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Abstract

Sparse iterative methods, in particular first-order methods, are known to be among the most effective

in solving large-scale two-player zero-sum extensive-form games. The convergence rates of these meth-

ods depend heavily on the properties of the distance-generating function that they are based on. We in-

vestigate both the theoretical and practical performance improvement of first-order methods (FOMs) for

solving extensive-form games through better design of the dilated entropy function—a class of distance-

generating functions related to the domains associated with the extensive-form games. By introducing a

new weighting scheme for the dilated entropy function, we develop the first distance-generating function

for the strategy spaces of sequential games that has only a logarithmic dependence on the branching fac-

tor of the player. This result improves the overall convergence rate of several first-order methods working

with dilated entropy function by a factor of Ω(bdd), where b is the branching factor of the player, and d

is the depth of the game tree.

Thus far, counterfactual regret minimization methods have been faster in practice, and more popular,

than first-order methods despite their theoretically inferior convergence rates. Using our new weighting

scheme and a practical parameter tuning procedure we show that, for the first time, the excessive gap

technique, a classical first-order method, can be made faster than the counterfactual regret minimization

algorithm in practice for large games, and that the aggressive stepsize scheme of CFR+ is the only reason

that the algorithm is faster in practice.

1 Introduction

Extensive-form games (EFGs) are a broad class of games; they model sequential interaction, imperfect

information, and outcome uncertainty. Nash equilibria prescribe a particular notion of rational behavior in

such games. In the specific case of two-player zero-sum EFGs with perfect recall, an exact Nash equilibrium
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can be computed in polynomial time using a Linear Program (LP) whose size is linear in the size of the game

tree [37]. However, in practice the LP approach has two major drawbacks limiting its applicability. First,

the LP may be prohibitively large and may not fit in memory. Second, even when it does, the iterations of

interior-point methods or the simplex algorithm are prohibitively expensive [33]. Practical methods for EFG

solving tackle this issue through two complementary approaches: Abstraction and iterative game solvers

with low memory requirements [33]. In this paper we focus on the second approach. Iterative game solvers

mainly fall in two categories: (i) counterfactual-regret-based methods [23, 39] achieving a convergence rate

on the order of O( 1
ε2 ), and (ii) first-order methods (FOMs) [12, 20] achieving a convergence rate of O( 1

ε ).
The better convergence rate of FOMs has made them more attractive from a theoretical viewpoint, yet so

far these techniques have been outperformed by counterfactual-regret based methods in practice. This paper

investigates the performance improvements of FOMs for EFGs, from both a theoretical and a numerical

perspective. Through our new theoretical and practical developments, we establish, for the first time, that

FOMs can be made state-of-the-art in practice as well.

Nash equilibrium computation of a two-player zero-sum EFG with perfect recall admits a Bilinear Sad-

dle Point Problem (BSPP) formulation where the domains are given by the polytopes that encode strategy

spaces of the players. There are a number of efficient and well-known FOMs designed to solve BSPPs. The

classical FOMs to solve BSPPs such as mirror prox (MP) [28] or the excessive gap technique (EGT) [29]

utilize distance-generating functions (DGFs) to measure appropriate notions of distances over the domains.

Consequently, the convergence rate of these FOMs relies on the DGFs and their relation to the domains in

three critical ways: Through the strong convexity parameters of the DGFs, the norm associated with the

strong convexity parameter, and the set widths of the domains as measured by the DGFs.

Hoda et al. [12] introduced a general framework for constructing DGFs for treeplexes—a class of con-

vex polytopes that generalize the domains associated with the strategy spaces of an EFG. While they also

established lower bounds on the strong convexity parameter for their DGFs in some special cases, these

lead to very weak bounds and result in slow convergence rates. Kroer et al. [20] developed explicit strong

convexity-parameter bounds for entropy-based DGFs (a particular subclass of DGFs) for general EFGs, and

improved the bounds for the special cases considered by Hoda et al. [12]. These bounds from Kroer et al.

[20] generate the current state-of-the-art parameters associated with the convergence rate for FOMs with

O( 1
ε ) convergence.

