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Abstract

The CFR framework has been a powerful tool

for solving large-scale extensive-form games in

practice. However, the theoretical rate at which

past CFR-based algorithms converge to the Nash

equilibrium is on the order of O(T−1/2), where T

is the number of iterations. In contrast, first-order

methods can be used to achieve a O(T−1) depen-

dence on iterations, yet these methods have been

less successful in practice. In this work we present

the first CFR variant that breaks the square-root

dependence on iterations. By combining and ex-

tending recent advances on predictive and stable

regret minimizers for the matrix-game setting we

show that it is possible to leverage “optimistic”

regret minimizers to achieve a O(T−3/4) conver-

gence rate within CFR. This is achieved by intro-

ducing a new notion of stable-predictivity, and by

setting the stability of each counterfactual regret

minimizer relative to its location in the decision

tree. Experiments show that this method is faster

than the original CFR algorithm, although not as

fast as newer variants, in spite of their worst-case

O(T−1/2) dependence on iterations.

1. Introduction

Counterfactual regret minimization (CFR) (Zinkevich et al.,

2007) and later variants such as Monte-Carlo CFR (Lanctot

et al., 2009), CFR+ (Tammelin et al., 2015), and Discounted

CFR (Brown & Sandholm, 2019), have been the practical

state-of-the-art in solving large-scale zero-sum extensive-

form games (EFGs) for the last decade. These algorithms
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were used as an essential ingredient for all recent milestones

in the benchmark domain of poker (Bowling et al., 2015;

Moravčı́k et al., 2017; Brown & Sandholm, 2017b). Despite

this practical success all known CFR variants have a signif-

icant theoretical drawback: their worst-case convergence

rate is on the order of O(T−1/2), where T is the number of

iterations. In contrast to this, there exist first-order methods

that converge at a rate of O(T−1) (Hoda et al., 2010; Kroer

et al., 2015; 2018b). However, these methods have been

found to perform worse than newer CFR algorithms such as

CFR+, in spite of their theoretical advantage (Kroer et al.,

2018b;a).

In this paper we present the first CFR variant which breaks

the square-root dependence on the number of iterations. By

leveraging recent theoretical breakthroughs on “optimistic”

regret minimizers for the matrix-game setting, we show how

to set up optimistic counterfactual regret minimizers at each

information set such that the overall algorithm retains the

properties needed in order to accelerate convergence. In

particular, this leads to a predictive and stable variant of

CFR that converges at a rate of O(T−3/4).

Typical analysis of regret-minimization leads to a conver-

gence rate of O(T−1/2) for solving zero-sum matrix games.

However, by leveraging the idea of optimistic learning (Chi-

ang et al., 2012; Rakhlin & Sridharan, 2013a;b; Syrgka-

nis et al., 2015; Wang & Abernethy, 2018), Rakhlin and

Sridharan show in a series of papers that it is possible to

converge at a rate of O(T−1) when leveraging cancellations

that occur due to the optimistic mirror descent (OMD) al-

gorithm (Rakhlin & Sridharan, 2013a;b). Syrgkanis et al.

(2015) build on this idea, and introduce the optimistic follow-

the-regularized-leader (OFTRL) algorithm; they show that

even when the players do not employ the same algorithm, a

rate of O(T−3/4) can be achieved as long as each algorithm

belongs to a class of algorithms that satisfy a stability crite-

rion and leverage predictability of loss inputs. We build on

this latter generalization. Because we can only perform the

optimistic updates locally with respect to counterfactual re-

grets we cannot achieve the cancellations that leads to a rate

of O(T−1); instead we show that by carefully instantiating

each counterfactual regret minimizer it is possible to main-

tain predictability and stability with respect to the overall

decision-tree structure, thus leading to a convergence rate of

O(T−3/4). In order to achieve these results we introduce a
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new variant of stable-predictivity, and show that each local

counterfactual regret minimizer must have its stability set

relative to its location in the overall strategy space, with

regret minimizers deeper in the decision tree requiring more

stability.

In addition to our theoretical results we investigate the prac-

tical performance of our algorithm on several poker sub-

games from the Libratus AI which beat top poker profes-

sionals (Brown & Sandholm, 2017b). We find that our CFR

variant coupled with the OFTRL algorithm and the entropy

regularizer leads to better convergence rate than the vanilla

CFR algorithm with regret matching, while it does not out-

perform the newer state-of-the-art algorithm Discounted

CFR (DCFR) (Brown & Sandholm, 2019). This latter fact

is not too surprising, as it has repeatedly been observed that

CFR+, and the newer and faster DCFR, converges at a rate

better than O(T−1) for many practical games of interest, in

spite of the worst-case rate of O(T−1/2).

The reader may wonder why we care about breaking the

square-root barrier within the CFR framework. It is well-

known that a convergence rate of O(T−1) can be achieved

outside the CFR framework. As mentioned previously, this

can be done with first-order methods such as the excessive

gap technique (Nesterov, 2005) or mirror prox (Nemirovski,

2004) combined with a dilated distance-generating func-

tion (Hoda et al., 2010; Kroer et al., 2015; 2018b). Despite

this, there has been repeated interest in optimistic regret min-

imization within the CFR framework, due to the strong prac-

tical performance of CFR algorithms. Burch (2017) tries

to implement CFR-like features in the context of O(T−1)

FOMs and regret minimizers, while Brown & Sandholm

(2019) experimentally tries optimistic variants of regret min-

imizers in CFR. We stress that these prior results are only

experimental; our results are the first to rigorously incorpo-

rate optimistic regret minimization in CFR, and the first to

achieve a theoretical speedup.

Notation. Throughout the paper, we use the following no-

tation when dealing with R
n. We use 〈x,y〉 to denote the

dot product x⊤y of two vectors x and y. We assume that a

pair of dual norms ‖ · ‖, ‖ · ‖∗ has been chosen. These norms

need not be induced by inner products. Common examples

of such norm pairs are the ℓ2 norm which is self dual, and

the ℓ1, ℓ∞ norms, which are are dual to each other. We will

make explicit use of the 2-norm: ‖x‖2 :=
√

〈x,x〉.

