning, Alternating Direction Method of Multipliers, Fast
Iterative Shrinkage-Thresholding Algorithm

I. INTRODUCTION AND BACKGROUND

Events are ubiquitous across different domains and applica-

tions. In e-commerce, events refer to the transactions associ-

ated with users, items. In health informatics, event sequence

can be a series of treatment over time of a patient. In predictive

maintenance, events can carry important log data for when

the failure occurs and what is the type. In all these examples,

effectively modeling and predicting the dynamic behavior is

of vital importance for practical usefulness.

Marked temporal point process Point process [1] is a

useful tool for modeling the event sequence with arbitrary

timestamp associated with each event. An event in point

process can carry extra information called marker. The marker

typically refers to event type and lies in the discrete label space

i.e. a finite category set {1, ...,m}1.
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1A general concept can be found in [2]: a marked point pattern is one

in which each point of the process carries extra information called a mark,

which may be a random variable, several random variables, a geometrical

shape, or some other information. In this paper, we focus on discrete labels
for marks. The marked point process is also termed by multi-dimensional

point process [3], where each dimension refers to a discrete mark value.

Factorial marked temporal point process For the above

mentioned marked point process, the event is represented

by a single mark as a single discrete variable, but in many

application scenarios, the event can carry multiple markers.

For instance, a movement to a new job carries both the label

for position and label for company, which can be treated by

two orthogonal markers with different values. Though such

cases are ubiquitous in real world, the factorial marked point

processes have drawn little attention in literature as existing

literatures mostly work with a single marker [3], [4], [5].

Inspired by Factorial Hidden Markov Models [6], we introduce

the factorial marked temporal point process, in which the event

is represented by multiple markers, and propose a decoupling

method to learn the process.

Intensity function and problem statement One core

concept for point process is the intensity function λ(t), which

represents the expected instantaneous rate of events at time t
conditioned on the history. One basic intensity function is the

constant λ(t) = λ0 over time, as used in the homogeneous

Poisson process. Another popular form is the one used by the

Hawkes process [7]: λ(t) = γ0 + α
∑

t∈τ γ(t, ti), where τ
denotes the event history and γ(t, ti) ≥ 0 is a marker-vs.-

marker infectivity kernel capturing the temporal dependency

between event at t and at ti.
In this paper, we are interested in describing a factorial

marked point process for event marker prediction task by using

the history event information and the individual level profile

of an event taker. We focus on the next-event label estimation,

distributed over more than one markers. In particular, our

empirical study focuses on individual level next job prediction

involving both position and company for LinkedIn users, and

duration prediction in current ICU department and transition

prediction to next ICU department for patients in MIMIC-II

database [8].

II. RELATED WORK AND CONTRIBUTION

Learning for temporal point process Point process is a

powerful tool for modeling event sequence with timestamp

in continuous time space. Early work dates back to the

Hawkes processes [7] which shows appropriateness for self-

exciting and mutual-exciting process like earthquake and its

aftershock [9], [10]. The learning is fulfilled by maximum

likelihood estimation by directly computing the gradient and

Hessian matrix w.r.t. the log-likelihood function [11]. Recently

more modernized machine learning approaches devise new

efficient algorithms for learning the parameters of the specified

point process. Nonparametric Expectation-Maximization (EM)
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algorithm is proposed in [12] for multiscale Hawkes Processes

using the majorization-minimization framework, which shows

superior efficiency and robustness compared with sampling

based estimation methods. [4] extends the technique to handle

the multi-dimensional Hawkes process by adding a low-rank

and sparsity regularization term in the maximum likelihood

estimation (MLE) based loss function.

Factorial model Though almost all of these works men-

tioned above involve the infectivity matrix for model param-

eters learning, none of them considers the factorial temporal

point process case, i.e. an event type is factored into multiple

markers, which leads to the explosion of the infectivity matrix

size. The idea of factorizing events or states into multiple

variables is employed in [6] for Hidden Markov Models

(HMM) using variational methods to solve data mining task

like capturing statistical structure, but little literature is found

about its utility in point process. To our best knowledge, this

is the first work of factorial marked point process learning

for event marker prediction. Note timestamp prediction can

be approximated by predicting a predefined time interval as

time duration marker as done in this paper.