In this paper we construct a new weighting scheme for such entropy-based DGFs. This weighting

scheme leads to new and improved bounds on the strong convexity parameter associated with general

treeplex domains. In particular, our new bounds are first-of-their kind as they have only a logarithmic

dependence on the branching operation of the treeplex. Informally, our strong convexity result allows us to

improve the convergence rate of FOMs working with entropy-based DGFs by a factor of Ω(bdd) (where b is

the average branching factor for a player and d is the depth of the EFG) compared to the prior state-of-the-art

results from Kroer et al. [20]. In terms of their logarithmic dependence on the branching factor, our bounds

parallel the simplex case for matrix games where the entropy function achieves a logarithmic dependence

on the dimension of the simplex domain.

Finally, we complement our theoretical results with numerical experiments to investigate the speed up

of FOMs with convergence rate O( 1
ε ) and compare the performance of these algorithms with the premier

regret-based methods CFR and CFR+ [36], which have a theoretical convergence rate of O( 1
ε2 ). CFR+ is the

fastest prior algorithm for computing Nash equilibria in EFGs when the entire tree can be traversed (rather

than sampled). Bowling et al. [3] used it to essentially solve the game limit Texas hold’em. CFR+ is also the

algorithm used to accurately solve endgames in the Libratus agent, which showed superhuman performance

against a team of top Heads-Up No-Limit Texas hold’em poker specialist professional players in the Brains
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vs AI event 1. A slight variation2 of CFR+ was used in the DeepStack agent Moravčı́k et al. [27], which

beat a group of professional players.

We perform numerical experiments on scaled-up variants of Leduc hold’em [35], a poker game that has

become a standard benchmark in the EFG-solving community, as well as a security-inspired attacker/defender

game played on a graph. The performance we get from our FOM-based approach with EGT relative to CFR

and CFR+ is in sharp contrast to the previous conventional practical wisdom in the field. Previously it was

thought that FOM-based methods converged faster than CFR ultimately, but that CFR had a faster initial

convergence and the cross-over point occurred later as games got larger, see e.g. Kroer et al. [20]. Our

experiments show that FOMs are substantially faster than CFR algorithms when using a practically-tuned

variant of our DGF, even as the game-size is scaled up and when CFR is using the RM+ regret minimizer.

We find that CFR+ is still faster in practice, but only due to its aggressive stepsize policy. This suggests

that future work on FOMs could be coupled with our DGF to create state-of-the-art algorithms in practice.

We also test the impact of stronger bounds on the strong convexity parameter: we instantiate EGT with the

parameters developed in this paper, and compare the performance to the parameters developed by Kroer

et al. [20]. These experiments illustrate that the tighter parameters developed here lead to better practical

convergence rate.

The rest of the paper is organized as follows. Section 2 discusses related literature. We present the

general class of problems that we address—bilinear saddle-point problems—and describe how they relate to

EFGs in Section 3. Then Section 4 describes our optimization framework. Section 5 introduces treeplexes,

the class of convex polytopes that define our domains of the optimization problems. Our focus is on dilated

entropy-based DGFs; we introduce these in Section 6 and present our main results—bounds on the associ-

ated strong convexity parameter and treeplex diameter. In Section 7 we demonstrate the use of our results

on instantiating EGT. We compare our approach with the current state-of-art in EFG solving and discuss the

extent of theoretical improvements achievable via our approach in Section 7.1. Section 8 presents numerical

experiments testing the effect of various parameters on the performance of our approach as well as compar-

ing the performance of our approach to CFR and CFR+. We close with a summary of our results and a few

compelling further research directions in Section 9.

2 Related Literature

Nash equilibrium computation has received extensive attention in the literature [7, 8, 9, 13, 18, 25, 26, 39].

The equilibrium-finding problems vary quite a bit based on their characteristics; here we restrict our attention

to two-player zero-sum sequential games.

Koller et al. [17] present an LP which has size linear in the size of the game tree. This approach, coupled

with lossless abstraction techniques, was used to solve Rhode-Island hold’em [9, 34], a game with 3.1 billion

nodes (roughly size 5 ·107 after lossless abstraction). However, for very large games, the resulting LPs tend

to not fit in the computer memory, and iterations of the simplex algorithm or interior-point methods tend

to be too slow. Bošanskỳ et al. [2] extend the LP approach by considering a form of column-and-row-

generation. This algorithm scales only for games where it can identify an equilibrium of small support, and

thus suffers from the same performance issues as the general LP approach. The scalability issues of LP-

based approaches thus require approximate solution techniques. These techniques fall into two categories:

iterative ε-Nash equilibrium-finding algorithms and game abstraction techniques [33].