2. Sequential Decision Making and EFG

Strategy Spaces

A sequential decision process can be thought of as a tree

consisting of two types of nodes: decision nodes and ob-

servation nodes. The set of all decision nodes is denoted

as J , and the set of all observation nodes with K. At each

decision node j ∈ J , the agent chooses a strategy from the

simplex ∆nj of all probability distributions over the set Aj

of nj = |Aj | actions available at that decision node. An

action is sampled according to the chosen distribution, and

the agent then waits to play again. While waiting, the agent

might receive a signal (observation) from the process; this

possibility is represented with an observation node. At a

generic observation point k ∈ K, the agent might receive

nk signals; the set of signals that the agent can observe is

denoted as Sk. The observation node that is reached by the

agent after picking action a ∈ Aj at decision point j ∈ J is

denoted by ρ(j, a). Likewise, the decision node reached by

the agent after observing signal s ∈ Sk at observation point

k ∈ K is denoted by ρ(k, s). The set of all observation points

reachable from j ∈ J is denoted as Cj := {ρ(j, a) : a ∈ Aj}.

Similarly, the set of all decision points reachable from k ∈ K
is denoted as Ck := {ρ(k, s) : s ∈ Sk}. To ease the notation,

sometimes we will use the notation Cja to mean Cρ(j,a). A

concrete example of a decision process is given in the next

subsection.

At each decision point j ∈ J in a sequential decision pro-

cess, the decision x̂j ∈ ∆nj of the agent incurs an (expected)

linear loss 〈ℓj , x̂j〉. The expected loss throughout the whole

process is therefore
∑

j∈J πj〈ℓj , x̂j〉, where πj is the prob-

ability of the agent reaching decision point j, defined as the

product of the probability with which the agent plays each

action on the path from the root of the process to j.

In extensive-form games where all players have perfect re-

call (that is, they never forget about their past moves or their

observations), all players face a sequential decision process.

The loss vectors {ℓj} are defined based on the strategies of

the opponent(s) as well as the chance player. However, as

already observed by Farina et al. (2019), sequential decision

processes are more general and can model other settings as

well, such as POMDPs and MDPs when the decision maker

conditions on the entire history of observations and actions.

2.1. Example: Sequential Decision Process for the First

Player in Kuhn Poker

As an illustration, consider the game of Kuhn poker (Kuhn,

1950). Kuhn poker consists of a three-card deck: king,

queen, and jack. Each player first has to put a payment of 1

into the pot. Each player is then dealt one of the three cards,

and the third is put aside unseen. A single round of betting

then occurs. The sequential decision process the Player 1 is

shown in Figure 1, where denotes an observation point. In

that example, we have: J = {X0, X1, X2, X3, X4, X5, X6};

n0 = 1; nj = 2 for all j ∈ J \ {X0}; AX0
= {start}, AX1

=

AX2
= AX3

= {check, raise}, AX4
= AX5

= AX6
=

{fold, call}; Cρ(X0,start) = {X1, X2, X3}, Cρ(X1,raise) = ∅,

Cρ(X3,check) = {X6}; etc.



Stable-Predictive Optimistic Counterfactual Regret Minimization

X0

X3

X6

X2

X5

X1

X4

start

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 1. The sequential decision process for the first player in the

game of Kuhn poker. denotes an observation point; small dots

represents the end of the decision process.

2.2. Sequence Form for Sequential Decision Processes

The expected loss for a given strategy, as defined in Sec-

tion 2, is non-linear in the vector of decisions variables

(x̂j)j∈J . This non-linearity is due to the product πj of prob-

abilities of all actions on the path to from the root to j. We

now present a well-known alternative representation of this

decision space which preserves linearity.

The alternative formulation is called the sequence form.

In the sequence-form representation, the simplex strategy

space at a generic decision point j ∈ J is scaled by the

decision variable leading of the last action in the path from

the root of the process to j. In this formulation, the value of

a particular action represents the probability of playing the

whole sequence of actions from the root to that action. This

allows each term in the expected loss to be weighted only

by the sequence ending in the corresponding action. The

sequence form has been used to instantiate linear program-

ming (von Stengel, 1996) and first-order methods (Hoda

et al., 2010; Kroer et al., 2015; 2018b) for computing Nash

equilibria of zero-sum EFGs. There is a straightforward

mapping between a vector of decisions (x̂j)j∈J , one for

each decision point, and its corresponding sequence form:

simply assign each sequence the product of probabilities in

the sequence. We will let X△ denote the sequence-form

representation of a vector of decisions (x̂j)j∈J . Likewise,

going from a sequence-form strategy x△ ∈ X△ to a corre-

sponding vector of decisions (x̂j)j∈J can be done by divid-

ing each entry (sequence) in x△ by the value x
△
pj

where pj

is the entry in x△ corresponding to the unique last action

that the agent took before reaching j.

Formally, the sequence-form representation X△ of a se-

quential decision process can be obtained recursively, as

follows:

• At every observation point k ∈ K, we let

X△
k

:= X△
j1

×X△
j2

× · · · ×X△
jnk

, (1)

where {j1, j2, . . . , jnk} = Ck are the children decision

points of k.

• At every decision point j ∈ J , we let

X△
j :=

{

(λ1, . . . , λnj , λ1xk1
, . . . , λnjxknj

) :

(λ1, . . . , λn) ∈ ∆nj ,xk1
∈ X△

k1
,

xk2
∈ X△

k2
, . . . ,xknj

∈ X△
knj

}

, (2)

where {k1, k2, . . . , knj} = Cj are the children observa-

tion points of j.

The sequence form strategy space for the whole sequential

decision process is then X△
r , where r is the root of the

process. Crucially, X△ is a convex and compact set, and the

expected loss of the process is a linear function over X△.

With the sequence-form representation the problem of com-

puting a Nash equilibriun in an EFG can be formulated as

a bilinear saddle-point problem (BSPP). A BSPP has the

form

min
x∈X

max
y∈Y

x
⊤
Ay, (3)

where X and Y are convex and compact sets. In the case

of extensive-form games, X = X△ and Y = Y △ are the

sequence-form strategy spaces of the sequential decision

processes faced by the two players, and A is a sparse matrix

encoding the leaf payoffs of the game.

2.3. Notation when Dealing with the Extensive Form

In the rest of the paper, we will make heavy use of the se-

quence form and its inductive construction given in (12)

and (13). We will consistently denote sequence-form strate-

gies with a triangle superscript. As we have already ob-

served, vectors that pertain to the sequence-form have one

entry for each sequence of the decision process, that is one

entry for pair (j, a) where j ∈ J , a ∈ Aj . Sometimes, we

will need to slice a vector v and isolate only those entries

that refer to all decision points j′ and actions a′ ∈ Aj′ that

are at or below some j ∈ J ; we will denote such operation

as [v]↓j . Similarly, we introduce the syntax [v]j to denote

the subset of nj = |Aj | entries of v that pertain to all actions

a ∈ Aj at decision point j ∈ J .