Sparse regularization for point process Sparse regulariza-

tion is a well-established technique in traditional classification

and regression models, such as the ℓ1 regularizer [13], group

Lasso [14], sparse group regularizer [15], etc. Recent point

process models have also found their applications like the ℓ1
regularization used in [16] to ensure the sparsity of social

infectivity matrix, the nuclear norm in [4] to get a low-rank

network structure and the group Lasso in [17] for feature

selection. We propose to use the sparse group regularizer,

which encourages the nonzero elements focusing on a few

columns obeying with the intuition that only a few features

and labels play the major role in event dynamics. We find

little work in literature on group sparse regularizer for point

process learning.

Contributions The main contributions of this paper are:

1) We introduce the concept of factorial marked point

process for event marker prediction, and propose a decoupled

learning algorithm to simplify the factorial model by decou-

pling the marker mutual relation in modeling. The method out-

performs general marked point process on real-world datasets.

2) We present a multi-label Logistic Regression (LR) per-

spective and devise reformulation towards a class of point

process discriminative learning problems. It eases the learning

of these processes by using on-the-shelf LR solver.

Besides these major contributions, we also make additional

improvements in proposing a regularized learning objective,

which we will include for completeness.

III. PROPOSED MODEL AND OBJECTIVE FUNCTION

A. Factorial point process

Factorial point process refers to the processes in which event

can be factorized into multiple markers. Except the job move-

ment prediction and ICU department prediction mentioned

in Introduction, many application cases can be described

by the factorial point process, while haven’t been explored

yet. For instance, a weather forecast containing temperature,

humidity, precipitation, and wind can be seen as a factorial

point process with 4 markers, with each marker having discrete

or continuous values. Obviously these factors affect each other,

e.g. the humidity today is influenced by the precipitation and

temperature in recent few days. The conventional marked

point process could only model one of these factors using

a single marker without considering the infectivity between

these factors. A factorial point process with multiple markers

for the event is essential.

Learning factorial point process is challenging. Taking job

movement prediction with two markers company c and position

p as example: to predict the probability of user x’s n-th job

(cn, pn), we need to learn a 4-dimension tensor representing

the impact of history companies {ci}
n−1
i=1 on cn and pn, the

impact of history positions {pi}
n−1
i=1 on cn and pn, respectively.

In point process, it means we need to learn a set of inten-

sity functions including λ(c, c), λ(c, p), λ(p, c) and λ(p, p).
This simple case considers no infectivity between different

sequences, i.e., if we also consider the impact of another

user y’s job movement on user x’s choice of cn and pn, we

would compute a 6-dimension tensor to measure the complete

infectivity, with two extra intensities λ(y, c) and λ(y, p).
There are ways to simplify factorial point process learning,

e.g. we can treat the combination of multiple factors as one

marker, and use the conventional marked point process model,

but this will lead to explosion of the size of infectivity matrix.

In this paper, we explore a simple decoupling solution that

decouple the factorial point process into separate models of

different markers respectively. As shown in Fig.1 for the

instance of 2 markers c and p, we decouple the original

infectivity matrix into smaller one by introducing 4 tensor

variable app, apc, acp and acc. We will present the decoupled

model in details in the following section.

B. Decoupled learning for factorial point process

More generally, we discuss the situation that event can be

factorized into Z markers (m1,m2, . . . ,mZ). Given event

sequence u with event marker mi = {(mi,1,mi,2, . . . ,mi,Z)}
for mi,z ∈ {1, 2, ...,Mz} where z ∈ {1, 2, . . . , Z}, the

intensity function of a conventional marked point process

model for marker m is defined by:

λu
m(t) = f



θ⊤
mxu

oh(t) +
∑

i:tu
i
<t

ammi
g(t, ti)



 , (1)

where xu
0 ∈ R

M is the time-invariant features of sequence

taker u extracted from its profile, like Self-introduction of

LinkedIn users or patients’ diagnose in MIMIC-II database,

and θm ∈ R
M is the corresponding coefficients.

For the choice of the three functions f , h, g in Eq. 1, there

are many forms in the literature that can be abstracted by the

above framework, and popular ones are depicted in Table I.