The most popular iterative Nash equilibrium algorithms are variants of the counterfactual-regret-minimization

framework [23, 36, 39]. All these algorithms operate by defining a notion of regret local to each information

1Confirmed through author communication
2This variation uses the current iterate rather than the average iterate due to decreased memory usage. It has inferior practical

iteration complexity.
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set, called counterfactual regret. A simplex-based regret-minimizing algorithm is then instantiated inde-

pendently at each information set and given the counterfactual regrets for minimizing. It is shown that

the per-information-set regret bounds obtained by the simplex-based regret minimizers lead to an overall

bound on the convergence rate. Initially, the most practically popular variants were instantiated with regret

matching (CFR) [39], and sometimes used Monte-Carlo methods for estimating regrets [23]. Recently a

new regret-minimization technique called regret matching plus (RM+) was shown to be practically superior

when coupled with a more aggressive stepsizing strategy [3, 36]. The algorithm combining RM+ and ag-

gressive stepsizing is referred to as CFR+. Despite their slow convergence rate of O( 1
ε2 ), these regret-based

algorithms perform very well in practice, especially CFR+. Recently, Waugh and Bagnell [38] showed, with

some caveats, an interpretation of CFR as a FOM with O( 1
ε2 ) rate. In particular, they show that CFR is

equivalent to dual averaging [31] (when using a particular set of distance functions that fall in the general

class of dilated distance functions [12]) on the simplex (and thereby also on information sets with no child

information sets), whereas on internal information sets these algorithms differ in how they aggregate utilities

from child information sets. It is still unknown whether CFR is fully equivalent to a first-order method. De-

spite these similarities, in this paper we make a distinction between regret-based methods and O( 1
ε ) FOMs

for ease of exposition when comparing algorithmic methodologies.

Hoda et al. [12] introduce DGFs for EFGs leading to O( 1
ε ) convergence rate when used with EGT.

Kroer et al. [20] improved the parameters associated with these dilated entropy function based DGFs. While

Gilpin et al. [10] give an algorithm with convergence rate O(ln( 1
ε )), their bound has a dependence on a

certain condition number of the payoff matrix, which is difficult to estimate, and their bound independent

of the condition number has a O( 1
ε ) convergence rate. We compare all three algorithms discussed here in

detail in Section 7.1. Based on our results, Kroer et al. [21] show how to extend FOMs and our DGF to

the computation of approximate Nash-equilibrium refinements. Brown et al. [6] show experimentally that

certain parts of the game tree can be pruned when computing gradients for EGT with our DGF.

3 Problem setup

3.1 Basic notation

We let 〈x,y〉 denote the standard inner product of vectors x,y. Given a vector x ∈ R
n, we let ‖x‖p denote

its ℓp norm given by ‖x‖p := (∑n
i=1 |xi|p)1/p

for p ∈ [1,∞) and ‖x‖∞ := maxi∈[n] |xi| for p = ∞. Throughout

this paper, we use Matlab notation to denote vector and matrices, i.e., [x;y] denotes the concatenation of two

column vectors x, y. Given n ∈ N, we denote the simplex ∆n := {x ∈ R
n
+ : ∑

n
i=1 xi = 1}. For a given set Q,

we let ri(Q) denote its relative interior.

3.2 Sequence form

Computing a Nash equilibrium in a two-player zero-sum EFG with perfect recall can be formulated as a

Bilinear Saddle Point Problem (BSPP):

min
x∈X

max
y∈Y

〈x,Ay〉= max
y∈Y

min
x∈X

〈x,Ay〉. (1)

This is known as the sequence-form formulation [17, 32, 37] in the EFG literature. In this formulation,

x and y correspond to the nonnegative strategy vectors for players 1 and 2 and the sets X ,Y are convex

polyhedral reformulations of the sequential strategy space of these players. Here X ,Y are defined by the

constraints Ex = e,Fy = f , where each row of E,F encodes part of the sequential nature of the strategy

vectors, the right hand-side vectors e, f are |I1| , |I2|-dimensional vectors, and Ii is the information sets
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for player i. The matrix A encodes the reward structure associated with the game. For a complete treatment

of this formulation, see von Stengel [37].

Our theoretical developments mainly exploit the treeplex domain structure and are independent of other

structural assumptions resulting from EFGs. Therefore, we describe our results for general BSPPs. We

follow the presentation and notation of Juditsky and Nemirovski [14, 15] for BSPPs. For notation and

presentation of treeplex structure, we follow Kroer et al. [20].