3. Stable-Predictive Regret Minimizers

In this paper, we operate within the online learning frame-

work called online convex optimization (Zinkevich, 2003).

In particular, we restrict our attention to a modern subtopic:

predictive (also often called optimistic) regret minimiza-

tion (Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b).

As usual in this setting, a decision maker repeatedly plays

against an unknown environment by making a sequence

of decisions x1,x2, · · · ∈ X ⊆ R
n, where the set X of

feasible decisions for the decision maker is convex and

compact. The evaluation of the outcome of each decision xt

is 〈ℓt, xt〉, where ℓt ∈ X is a convex loss vector, unknown
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to the decision maker until after the decision is made. The

peculiarity of predictive regret minimization is that we also

assume that the decision maker has access to predictions

m1,m2, . . . of what the loss vectors ℓ1, ℓ2, . . . will be. In

summary, by predictive regret minimizer we mean a device

that supports the following two operations:

• it provides the next decision xt+1∈X given a predic-

tion mt+1 of the next loss vector and

• it receives/observes the convex loss vectors ℓt used to

evaluate decision xt.

The learning is online in the sense that the decision maker’s

(that is, device’s) next decision, xt+1, is based only on

the previous decisions x1, . . . ,xt, observed loss vectors

ℓ1, . . . , ℓt, and the prediction of the past loss vectors as

well as the next one m1, . . . ,mt+1.

Just as in the case of a regular (that is, non-predictive) re-

gret minimizer, the quality metric for the predictive regret

minimizer is its cumulative regret, which is the difference

between the loss cumulated by the sequence of decisions

x1, . . . ,xT and the loss that would have been cumulated by

playing the best-in-hindsight time-independent decision x̃.

Formally, the cumulative regret up to time T is

RT :=
T
∑

t=1

〈ℓt, xt〉 − min
x̃∈X

{

T
∑

t=1

〈ℓt, x̃〉
}

. (4)

We introduce a new class of predictive regret minimizers

whose cumulative regret decomposes into a constant term

plus a measure of the prediction quality, while maintaining

stability in the sense that the iterates x1, . . . ,xT change

slowly.

Definition 1 (Stable-predictive regret minimizer). A pre-

dictive regret minimizer is (κ, α, β)-stable-predictive if the

following two conditions are met:

• Stability. The decisions produced change slowly:

‖xt+1 − x
t‖ ≤ κ ∀ t ≥ 1. (5)

• Prediction bound. For all T , the cumulative regret up

to time T is bounded according to

RT ≤ α

κ
+ βκ

T
∑

t=1

‖ℓt −m
t‖2∗. (6)

In other words, small prediction errors only minimally

affect the regret accumulated by the device. If, in par-

ticular, the prediction mt matches the loss vector ℓt

perfectly for all t, the cumulative regret remains asymp-

totically constant.

Our notion of stable-predictivity is similar to the Regret

bounded by Variation in Utilities (RVU) property given

by Syrgkanis et al. (2015), which asserts that

RT ≤ α′+β′
T
∑

t=1

‖ℓt−ℓ
t−1‖2∗−γ′

T
∑

t=1

‖xt−x
t−1‖2. (RVU)

However, there are several important differences:

• Syrgkanis et al. (2015) assume that mt = ℓt−1; this

explains the term ‖ℓt − ℓt−1‖2∗ in (RVU) instead of

‖ℓt − mt‖2∗ in (6). One of the reason why we do

not make assumptions on mt is that, unlike in matrix

games, we will need to use modified predictions for

each local regret minimizer, since we need to predict

the local counterfactual loss.

• Our notion ignores the cancellation term −γ′
∑ ‖xt −

xt−1‖2; instead, we require the stabilty property (5).

• The coefficients in the regret bound (6) are forced to

be inversely proportional, and tied to the choice of the

stability parameter κ. Syrgkanis et al. (2015) show

that same correlation holds for the optimistic follow-

the-regularized leader, but they don’t require it in their

definition of the RVU property.

Syrgkanis et al. (2015) show that their optimistic follow-

the-regularized-leader (OFTRL) algorithm, as well as the

variant of the mirror descent algorithm presented by Rakhlin

& Sridharan (2013a), satisfy (RVU). In Section 3.2 we show

that OFTRL also satisfies stable-predictivity.

3.1. Relationship with Bilinear Saddle-Point Problems

In this subsection we show how stable-predictive regret

minimization can be used to solve a BSPP such as a Nash

equilibrium problem in two-player zero-sum extensive-form

games with perfect recall (Sections 2 and 2.2). The solutions

of (3) are called saddle points. The saddle-point residual

(or gap) ξ of a point (x̄, ȳ) ∈ X × Y, defined as

ξ := max
ŷ∈Y

x̄
⊤Aŷ − min

x̂∈X
x̂
⊤Aȳ,

measures how close (x̄, ȳ) is to being a saddle point (the

lower the residual, the closer).

It is known that regular (non-predictive) regret minimiza-

tion yields an anytime algorithm that produces a sequence

of points (x̄T , ȳT ) ∈ X × Y whose residuals are ξT =

O(T−1/2). Syrgkanis et al. (2015) observe that in the con-

text of matrix games (i.e., when X and Y are simplexes),

RVU minimizers that also satisfy the stability condition (5)

can be used in place of regular regret minimizers to improve

the convergence rate to O(T−3/4). In what follows, we show

how to extend the argument to stable-predictive regret mini-

mizers and general bilinear saddle-point problems beyond

Nash equilibria in two-player zero-sum matrix games.

A folk theorem explains the tight connections between low

regret and low residual (Cesa-Bianchi & Lugosi, 2006).

Specifically, by setting up two regret minimizers (one for

X and one for Y) that observe loss vectors given by ℓtX :=
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−Ayt, ℓtY := A⊤xt, the profile of average decisions
(

1

T

T
∑

t=1

x
t,

1

T

T
∑

t=1

y
t

)

∈ X × Y (7)

has residual ξ bounded from above according to

ξ ≤ 1

T
(RT

X +RT
Y ).