For marked point process model, when the marker contains

multiple label dimensions, one major bottleneck is that this

model involves the infectivity matrix a with size (
∏Z

z=1 Mz)×

(
∏Z

z=1 Mz) to measure the directional effect between mi and

mj . More generally, the size of the infectivity matrix a is
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Algorithm 1: FISTA(Θk)

Input: Θk from last iteration

1 Initialize Θ
(k,0) = v(0) = Θ

k, threshold ǫ = 0.01,

i = 1,τi =
2

i+1 ,t0 = t̂ > 0, η = 0.8 ;

2 while
‖Θ(k,i)−Θ(k,i−1)‖2

‖Θ(k,i)‖2
≤ ǫ do

3 y = (1− τk)Θ
(k,i−1) + τkv

(i−1), t = ti−1;

4 Θ
(k,i) = shrink1,2(y − 1

t
∇g(y), λ1/t);

5 while g(Θ(k,i)) >
g(y) +∇g(y)T (Θ(k,i) − y) + 1

2t‖Θ
(k,i) − y‖22 do

6 t = η · t;
7 Θ

(k,i) = shrink1,2(y − 1
t
∇g(y), λ1/t);

8 v(i) = Θ
(k,i−1) + 1

τk
(Θ(k,i) −Θ

(k,i−1)), i = i+ 1;

9 Θ
k+1 = Θ

(k,i), return Θ
k+1;

Algorithm 2: Decoupled Learning of Factorial Point Process

Input: two associated marked point process

{(ci, pi, ti)}, λ1 > 0,λ2 > 0, threshold ǫ = 0.01
1 Initialize (Θ,β,γ) = (0,0,0);

2 while
‖Θk−Θk−1‖2

‖Θk‖2
≤ ǫ do

3 Update Θ
k+1 via Θ

k+1 = FISTA(Θk);
4 Compute γk+1 via Eq. 11; Update βk+1 via

βk+1 = βk − u(Θk+1 − γk+1);
5 k = k + 1;

Output: Θk

Therefore the optimization of Function 7 has been divided

into two sub-problems defined as Eq. 8 and Eq. 9. While for

Eq. 9, the update of γ, it has a closed-form solution given by

operator shrink2,2 as follows

γk+1
j = argmin

γj

{λ2‖γj‖2 +
u

2
‖γj − (Θk+1 − βk/u)j‖

2
2}

= shrink2,2((Θ
k+1 − βk/u)j , λ2/u)

= νkj − PDj
(νkj ),

(11)

where νkj = (Θk+1 − βk/u)j , Dj denotes the ball in pj-

dimension centered at 0 with radius λ2/u [23].

C. FISTA with line search

To solve Eq. 8 we define g(Θ) = L(Θ) + u
2 ‖Θ −

γk − βk/u‖22, then Θ
k+1 can be obtained by solving Θ =

argmin
Θ

{g(Θ) + λ1‖Θ‖1} through a FISTA method [22]

with line search to compute the step size. The Algorithm is

summarized in Alg.1

D. Reformulating to Logistic Regression task

Based on the intensity function Eq. 2, the loss function Eq.

5, we show how to reformulate the learning of the decoupled

point process as a multi-class Logistic Regression task. One

obvious merit of this reformulation is the reuse of on-the-shelf

LR solvers e.g. http://www.yelab.net/software/SLEP/ [24] with

little parameter tuning. In contrast, the algorithm presented in

Alg.2 involves more parameters and is more computational

costive as shown in Fig.4 and Table II.

For event taker u at time t, by sepa-

rating the event taker u’s feature fu
t =

[xu
0h(t),

∑

i:tu
i
<t b

u
zi
g(t, ti),

∑Z

y=1,y 6=z

∑

j:tu
j
buyj

g(t, tj)] ∈

R
M+

∑Z
z=1 Mz from the parameters Θz , the conditional

intensity function in Eq. 2 can be written as:

λu
mz

(t) = exp(Θzf
u
t ) (12)

Therefore the probability P (p|t,Hu
t ) can be written as:

P (mz|t,H
u
t ) =

exp(Θzf
u
t )

∑

z′ exp(Θz′fu
t )

. (13)

This is exactly the same probability function of sample fu
t

belonging to class mz for a Softmax classifier of Mz classes,

and Θz is the parameter.

Hence the log-loss function in Eq. 5 becomes:

L(Θ) = −

U
∑

u=1

Nu

∑

i=1

log

(

Z
∏

z=1

exp(Θzf
u
ti
)

∑

z′ exp(Θz′fu
ti
)

)

,

which is the sum of Z Softmax classifiers’ loss functions.