4 Optimization setup

In its most general form a BSPP is defined as

Opt := max
y∈Y

min
x∈X

φ(x,y), (S )

where X ,Y are nonempty convex compact sets in Euclidean spaces Ex,Ey and φ(x,y) = υ + 〈a1,x〉+
〈a2,y〉+ 〈y,Ax〉. We let Z := X ×Y ; so φ(x,y) : Z →R. In the context of EFG solving, φ(x,y) is simply

the inner product given in (1).

The BSPP (S ) gives rise to two convex optimization problems that are dual to each other:

Opt(P) = minx∈X [φ(x) := maxy∈Y φ(x,y)] (P),
Opt(D) = maxy∈Y [φ(y) := minx∈X φ(x,y)] (D),

with Opt(P) = Opt(D) = Opt. It is well known that the solutions to (S ) — the saddle points of φ on

X ×Y — are exactly the pairs z = [x;y] comprised of optimal solutions to the problems (P) and (D). We

quantify the accuracy of a candidate solution z = [x;y] with the saddle point residual

εsad(z) := φ(x)−φ(y) =
[
φ(x)−Opt(P)

]
︸ ︷︷ ︸

≥0

+
[
Opt(D)−φ(y)

]

︸ ︷︷ ︸
≥0

.

In the context of EFG, εsad(z) measures the proximity to being an ε-Nash equilibrium.

4.1 General framework for FOMs

Most FOMs capable of solving BSPP (S ) are quite flexible in terms of adjusting to the geometry of the

problem characterized by the domains X ,Y of the BSPP (S ). The following components are standard in

forming the setup for such FOMs (we present components for X , analogous components are used for Y ):

• Vector norm: ‖ ·‖X on the Euclidean space Ex where the domain X of (S ) lives, along with its dual

norm ‖ζ‖∗
X

= max
‖x‖X ≤1

〈ζ ,x〉.

• Matrix norm: ‖A‖= maxy

{
‖Ay‖∗

X
: ‖y‖Y = 1

}
based on the vector norms ‖ · ‖X and ‖ · ‖Y .

• Distance-Generating Function (DGF): A function ωX (x) : X → R, which is convex and continu-

ous on X , and admits a continuous selection of subgradients ω ′
X
(x) on the set X ◦ := {x ∈ X :

∂ωX (x) 6= /0} (here ∂ωX (x) is a subdifferential of ωX taken at x), and is strongly convex with

modulus ϕX w.r.t. the norm ‖ · ‖X :

∀x′,x′′ ∈ X
◦ : 〈ω ′

X (x′)−ω ′
X (x′′),x′− x′′〉 ≥ ϕX ‖x′− x′′‖2

X . (2)

• Bregman distance: V (u‖x) := ωX (u)−ωX (x)−〈ω ′
X
(x),u− x〉 for all x ∈ X ◦ and u ∈ X .
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• Prox-mapping: Given a prox center x ∈ X ◦,

Prox
x

(ξ ) := argmin
u∈X

{〈ξ ,u〉+V (u‖x)} : E → X
◦.

For properly chosen stepsizes, the prox-mapping becomes a contraction. This is critical in the con-

vergence analysis of FOMs. Furthermore, when the DGF is taken as the squared ℓ2 norm, the prox

mapping becomes the usual projection operation of the vector x−ξ onto X .

• ω-center: xω := argmin
x∈X

ωX (x) ∈ X ◦ of X .

• Set width: Ωx := max
x∈X

V (x‖xω)≤ max
x∈X

ωX (x)− min
x∈X

ωX (x).

In this paper, for ease of exposition, we will introduce and work with the Excessive Gap Technique

(EGT) of Nesterov [29] as the FOM. Next we introduce the related terminology and formally state the

algorithm and the results from [29].

Nesterov [30] introduced smoothed approximations to the functions φ and φ via the distance-generating

functions ωX ,ωY as follows:

φ µ2
(x) = max

y∈Y

{φ(x,y)−µ2ωY (y)} , (3)

φ
µ1
(y) = min

x∈X
{φ(x,y)+µ1ωX (x)} , (4)

where µ1,µ2 > 0 are smoothness parameters denoting the amount of smoothing applied. Let yµ2
(x) and

xµ1
(y) be the y and x solutions attaining the optima in (3) and (4). These can be thought of as smoothed best

responses. Nesterov [30] also established that the gradients of the functions φ µ2
(x) and φ

µ1
(y) exist and are

Lipschitz continuous. The gradient operators and Lipschitz constants are given as follows

∇φ µ2
(x) = a1 +Ayµ2

(x) and ∇φ
µ1
(y) = a2 +A⊤xµ1

(y),

L1

(
φ µ2

)
=

‖A‖2

ϕY µ2

and L2

(
φ

µ1

)
=

‖A‖2

ϕX µ1

.