Hence, by letting the predictions be defined as mt
X :=

ℓt−1
X

,mt
Y := ℓt−1

Y
, and assuming that the predictive regret

minimizers are (κ, α, β)-stable-predictive, we obtain that the

residual ξ of the average decisions (7) satisfies

Tξ ≤ 2α

κ
+ βκ

T
∑

t=1

‖−Ay
t +Ay

t−1‖2∗

+ βκ

T
∑

t=1

‖A⊤
x
t −A

⊤
x
t−1‖2∗

≤ 2α

κ
+ β‖A‖2opκ

(

T
∑

t=1

‖xt−x
t−1‖2 +

T
∑

t=1

‖yt−y
t−1‖2

)

≤ 2α

κ
+ 2βT‖A‖2opκ

3,

where the first inequality holds by (6), the second by noting

that the operator norm ‖ · ‖op of a linear function is equal to

the operator norm of its transpose, and the third inequality

by the stability condition (5). This shows that if the stability

parameter κ of the two stable-predictive regret minimizers is

Θ(T−1/4), then the saddle point residual is ξ = O(T−3/4),

an improvement over the bound ξ = O(T−1/2) obtained

with regular (that is, non-predictive) regret minimizers.

3.2. Optimistic Follow the Regularized Leader

Optimistic follow-the-regularized-leader (OFTRL) is a re-

gret minimizer introduced by Syrgkanis et al. (2015). At

each time t, OFTRL outputs the decision

x
t = argmin

x̃∈X

{〈

x̃,mt +

T−1
∑

t=1

ℓ
t

〉

+
1

η
R(x̃)

}

, (8)

where η > 0 is a free constant and R(·) is a 1-strongly convex

regularizer with respect to the norm ‖ · ‖. Furthermore, let

∆R := maxx,y∈X {R(x) − R(y)} denote the diameter of

the range of R, and let ∆ℓ := maxt max{‖ℓt‖∗, ‖mt‖∗} be

the maximum (dual) norm of any loss vector or prediction

thereof.

A theorem similar to that of Syrgkanis et al. (2015, Propo-

sition 7), which was obtained in the context of the RVU

property, can be shown for the stable-predictive framework:

Theorem 1. OFTRL is a 3∆ℓ(η,∆R, 1)-stable-predictive

regret minimizer.

We give a proof of Theorem 1 the appendix. When the

loss vectors are further assumed to be non-negative, it can

be shown that OFTRL is 2∆ℓ(η,∆R, 1)-stable-predictive,

where we have substituted a factor of 2 rather than the factor

of 3 in Theorem 1.

4. CFR as Regret Decomposition

In this section we offer some insights into CFR, and discuss

what changes need to be made in order to leverage the power

of predictive regret minimization. CFR is a framework for

constructing a (non-predictive) regret minimizer R△ that

operates over the sequence-form strategy space X△ of a

sequential decision process. In accordance with Section 2.3,

we denote the decision produced by R△ at time t as x△,t;

the corresponding loss functions is denoted as ℓ△,t.

One central idea in CFR is to define a localized notion of

loss: for all j ∈ J , CFR constructs the following linear

counterfactual loss function ℓ̂
t,◦
j : ∆nj → R. Intuitively, the

counterfactual loss ℓ̂
t,◦
j (xj) of a local strategy xj ∈ ∆nj

measures the loss that the agent would face were the agent

allowed to change the strategy at decision point j only. In

particular, ℓ̂t,◦j (xj) is the loss of an agent that follows the

strategy xj instead of x△,t at decision point j, but otherwise

follows the strategy x△,t everywhere else. Formally,

ℓ̂
t,◦
j : xj = (xja1

, . . . xjanj
) 7→ 〈[ℓ△,t]j ,xj〉

+
∑

a∈Aj



xja
∑

j′∈Cja

〈[ℓ△,t]↓j′ , [x
△,t]↓j′〉



. (9)

Since ℓ̂
t,◦
j is a linear function, it has a unique representation

as a counterfactual loss vector ℓ̂tj , defined as

ℓ̂
t,◦
j (xj) = 〈ℓ̂tj ,xj〉 ∀xj ∈ ∆nj . (10)

With this local notion of loss function, a corresponding local

notion of regret for a sequence of decisions x̂1
j , . . . , x̂

T
j ,

called the counterfactual regret, is defined for each decision

point j ∈ J :

R̂T
j :=

T
∑

t=1

〈ℓ̂tj , x̂t
j〉 − min

x̃j∈∆nj

T
∑

t=1

〈ℓ̂tj , x̃j〉.

Intuitively, R̂T
j represents the difference between the loss

that was suffered for picking x̂t
j ∈ ∆nj and the minimum

loss that could be secured by choosing a different strategy

at decision point j only. This is conceptually different

from the definition of regret of R△, which instead measures

the difference between the loss suffered and the best loss

that could have been obtained, in hindsight, by picking

any strategy from the whole strategy space, with no extra

constraints.

With this notion of regret, CFR instantiates one (non-stable-

predictive) regret minimizer R̂j for each decision point

j ∈ J . Each local regret minimizer R̂j operates on the

domain ∆nj , that is, the space of strategies at decision point

j only. At each time t, R△ prescribes the strategy that, at

each information set j, behaves according to the decision

of R̂j . Similarly, any loss vector ℓ△,t input to R△ is pro-

cessed as follows: (i) first, the counterfactual loss vectors
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{ℓ̂tj}j∈J , one for each decision point j ∈ J , are computed;

(ii) then, each R̂j observes its corresponding counterfactual

loss vector ℓ̂tj .

Another way to look at CFR and counterfactual losses is

as an inductive construction over subtrees. When a loss

function relative to the whole sequential decision process

is received by the root node, inductively each node of the

sequential decision process does the following:

• If the node receiving the loss vector is an observation

node, the incoming loss vector is partitioned and for-

warded to each child decision node. The partition of

the loss vector is done so as to ensure that only entries

relevant to each subtree are received down the tree.

• If the node receiving the loss vector is a decision node,

the incoming loss vector is first forwarded as-is to each

of the child observation points, and then it is used to

construct the counterfactual loss vector ℓ̂tj which is

input into R̂j .

This alternative point of view differs from the original one,

but has been recently used by Farina et al. (2018; 2019) to

simplify the analysis of the algorithm. When viewed from

the above point of view, CFR is recursively building—in

a bottom-up fashion—regret minimizers for each subtree

starting from child subtrees.