So far we have reformulated the decoupled learning of the

factorial marked point process to the learning of Z Softmax

classifiers. For the z-th classifier, it takes fu
t from the sample

and classify it to one of Mz markers m̂z . In the following

experiments, we will show that the reformulated learning

method in fact optimizes the same loss function as Alg.2.

E. Event marker prediction

After learning parameters Θ = {Θz|
Z
z=1}, we can predict

the next event markers m = {m̂z|
Z
z=1} at t, given history Hu

t

by computing P (mz|t,H
u
t ) (see Eq. 13). The predictions ĉ

and m̂z are given by m̂z = argmaxm̂z∈Mz
P (mz|t,H

u
t ). It is

important to note that though our model technically only issues

discrete output as it is inherently a classification model, while

in practice the future events’ timestamp can be predicted by

an approximated discrete duration as done in our experiments.

In this regard, we treat the future timestamp as a marker.

V. EMPIRICAL STUDY AND DISCUSSION

A. Dataset and protocol

To verify the potential of the proposed model, we apply it

to a LinkedIn-Career dataset crawled and de-identified from

LinkedIn to predict user’s next company ĉ, next position p̂ and

duration t̂ of current job; an ICU dataset extracted from public

medical database MIMIC-II [8] to predict patient’s transition

to the next ICU department ĉ and duration of stay p̂ in current

department. Experiments are conducted under Ubuntu 64bit

16.04LTS, with i7-5557U 3.10GHz×4 CPU and 8G RAM. For

the convenience of replicating the experiments, the crawled de-

identified LinkedIn-Career dataset and the code is available on

Github2.

Dataset The LinkedIn-Career Dataset contains 5, 006
users crawled from information technology (IT) industry on

2https://github.com/blade091shenwei/factorial-marked-point-process
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LinkedIn (https://www.linkedin.com/ ), including their Self-

introduction, Technical skills and Working Experience after

de-identification preprocess. We collect samples in IT industry

because: i) The staff turnover rate is high, which makes it

easier to collect suitable samples; ii) The IT industry is most

familiar to the authors, and our domain knowledge can help

better curate the raw data. We extract profile features from

users’ Self-introduction and Technical skills, and get users’

history company and position {(ci, pi)} from Working Expe-

rience. After we exclude samples with zero job movement,

we have a so-called LinkedIn-Career benchmark, involving

2,403 users, 57 IT companies, 10 kinds of positions and 4

kinds of durations. The dataset is to some extent representative

for IT industry. For companies, we have large corporations

like Google, Facebook, Microsoft and medium-sized enterprise

like Adobe, Hulu, VMWare. For positions we have technical

positions like engineer, senior engineer, tech lead, and man-

agement positions like manager, director, CEO. For durations

we discretize the duration of stay in a position or company

as temporary( within 1 year), short-term( 1-2 years), medium-

term( 2-3 years) and long-term( more than 3 years). The goal

is to predict user’s next company ĉ from C = 57 companies,

next position p̂ from P = 10 positions and duration of stay in

current company and position t̂ from T = 4 durations.

The ICU dataset contains 30, 685 patients from MIMIC-

II database, including patients’ diagnose, treatment record,

transition between different ICU departments and duration

of stay in the departments. The goal is to predict patient’s

next ICU department ĉ from C = 8 departments including

Coronary care unit (CC), Anesthesia care unit (ACU), Fetal

ICU (FICU), Cardiac surgery recovery unit (CSRU), Medi-

cal ICU (MICU), Trauma Surgical ICU (TSICU), Neonatal

ICU (NICU), and General Ward (GW), and predict patient’s

duration of stay t̂ from T = 3 kinds of duration including

temporary( within 1 day), short-term( 1-5 days), and long-

term (more than 5 days). The profile features are extracted

from patients’ diagnose (ICD9 code of patients’ disease) and

treatment record (nursing, medication, treatment).

Many peer methods are evaluated as follows:

Intensity function choices Our framework is tested by four

point process embodiments namely: i) Mutually-corrected Pro-

cesses (MCP), ii) Hawkes Process (HP), iii) Self-correcting

Process (SCP) and iv) Modulated Poisson Process (MPP).