Based on this setup, we formally state the EGT of [29] in Algorithm 1.

ALGORITHM 1: EGT

input : ω-centers xω ,yω , smoothness

weights µ1,µ2, and desired accuracy

ε

output: zt = [xt ,yt ]
t = 0, µ t

1 = µ1, µ t
2 = µ2;

xt = Proxxω

(
µ−1

1 ∇φ µ2
(xω)

)
;

yt = yµ2
(xω);

while εsad(z
t)> ε do

τt =
2

t+3
;

if t is even then

(µ t+1
1 ,xt+1,yt+1) =

Step(µ t
1,µ

t
2,x

t ,yt ,τt)

else

(µ t+1
2 ,yt+1,xt+1) =

Step(µ t
2,µ

t
1,y

t ,xt ,τt)

t = t +1;

ALGORITHM 2: Step

input : µ1,µ2,x,y,τ
output: µ+

1 ,x+,y+
x̂ = (1− τ)x+ τxµ1

(y);
y+ = (1− τ)y+ τyµ2

(x̂);

x̃ = Proxxµ1
(y)

(
τ

(1−τ)µ1
∇φ µ2

(x̂)
)

;

x+ = (1− τ)x+ τ x̃;

µ+
1 = (1− τ)µ1;
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The EGT algorithm alternates between taking steps focused on X and Y . Algorithm 2 shows a single

step focused on X . Steps focused on y are completely analogous. Algorithm 1 shows how initial points are

selected and the alternating steps and stepsizes are computed. Nesterov [29] proves that the EGT algorithm

converges in O( 1
ε ) steps to an ε approximate saddle point of the BSPP (S ). More precisely, Nesterov [29,

Theorem 6.3] states the following:

Theorem 1. Suppose the input values µ1,µ2 in the EGT algorithm satisfy

µ1 =
ϕX

L1(φ µ2
)
=

ϕX ϕY

‖A‖2
µ2.

Then, at every iteration t ≥ 1 of the EGT algorithm, the corresponding solution zt = [xt ;yt ] satisfies xt ∈X ,

yt ∈ Y , and

φ(xt)−φ(yt) = εsad(z
t)≤ 4‖A‖

t +1

√
ΩX ΩY

ϕX ϕY

.

5 Treeplexes

Hoda et al. [12] introduce the treeplex, a class of convex polytopes that encompass the sequence-form

description of strategy spaces in perfect-recall EFGs. Understanding the treeplex structure is crucial because

the proofs of our main results rely on induction over these structures.

Definition 1. Treeplexes are defined recursively as follows:

1. Basic sets: The standard simplex ∆m is a treeplex.

2. Cartesian product: If Q1, . . . ,Qk are treeplexes, then Q1 ×·· ·×Qk is a treeplex.

3. Branching: Given a treeplex P ⊆ [0,1]p, a collection of treeplexes Q = {Q1, . . . ,Qk} where Q j ⊆
[0,1]n j , and l = {l1, . . . , lk} ⊆ {1, . . . , p}, the set defined by

P l Q :=
{
(u,q1, . . . ,qk) ∈ R

p+∑ j n j : u ∈ P, q1 ∈ ul1 ·Q1, . . . ,qk ∈ ulk ·Qk

}

is a treeplex. We say ul j
is the branching variable for the treeplex Q j.

A treeplex is a tree of simplexes where children are connected to their parents through the branching

operation. In the branching operation, the child simplex domain is scaled by the value of the parent branch-

ing variable. For EFGs, the simplexes correspond to the information sets of a single player and the whole

treeplex represents that player’s strategy space. The branching operation has a sequential interpretation:

The vector u represents the decision variables at certain stages, while the vectors q j represent the decision

variables at the k potential following stages, depending on external outcomes. Here k ≤ p since some vari-

ables in u may not have subsequent decisions. For treeplexes, von Stengel [37] has suggested a polyhedral

representation of the form Eu = e where the matrix E has its entries from {−1,0,1} and the vector e has its

entries in {0,1}.