In accordance with our convention (Section 2.3), we denote

R△
v , for v ∈ J∪K, the regret minimizer that operates on X△

v

obtained by only considering the local regret minimizers

in the subtree rooted at vertex v of the sequential decision

process. Analogously, we will denote with R△,T
v the regret

of R△
v up to time T , and with ℓ

△,t
v the loss function entering

R△
v at time t. In accordance with the above construction,

we have that

ℓ
△,t
k = [ℓ△,t

j ]↓k ∀k ∈ Cj , ℓ
△,t
j = [ℓ△,t

k ]↓j ∀j ∈ Ck. (11)

Finally, we denote the decisions produced by R△
v at time t as

x
△,t
v . As per our discussion above, the decisions produced

by R△ are tied together inductively according to

x
△,t
k = (x△,t

j1
, . . . ,x△,t

jnk

) ∀k ∈ K, (12)

where {j1, . . . , jnk} = Ck, and

x
△,t
j =

(

x̂
t
j , x̂

t
ja1

x
△,t
ρ(j,a1)

, ..., x̂t
janj

x
△,t
ρ(j,anj

)

)

∀j∈J , (13)

where {a1, . . . , anj} = Aj . The following two lemmas can

be easily extracted from Farina et al. (2018). A proof is

presented in the appendix.

Lemma 1. For all k ∈ K, R△,T
k =

∑

j∈Ck

R△,T
j .

Lemma 2. For all j ∈ J , R△,T
j ≤ R̂T

j + max
k∈Cj

R△,T
k .

The two lemmas above do not make any assumption about

the nature of the (localized) regret minimizers R̂j , and there-

fore they are applicable even when the R̂j are predictive or,

specifically, stable-predictive.

5. Stable-Predictive Counterfactual Regret

Minimization

Our proposed algorithm behaves exactly like CFR, with

the notable difference that our local regret minimizers R̂j

are stable-predictive and chosen to have specific stability

parameters. Furthermore, the predictions mt
j for each local

regret minimizer R̂j are chosen so as to leverage the pre-

dictivity property of the regret minimizers. Given a desired

value of κ∗ > 0, by choosing the stability parameters and

predictions as we will detail later, we can guarantee that R△

is a (κ∗, O(1), O(1))-stable-predictive regret minimizer.1

5.1. Choice of Stability Parameters

We use the following scheme to pick the stability parameter

of R̂j . First, we associate a scalar γv to each node v ∈ J ∪K
of the sequential decision process. The value γr of the root

decision node is set to κ∗, and the value for each other node

v is set relative to the value γu of their parent

γv :=
γu

2
√
nu

if u ∈ J , γv :=
γu√
nu

if u ∈ K. (14)

The stability parameter of each decision point j ∈ J is

κj :=
γj

2
√
njBj

, (15)

where Bj is an upper bound on the 2-norm of any vector

in X△
j . A suitable value of Bj can be found by recursively

using the following rules: for all k ∈ K and j ∈ J ,

Bk =

√

∑

j′∈Ck

B2
j′ , Bj =

√

1 + max
k′∈Cj

B2
k′ (16)

At each decision point j, any stable-predictive regret mini-

mizer that is able to guarantee the above stability parameter

can be used. For example, one can use OFTRL where the

stepsize η is chosen appropriately. As an examples, assum-

ing that all loss vectors involved have (dual) norm bounded

by 1/3, we can simply set the stepsize η of the local OFTRL

regret minimizer R̂j at decision point j to be η = κj .

5.2. Prediction of Counterfactual Loss Vectors

Let m△,t be the prediction received by R△, concerning the

future loss vector ℓ△,t. We will show how to process the

prediction and produce counterfactual prediction vectors

m̂t
j (one for each decision point j ∈ J ) for each local stable-

predictive regret minimizer R̂j .

1Throughout the paper, our asymptotic notation is always with
respect to the number of iterations T .
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Following the construction of the counterfactual loss func-

tions defined in (9), for each decision point j ∈ J we define

the counterfactual prediction function m̂
t,◦
j : ∆nj → R as

m̂
t,◦
j : ∆nj ∋ xj = (xja1

, . . . , xjanj
) 7→

〈

[m△,t]j ,xj

〉

+
∑

a∈Aj



xja
∑

j′∈Cja

〈

[m△,t]↓j′ , [x
△,t]↓j′

〉



.

Observation. It important to observe that the counterfac-

tual prediction function m̂t
j depends on the decisions pro-

duced at time t in the subtree rooted at j. In other words,

in order to construct the prediction for what loss R̂j will

observe after producing the decision xt
j , we use the “future”

decisions xt
ja from the subtrees below j ∈ J .

Similarly to what is done for the counterfactual loss function,

we define the counterfactual loss prediction vector m̂t
j , as

the (unique) vector in R
n
j such that

m̂
t,◦
j (xj) = 〈m̂t

j ,xj〉 ∀xj ∈ ∆nj . (17)

5.3. Proof of Correctness

We will prove that our choice of stability parameters (14)

and (localized) counterfactual loss predictions (17) guar-

antee that R△ is a (κ∗, O(1), O(1))-stable-predictive regret

minimizer. Our proof is by induction on the sequential de-

cision process structure: we prove that our choices yield

a (γv, O(1), O(1))-stable-predictive regret minimizer in the

sub-sequential decision process rooted at each possible node

v ∈ J ∪ K. For observation nodes v ∈ K the inductive step

is performed via Lemma 3, while for decision nodes v ∈ J
the inductive step is performed via Lemma 4. The proof of

both lemmas can be found in the appendix.

Lemma 3. Let k ∈ K be an observation node, and assume

that R△
j is a (γj , O(1), O(1))-stable-predictive regret mini-

mizer over the sequence-form strategy space X△
j for each

j ∈ Ck. Then, R△
k is a (γk, O(1), O(1))-stable-predictive re-

gret minimizer over the sequence-form strategy space X△
k .

Lemma 4. Let j ∈ J be a decision node, and assume that

R△
k is a (γk, O(1), O(1))-stable-predictive regret minimizer

over the sequence-form strategy space X△
k for each k ∈

Cj . Suppose further that R̂j is a (κj , O(1), O(1))-stable-

predictive regret minimizer over the simplex ∆nj . Then,

R△
j is a (γk, O(1), O(1))-stable-predictive regret minimizer

over the sequence-form strategy space X△
j .

Putting together Lemma 3 and Lemma 4, and using induc-

tion on the sequential decision process structure, we obtain

the following formal statement.

Corollary 1. Let κ∗ > 0. If:

1. Each localized regret minimizer R̂j is (κj , O(1), O(1))-

stable-predictive and produces decisions over the local

(simplex) action space ∆nj , where κj is as in (15); and

2. R̂j observes the counterfactual loss prediction m̂t
j as

defined in (17); and

3. R̂j observes the counterfactual loss vectors ℓ̂tj as de-

fined in (10),

then R△ is a (κ∗, O(1), O(1))-stable-predictive regret mini-

mizer that acts over the sequence-form strategy space X̃.