Their characters are briefly compared in Table I. Note in our

experiments, all these models are learned via the reformulated

LR algorithm as described in Alg. 2.

Comparison to classic Logistic Regression We test

a non-point process approach i.e. the plain LR. For

the point process based LR solver, its input is fu
t =

[xu
0h(t),

∑

i:tu
i
<t b

u
zi
g(t, ti),

∑Z

y=1,y 6=z

∑

j:tu
j
buyj

g(t, tj)],

while the plain LR involves the raw feature as

fu = [xu
0 , b

u
zI
,
∑Z

y=1,y 6=z b
u
yI
], including user profile feature

xu
0 , binary indicator buzI and

∑Z

y=1,y 6=z b
u
yI

representing one’s

current state without considering the history states.

Comparison to RNN and RMTPP We also experiment

on RNN by treating the prediction task as a sequence clas-

sification problem. A dynamic RNN that can compute over

TABLE II: Comparison of the raw ADMM solver (Alg.2) and

the reformulated LR solver: prediction accuracy by percentage

for ACc, ACp, ACt, joint prediction accuracy ACcpt, time

cost and average iteration count by random initialization for

10 trials. Time and iteration number is the average result.

Dataset Method ACc ACp ACt ACcpt Time Iter. #

Career
Alg.2 32.81 60.67 52.41 10.74 123.8m 147.7

LR 33.58 60.13 53.96 10.96 46.8s 11.2

ICU
Alg.2 76.63 — 55.74 45.64 764.2m 121.5

LR 76.98 — 55.63 45.55 55.1s 9.7

sequences with variable length is implemented.

Moreover, to explore the effect of discretizing the time inter-

val when making duration prediction, we also experiment on

RMTPP (Recurrent Marked Temporal Point Process) proposed

by [25]. Instead of predicting a discrete label for duration, it

gives a continuous prediction result.

Prediction performance metrics We use prediction ac-

curacy AC to evaluate the performance of the model with

four variants ACc, ACp, ACt, ACcpt to denote the prediction

accuracy for state c (i.e. # correct ones out of total predictions),

state p, state t and joint c,p,t respectively.

To evaluate the performance of our discrete duration pre-

diction compared with RMTPP, both MSE (Mean Squared

Error) and AC are computed. To compute prediction MSE, the

predicted discrete duration is substituted by the intermediate

time point of the discrete intervals, e.g., 0.5 years for tempo-

rary stay, 1.5 years for short-term stay and 4 years for long-

term stay. To compute prediction AC, the predicted continuous

duration of RMTPP is discretized using the same criterion by

the proposed model.

For LinkedIn-Career data, we further compute precision

curve for the top-K position, company and duration predic-

tions as shown in Fig. 3. These metrics are widely used for

recommender system. In fact, as our model is for predicting

the next company ĉ, next position p̂ and duration t̂ given career

history Hu
t , it can be used for recommending companies and

posts at the predicted time period t̂.
All the experimental results are obtained by 10-fold cross

validation as commonly adopted like [26].

B. Results and discussion

We are particularly interested in analyzing the following

main bullets via empirical studies and quantitative results.

i) LR solver vs. ADMM solver To make a fair comparison,

the LR solver and ADMM solver i.e. Alg.2 share the same

initial parameter that initialized by a uniform distribution sam-

pling from (−1, 1), and the running time and iteration count

are the average of 10-fold cross validation. Table II compares

LR solver and ADMM solver regarding with accuracy and

time cost on the Dataset LinkedIn-Career and ICU. One can

find the prediction accuracy is similar while the ADMM solver

is more costive as we find it converges more slowly as shown

in Fig.4. Also, as shown in Alg.2, it involves more hyper-

parameters to tune and they have been tuned to their best

performance. For comparison between the reformulated LR
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VI. CONCLUSION

We study the problem of factorial point process learning

for which the event can carry multiple markers whereby the

relevant concept can be found in Factorial Hidden Markov

Models [6]. Two learning algorithms are presented: the first

is directly based on the raw regularized discriminative pre-

diction objective function which employs ADMM and FISTA

techniques for optimization; the second is a simple LR solver

which is based on a key reformulation of the raw objective

function. Experimental results on two real-world datasets

collaborate the effectiveness of our approach.
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