For a treeplex Q, we denote by SQ the index set of the set of simplexes contained in Q (in an EFG SQ is

the set of information sets belonging to the player). For each j ∈ SQ, the treeplex rooted at the j-th simplex

∆ j is referred to as Q j. Given vector q ∈ Q and simplex ∆ j, we let I j denote the set of indices of q that

correspond to the variables in ∆ j and define q j to be the sub vector of q corresponding to the variables in

I j. For each simplex ∆ j and branch i ∈ I j, the set D i
j represents the set of indices of simplexes reached

immediately after ∆ j by taking branch i (in an EFG D i
j is the set of potential next-step information sets for
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the player). Given a vector q ∈ Q, simplex ∆ j, and index i ∈ I j, each child simplex ∆k for every k ∈ D i
j is

scaled by qi. Conversely, for a given simplex ∆ j, we let p j denote the index in q of the parent branching

variable qp j
that ∆ j is scaled by. We use the convention that qp j

= 1 if Q is such that no branching operation

precedes ∆ j. For each j ∈ SQ, d j is the depth of the treeplex rooted at ∆ j, that is, the maximum number of

edges between ∆ j and any simplex beneath ∆ j plus one (that is, a lone simplex has depth 1, not 0). In an

EFG the depth is the length of the longest sequence of actions starting at ∆ j. Then dQ gives the depth of Q.

We use b
j
Q to identify the number of branching operations preceding the j-th simplex in Q. We will say that

a simplex j such that b
j
Q = 0 is a root simplex.

Figure 1 illustrates an example treeplex Q. This treeplex Q is constructed from nine two-to-three-

dimensional simplexes ∆1, . . . ,∆9. At level 1, we have two root simplexes, ∆1,∆2, obtained by a Cartesian

product operation (denoted by ×). We have maximum depths d1 = 2, d2 = 1 beneath them. Since there are

no preceding branching operations, the parent variables for these simplexes ∆1 and ∆2 are qp1
= qp2

= 1.

For ∆1, the corresponding set of indices in the vector q is I1 = {1,2}, while for ∆2 we have I2 = {3,4,5}.

At level 2, we have the simplexes ∆3, . . . ,∆7. The parent variable of ∆3 is qp3
= q1; therefore, ∆3 is scaled

by the parent variable qp3
. Similarly, each of the simplexes ∆3, . . . ,∆7 is scaled by their parent variables

qp j
that the branching operation was performed on. So on for ∆8 and ∆9 as well. The number of branching

operations required to reach simplexes ∆1,∆3 and ∆8 is b1
Q = 0,b3

Q = 1 and b8
Q = 2, respectively.

∆1

q2 ·∆4

q8 q9

q1 ·∆3

q7 ·∆9

q19 q20

q7 ·∆8

q16
q17

q18

q6 q7

q1 q2

∆2

q5 ·∆7

q14 q15

q4 ·∆6

q12 q13

q3 ·∆5

q10 q11

q3
q4

q5

×

×

Figure 1: An example treeplex constructed from 9 simplexes. Cartesian product operation is denoted by ×.

Note that we allow more than two-way branches; hence our formulation follows that of Kroer et al. [20]

and differs from that of Hoda et al. [12]. As discussed in Hoda et al. [12], it is possible to model sequence-

form games by treeplexes that use only two-way branches. Yet, this can cause a large increase in the depth of

the treeplex, thus leading to significant degradation in the associated strong convexity parameter. Because

we handle multi-way branches directly in our framework, our approach is more effective in taking into

account the structure of the sequence-form game and thereby resulting in better bounds on the associated

strong convexity parameters and thus overall convergence rates.

Our analysis requires a measure of the size of a treeplex Q. For this purpose, we define MQ :=maxq∈Q ‖q‖1.

In the context of EFGs, suppose Q encodes player 1’s strategy space; then MQ is the maximum number

of information sets with nonzero probability of being reached when player 1 has to follow a pure strategy

while the other player may follow a mixed strategy. We also let

MQ,r := max
q∈Q

∑
j∈SQ:b

j
Q≤r

‖q j‖1. (5)

Intuitively, MQ,r gives the maximum value of the ℓ1 norm of any vector q ∈ Q after removing the variables

corresponding to simplexes that are not within r branching operations of the root of Q.
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The quantities MQ and |SQ| play an important role in the comparison of our bounds. We discuss them

on an example next.