By combining the above result with the arguments

of Section 3.1, we conclude that by constructing two

(Θ(T 1/4), O(1), O(1))-stable-predictive regret minimizers,

one per player, using the construction above, we obtain an

algorithm that can approximate a Nash equilibrium and at

time T the average strategy produces an O(T−3/4)-Nash

equilibrium in a two-player zero-sum game.

6. Experiments

Our techniques are evaluated in the benchmark domain of

heads-up no-limit Texas hold’em poker (HUNL) subgames.

In HUNL, two players P1 and P2 each start the game with

$20,000. The position of the players switches after each

hand. The players alternate taking turns and may choose to

either fold, call, or raise on their turn. Folding results in the

player losing and the money in the pot being awarded to the

other player. Calling means the player places a number of

chips in the pot equal to the opponent’s share. Raising means

the player adds more chips to the pot than the opponent’s

share. There are four betting rounds in the game. A round

ends when both players have acted at least once and the

most recent player has called. Players cannot raise beyond

the $20,000 they start with. All raises must be at least $100

and at least as large as any previous raise in that round.

At the start of the game P1 must place $100 in the pot and P2

must place $50 in the pot. Both players are then dealt two

cards that only they observe from a 52-card deck. A round

of betting then occurs starting with P2. P1 will be the first to

act in all subsequent betting rounds. Upon completion of the

first betting round, three community cards are dealt face up.

After the second betting round is over, another community

card is dealt face up. Finally, after that betting round one

more community card is revealed and a final betting round

occurs. If no player has folded then the player with the best

five-card poker hand, out of their two private cards and the

five community cards wins the pot. The pot is split evenly

if there is a tie.

The most competitive agents for HUNL solve portions of

the game (referred to as subgames) in real time during

play (Brown & Sandholm, 2017a; Moravčı́k et al., 2017;

Brown & Sandholm, 2017b; Brown et al., 2018). For ex-

ample, Libratus solved in real time the remainder of HUNL

starting on the third betting round. We conduct our exper-

iments on four open-source subgames solved by Libratus
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in real time during its competition against top humans in

HUNL.2 Following prior convention, we use the bet sizes

of 0.5× the size of the pot, 1× the size of the pot, and the

all-in bet for the first bet of each round. For subsequent bets

in a round, we consider 1× the pot and the all-in bet.

Subgames 1 and 2 occur over the third and fourth betting

round. Subgame 1 has $500 in the pot at the start of the

game while Subgame 2 has $4,780. Subgames 3 and 4

occur over only the fourth betting round. Subgame 1 has

$500 in the pot at the start of the game while Subgame

4 has $3,750. We measure exploitability in terms of the

standard metric: milli big blinds per game (mbb/g), which

is the number of big blinds (P1’s original contribution to the

pot) lost per hand of poker multiplied by 1,000 and is the

standard measurement of win rate in the related literature.

We compare the performance of three algorithms: vanilla

CFR (i.e. CFR with regret matching; labeled CFR in plots),

the current state-of-the-art algorithm in practice, Discounted

CFR (Brown & Sandholm, 2019) (labeled DCFR in plots),

and our stable-predictive variant of CFR with OFTRL at

each decision point (labeled OFTRL in plots). DCFR was

set up with parameters (α, β, γ) = (1.5, 0, 2), as recom-

mended in the original DCFR paper. For OFTRL we use

the stepsize that the theory suggests in our experiments on

subgames 3 and 4 (labeled OFTRL theory). For subgames

1 and 2 we found that the theoretically-correct stepsize is

much too conservative, so we also show results with a less-

conservative parameter found through dividing the stepsize

by 10, 100, and 1000, and picking the best among those

(labeled OFTRL tuned). For all games we show two plots:

one where all algorithms use simultaneous updates, as CFR

traditionally uses, and one where all algorithms use alternat-

ing updates, a practical change that usually leads to better

performance.
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Figure 2. Convergence rate with iterations on the x-axis, and the

exploitability in mbb. All algorithms use simultaneous updates.

Figure 2 shows the results for simultaneous updates on sub-

games 2 and 4, while Figure 4 in the appendix for subgames

1 and 3. In the smaller subgames 3 and 4 we find that OFTRL

with the stepsize set according to our theory outperforms

CFR: in subgame 4 almost immediately and significantly, in

subgame 3 only after roughly 800 iterations. In contrast to

2
https://github.com/CMU-EM/LibratusEndgames

this we find that in the larger subgames 1 and 2 the OFTRL

stepsize is much too conversative, and the algorithm barely

starts to make progress within the number of iterations that

we run. With a moderately-hand-tuned stepsize OFTRL

beats CFR somewhat significantly. In all games DCFR

performs better than OFTRL, and also significantly better

than its theory predicts. This is not too surprising, as both

CFR+ and the improved DCFR are known to significantly

outperform their theoretical convergence rate in practice.

Figure 3 shows the results for alternating updates on sub-

games 2 and 4, while subgames 1 and 3 are given in the

appendix in Figure 5. In the alternating-updates setting

OFTRL performs worse relative to CFR and DCFR. In

subgame 1 OFTRL with stepsizes set according to the the-

ory slightly outperforms CFR, but in subgame 2 they have

near-identical performance. In subgames 3 and 4 even the

manually-tuned variant performs worse than CFR, although

we suspect that it is possible to improve on this with a

better choice of stepsize parameter. In the alternating set-

ting DCFR performs significantly better than all other algo-

rithms.
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Figure 3. Convergence rate with iterations on the x-axis, and the

exploitability in mbb. All algorithms use alternating updates.

7. Conclusions

We developed the first variant of CFR that converges at a

rate better than T−1/2. In particular we extend the ideas of

predictability and stability for optimistic regret minimiza-

tion on matrix games to the setting of EFGs. In doing so we

showed that stable-predictive simplex regret minimizers can

be aggregated to form a stable-predictive variant of CFR for

sequential decision making, and we showed that this leads

to a convergence rate of O(T−3/4) for solving two-player

zero-sum EFGs. Our result makes the first step towards

reconciling the gap between the theoretical rate at which

CFR converges, and the rate at which O(T−1) first-order

methods converge.

Experimentally we showed that our CFR variant can outper-

form CFR on some games, but that the choice of stepsize

is important, while we find that DCFR is faster in practice.

An important direction for future work is to find variants of

our algorithm that still satisfy the theoretical guarantee and

perform even better in practice.
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A. Proofs

A.1. Optimistic Follow-the-Regularized-Leader

We offer a proof of Theorem 8.