Example 1. In order to illustrate MQ and compare it to the size of |SQ|, let us now consider an example of

an EFG and its corresponding treeplexes. Consider a game where two players take turns choosing among k

actions, and each player chooses actions d times before leaf nodes are reached. In the treeplex Q of Player

1, each time Player 1 chooses among k actions constitutes a size k branching operation, and every time

Player 2 chooses among k actions constitutes a size k Cartesian product operation. The total dimensionality

of the treeplex, |SQ|, is k2d , while the value of MQ is kd (since only Cartesian products blow up). Thus, MQ

is square root of the size of |SQ|.

6 Dilated entropy functions with bounded strong convexity

In this section we introduce DGFs for domains with treeplex structures and establish their strong convexity

parameters with respect to a given norm (see (2)).

The basic building block in our construction is the entropy DGF given by ωe(z) = ∑
n
i=1 zi log(zi), for the

simplex ∆n. It is well-known that ωe(·) is strongly convex with modulus 1 with respect to the ℓ1 norm on

∆n (see Juditsky and Nemirovski [14]). We will show that a suitable modification of this function achieves

a desirable strong convexity parameter for the treeplex domain.

The treeplex structure is naturally related to the dilation operation [11] defined as follows: Given a

compact set K ⊆ R
d and a function f : K → R, we first define

K̄ :=
{
(t,z) ∈ R

d+1 : t ∈ [0,1] , z ∈ t ·K
}
.

Definition 2. Given a function f (z), the dilation operation is defined as the function f̄ : K̄ → R given by

f̄ (z, t) =

{
t · f (z/t) if t > 0

0 if t = 0
.

The dilation operation preserves convexity, and thus the following function defined based on dilating the

entropy function over the simplexes of a treeplex is convex:

Definition 3. Given a treeplex Q and weights β j > 0 for each j ∈ SQ, we define the dilated entropy function

as

ω(q) = ∑
j∈SQ

β j ∑
i∈I j

qi log
qi

qp j

for any q ∈ Q,

where we follow the treeplex notation and p j is the index of the branching variable preceding ∆ j, with the

convention that qp j
= 1 if ∆ j has no branching operation preceding it.

Remark 1. Note that the dilated entropy function ω(·) defined above is twice differentiable in the relative

interior of treeplex Q and admits a continuous gradient selection. Moreover, for weights β j that scale

appropriately with depth d j, we will demonstrate that it is strongly convex w.r.t. the ℓ1 norm. Thus, the

dilated entropy function is compatible with the ℓ1 norm, as required by the BSPP setup.

We would also like the prox-mapping associated with our DGF to be efficiently computable. Hoda et al.

[12] show that for any dilated function, its prox operator on a treeplex can be easily computed through a

recursive bottom-up traversal involving the prox mappings associated with the function being dilated on
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individual simplexes. Since the entropy prox function can be computed in closed form on a simplex, the

dilated entropy function can be computed by a single treeplex traversal involving closed-form expressions

on each simplex.

Definition 3 above leads to a subset of the DGFs considered by Hoda et al. [12]. Hoda et al. [12]

introduce the general class of treeplex DGFs obtained by dilating any simplex DGF, and show that any such

DGF is guaranteed to have some lower bound on the strong-convexity parameter. They show explicit bounds

for a special class of treeplexes called uniform treeplexes. Kroer et al. [20] showed that stronger bounds can

be obtained for the dilated entropy DGF on general treeplexes through careful selection of the weights. Our

main theoretical result shows that by selecting the weights β j according to a particular recurrence, we can

significantly improve the strong convexity bounds associated with the dilated entropy function, and we show

that our analysis is tight.

We will consider weights that satisfy the following recurrence:

α j = 1+max
i∈I j

∑
k∈D i

j

αkβk

βk −αk

, ∀ j ∈ SQ,

β j > α j, ∀ j ∈ SQ s.t. b
j
Q > 0,

β j = α j, ∀ j ∈ SQ s.t. b
j
Q = 0.

(6)

Intuitively, α j represents the negative terms that the weight β j has to cancel out: the constant 1 represents

the negative term resulting from the squared norm in the strong convexity requirement; the summation term

represents the amount of negative terms accumulated from the induction on simplexes descending from

simplex j. The qualifications on β j ensure that β j is set such that it at least cancels out the negative terms;

the difference β j −α j controls the amount of negative value the parent simplex has to make up. When

b
j
Q = 0 there is no parent simplex, and so we set β j = α j . The reason for our requirement of a strict

inequality β j > α j for non-root simplexes becomes evident in the proof of Lemma 2.