First, we introduce the following argmin-function:

x̃ : L 7→ argmin
x∈X

{

〈x,L〉+ 1

η
R(x)

}

. (18)

Furthermore, let Lt :=
∑t

τ=1 ℓ
τ . With this notation, the decisions produced by OFTRL, as defined in (8), can be expressed

as xt = x̃(Lt−1 +mt).

Continuity of the argmin-function. The first step in the proof is to study the continuity of the argmin-function x̃. Intuitively,

the role of the regularizer R is to smooth out the linear objective function 〈·,L〉. So, it seems only reasonable to expect that,

the higher the constant that multiplies R, the less the argmin x̃(L) is affected by small changes of L. In fact, the following

holds:

Lemma 5. The argmin-function x̃ is η-Lipschitz continuous with respect to the dual norm, that is

‖x̃(L)− x̃(L′)‖ ≤ η‖L−L
′‖∗.

Proof. The variational inequality for the optimality of x̃(L) implies

〈

L+
1

η
∇R(x̃(L)), x̃(L′)− x̃(L)

〉

≥ 0. (19)

Symmetrically for x̃(L′), we find that

〈

L′ +
1

η
R(x̃(L′)), x̃(L)− x̃(L′)

〉

≥ 0. (20)

Summing inequalities 19 and 20, we obtain

1

η

〈

∇R(x̃(L))−∇R(x̃(L′)), x̃(L)− x̃(L′)
〉

≤
〈

L
′ −L, x̃(L)− x̃(L′)

〉

.

Using strong convexity of R(·) on the left-hand side and the generalized Cauchy-Schwarz inequality on the right-hand side,

we obtain
1

η
‖x̃(L)− x̃(L′)‖2 ≤ ‖x̃(L)− x̃(L′)‖ ‖L−L

′‖∗,

and dividing by ‖x̃(L)− x̃(L′)‖ we obtain the Lipschitz continuity of the argmin-function x̃.

A direct consequence of Lemma 5 is the following corollary, which measures the stability (small step size) of the decisions

output by OFTRL:

Corollary 2. At each time t, the iterates produced by OFTRL satisfy ‖xt − xt−1‖ ≤ 3η∆ℓ.

Proof.

‖xt − x
t−1‖ =

∥

∥

∥x̃(L
t−1 +m

t)− x̃(Lt−2 +m
t−1)

∥

∥

∥

≤ η‖ℓt−1 +m
t −m

t−1‖∗ ≤ 3η∆ℓ,

where the first inequality holds by Lemma 5 and the second one by definition of ∆ℓ and the triangle inequality.

The rest of the proof, specifically the predictivity parameters α and β of OFTRL follow directly from the proof of Theorem 19

in the appendix of Syrgkanis et al. (2015).
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A.2. Regret Bounds

Lemma 1. For all k ∈ K, R△,T
k =

∑

j∈Ck

R△,T
j .

Proof. By definition of R△,T
k ,

R△,T
k =

T
∑

t=1

〈ℓ△,t
k ,x△,t

k 〉 − min
x̃

△

k
∈X△

k

T
∑

t=1

〈ℓ△,t
k , x̃△

k 〉.

By using (12) and (11), we can break the dot products and the minimization problem into independent parts, one for each

j ∈ Ck:

R△,T
k =

∑

j∈Ck

T
∑

t=1

〈ℓ△,t
j ,x△,t

j 〉 −
∑

j∈Ck

min
x̃

△

j
∈X△

j

T
∑

t=1

〈ℓ△,t
j , x̃△

j 〉

=
∑

j∈Ck

(

T
∑

t=1

〈ℓ△,t
j ,x△,t

j 〉 − min
x̃

△

j
∈X△

j

T
∑

t=1

〈ℓ△,t
j , x̃△

j 〉
)

=
∑

j∈Ck

R△,T
j ,

as we wanted to show.

Lemma 2. For all j ∈ J , R△,T
j ≤ R̂T

j + max
k∈Cj

R△,T
k .

Proof. By definition of R△,T
j ,

R△,T
j =

T
∑

t=1

〈ℓ△,t
j ,x△,t

j 〉 − min
x̃

△

j
∈X△

j

T
∑

t=1

〈ℓ△,t
j , x̃△

j 〉.

By combining (13) and (11), we can break the dot products and the minimization problem into independent parts, one for

each k ∈ Cj , as well as a part that depends solely on x̂j :

R△,T
j =

T
∑

t=1











〈[ℓ△,t
j ]j , x̂

t
j〉+

∑

a∈Aj

k=ρ(j,a)

x̂
t
ja〈ℓ△,t

k ,x△,t
k 〉











− min
x̃j∈∆nj



















(

T
∑

t=1

〈[ℓ△,t
j ]j , x̃j〉

)

+
∑

a∈Aj

k=ρ(j,a)

x̃ja

(

min
x̃

△

k
∈X△

k

T
∑

t=1

〈ℓ△,t
k , x̃△

k 〉
)



















=

T
∑

t=1











〈[ℓ△,t
j ]j , x̂

t
j〉+

∑

a∈Aj

k=ρ(j,a)

x̂
t
ja〈ℓ△,t

k ,x△,t
k 〉











− min
x̃j∈∆nj



















(

T
∑

t=1

〈[ℓ△,t
j ]j , x̃j〉

)

+
∑

a∈Aj

k=ρ(j,a)

x̃ja

(

−R△,T
k +

T
∑

t=1

〈ℓ△,t
k ,x△,t

k 〉
)


















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≤
T
∑

t=1











〈[ℓ△,t
j ]j , x̂

t
j〉+

∑

a∈Aj

k=ρ(j,a)

x̂
t
ja〈ℓ△,t

k ,x△,t
k 〉











− min
x̃j∈∆nj



















T
∑

t=1











〈[ℓ△,t
j ]j , x̃j〉+

∑

a∈Aj

k=ρ(j,a)

x̃ja〈ℓ△,t
k ,x△,t

k 〉





























+ max
x̃j∈∆nj

∑

a∈Aj

x̃jaR
△,T
k ,

where the equality follows by the definition of R△,T
k , and the inequality follows from breaking the minimization of a sum

into a sum of minimization problems. By identifying the difference between the first two terms as the counterfactual regret

R̂T
j (that is, the regret of R̂j up to time T ), we obtain

R△,T
j ≤ R̂T

j + max
x̃j∈∆nj

∑

k∈Cj

x̃jaR
△,T
k = R̂T

j + max
k∈Cj

R△,T
k ,

as we wanted to show.

A.3. Stable-Predictive Regret Minimizer

We will prove both Lemma 3 and Lemma 4 with respect to the 2-norm. This does not come at the cost of generality, since

all norms are equivalent on finite-dimensional vector spaces, that is, for every choice of norm ‖ · ‖, there exist constants

m,M > 0 such that for all x, m‖x‖ ≤ ‖x‖2 ≤ M‖x‖.

Lemma 3. Let k ∈ K be an observation node, and assume that R△
j is a (γj , O(1), O(1))-stable-predictive regret minimizer

over the sequence-form strategy space X△
j for each j ∈ Ck. Then, R△

k is a (γk, O(1), O(1))-stable-predictive regret

minimizer over the sequence-form strategy space X△
k .

Proof. By hypothesis, for all j ∈ Ck we have

R△,T
j ≤ O(1)

γj
+O(1)γj

T
∑

t=1

‖ℓ△,t
j −m

△,t
j ‖22 (21)

and

‖x△,t
j − x

△,t−1
j ‖2 ≤ γj , (22)

where x
△,t
j is the decision output by R△

j at time t.

Substituting (21) into the regret bound of Lemma 1:

R△,T
k ≤ O(1)

∑

j∈Ck

1

γj
+O(1)

∑

j∈Ck

T
∑

t=1

γj‖ℓ△,t
j −m

△,t
j ‖22

≤ O(1)
n
3/2
k

γk
+O(1)

γk√
nk

T
∑

t=1

∑

j∈Ck

‖ℓ△,t
j −m

△,t
j ‖22

=
O(1)

γk
+O(1)γk

T
∑

t=1

‖ℓ△,t
k −m

△,t
k ‖22 (23)

where the second inequality comes from substituting the value γj = γk/
√
nk as per (14), and the equality comes from the

fact that the ℓ
△,t
j and m

△,t
j form a partition of the vectors ℓ

△,t
k and m

△,t
k , respectively.

We now analyze the stability properties of R△
k :

‖x△,t
k − x

△,t−1
k ‖2 =

√

∑

j∈Ck

‖x△,t
j − x

△,t−1
j ‖22 ≤

√

∑

j∈Ck

γ2j = γk,

where the first equality follows from (1), the inequality holds by (22) and the second equality holds by substituting the value

γj = γk/
√
nk as per (14). This shows that R△

k is γk-stable. Combining this with the predictivity bound (23) above, we

obtain the claim.
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Lemma 4. Let j ∈ J be a decision node, and assume that R△
k is a (γk, O(1), O(1))-stable-predictive regret minimizer over

the sequence-form strategy space X△
k for each k ∈ Cj . Suppose further that R̂j is a (κj , O(1), O(1))-stable-predictive regret

minimizer over the simplex ∆nj . Then, R△
j is a (γk, O(1), O(1))-stable-predictive regret minimizer over the sequence-form

strategy space X△
j .

Proof. By hypothesis, for all k ∈ Cj we have

R△,T
k ≤ O(1)

γk
+O(1)γk

T
∑

t=1

‖ℓ△,t
k −m

△,t
k ‖22 (24)

and

‖x△,t
k − x

△,t−1
k ‖2 ≤ γk. (25)

We substitute (24) into the regret bound of Lemma 2. The key observation is that the loss vector—and their predictions—

entering the subtree rooted at k (k ∈ Cj) are simply forwarded from j; with this, we obtain:

RT
△j

≤ R̂T
j +

O(1)

γk
+O(1)γk

T
∑

t=1

‖ℓ△,t
j −m

△,t
j ‖22. (26)

On the other hand, by hypothesis R̂j is a (κj , O(1), O(1))-stable-predictive regret minimizer. Hence,

R̂T
j ≤ O(1)

κj
+O(1)κj

T
∑

t=1

‖ℓ̂tj − m̂
t
j‖22

=
O(1)

γj
+O(1)γj

T
∑

t=1

‖ℓ△,t
j −m

△,t
j ‖22, (27)

where the equality comes from the definition of κj (Equation (15)) and the fact that

‖ℓ̂tj − m̂
t
j‖22 ≤

∑

k∈Cj

‖x△,t
k ‖22 · ‖ℓ△,t

k −m
△,t
k ‖22

≤ ‖ℓ△,t
j −m

△,t
j ‖22

∑

k∈Cj

B2
k

= O(1)‖ℓ△,t
j −m

△,t
j ‖22.

By substituting (27) into (26) and noting that γk = O(1)γj , we obtain

R△,T
j ≤ O(1)

γj
+O(1)γj

T
∑

t=1

‖ℓ△,t
j −m

△,t
j ‖22,

which establishes the predictivity of R△
j .

To conclude the proof, we show that R△
j has stability parameter γj . To this end, note that by (2)

‖x△,t
j − x

△,t−1
j ‖22 =

∥

∥

∥

∥

∥

∥





∑

a∈Aj

x̂
t
jax

△,t
ja



−





∑

a∈Aj

x̂
t−1
ja x

△,t−1
ja





∥

∥

∥

∥

∥

∥

2

2

+ ‖x̂t
j − x̂

t−1
j ‖22

≤ ‖x̂t
j − x̂

t−1
j ‖22



1 + 2
∑

k∈Cj

‖x△,t
k ‖22



+ 2
∑

k∈Ck

‖x△,t
k − x

△,t−1
k ‖22

≤ 2njB
2
j ‖x̂t

j − x̂
t−1
j ‖22 + 2

∑

k∈Ck

‖x△,t
k − x

△,t−1
k ‖22,

where we have used the Cauchy-Schwarz inequality and the definition of Bj (Equation 16). By using the stability of R̂j ,

that is ‖x̂t
j − x̂t−1

j ‖22 ≤ κ2j = γ2j /(4njB
2
j ), as well as the hypothesis (25) and (14):

‖x△,t
j − x

△,t−1
j ‖2 ≤

γ2j
2

+ 2
∑

k∈Cj

(

γj
2
√
nj

)2

=
γ2j
2

+ 2nj

(

γj
2
√
nj

)2

= γ2j .

Hence, R△
j has stability parameter γj as we wanted to show.
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B. Experiments
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Figure 4. Convergence rate with iterations on the x-axis, and the exploitability in mbb. All algorithms use simultaneous updates.
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Figure 5. Convergence rate with iterations on the x-axis, and the exploitability in mbb. All algorithms use alternating updates.
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