Based on recurrence (6), our main results establish strong convexity of our dilated entropy DGF w.r.t.

the ℓ2 and ℓ1 norms:

Theorem 2. For a treeplex Q, the dilated entropy function with weights satisfying recurrence (6) is strongly

convex with modulus 1 with respect to the ℓ2 norm.

Theorem 3. For a treeplex Q, the dilated entropy function with weights satisfying recurrence (6) is strongly

convex with modulus 1
MQ

with respect to the ℓ1 norm.

We give the proofs of Theorems 2 and 3 in Section 6.2. Based on Theorem 3, we get the following

corollary:

Corollary 1. For a treeplex Q, the dilated entropy function with weights β j = 2+∑
d j

r=1 2r(MQ j,r −1) for all

j ∈ SQ is strongly convex with modulus 1
MQ

w.r.t. the ℓ1 norm.

Corollary 1 follows easily from Theorem 3 and a recursive interpretation of the weights, which is pre-

sented as Fact 2 in the next section. In particular, a specific choice of weights in Fact 2 immediately satisfies

the recurrence (6) and leads to Corollary 1.

To our knowledge, the best strong convexity bounds for general treeplexes were proved in Kroer et al.

[20]. Using weights β j = 2d j MQ j
they show strong convexity modulus 1

|SQ| w.r.t. the ℓ1 norm; see [20,

Theorem 5.4]. Corollary 1 improves the prior bounds by exchanging a factor of |SQ| with a factor of MQ.

Note that |SQ| is tied to the branching factor associated with branching operations in the treeplex Q whereas
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MQ is not. Thus, our result removes the dependence of the strong convexity parameter on the branching

factor and hence significantly improves upon Kroer et al. [20].

In Theorem 4 we use our strong convexity result to establish a polytope diameter that has only a loga-

rithmic dependence on the branching factor. As a consequence, the associated dilated entropy DGF when

used in FOMs such as MP and EGT for solving EFGs leads to the same improvement in their convergence

rate.

6.1 Preliminary results for the proofs of our main results

We start with some simple facts and a few technical lemmas that are used in our proofs.

Fact 1. Given a treeplex Q, we have, respectively, for all i ∈ I j, j ∈ SQ and all d = 1, . . . ,dQ,q ∈ Q:

(a) MQ j
≥ 1+ ∑

l∈D i
j

MQl
, (b) MQ ≥ ∑

j∈SQ:d j=d

qp j
MQ j

.

Proof. The first inequality was established in Kroer et al. [20, Lemma 5.7]. The second follows by using

MQ = ∑ j qi for some q, and inductively replacing terms belonging to simplexes j at the bottom with MQ j
.

The result follows because branching operations cancel out by summing to 1.

Our next observation follows from Fact 1(a) and is advantageous in suggesting a practically useful choice

of the weights β j that can be used for Theorem 3 to arrive at Corollary 1.

Fact 2. Let Q be a treeplex and β j = 2+∑
d j

r=1 2r(MQ j,r −1) for all j ∈ SQ as in Corollary 1. Then Fact 1(a)

implies β j ≥ 2+∑k∈D i
j
2βk, ∀i ∈ I j and ∀ j ∈ SQ.

Consequently, by selecting β j = 2α j, and α j = 1+∑
d j

r=1 2r−1(MQ j,r −1) for all i ∈ I j and for all j ∈ SQ

such that b
j
Q > 0, we immediately satisfy the conditions of the recurrence in (6).

Given a twice differentiable function f , we let ∇2 f (z) denote its Hessian at z. Our analysis is based on

the following sufficient condition for strong convexity of a twice differentiable function:

Fact 3. A twice-differentiable function f is strongly convex with modulus ϕ with respect to a norm ‖ · ‖ on

nonempty convex set C ⊂ R
n if h⊤∇2 f (z)h ≥ ϕ‖h‖2, ∀h ∈ R

n,z ∈C◦.

For simplexes ∆ j at depth 1, there is no preceding branching operation; so the variables hp j
,qp j

do not

exist. We circumvent this with the convention hp j
= 0,qp j

= 1 for such j ∈ SQ.

In our proofs we will use the expression derived in Lemma 1 for h⊤∇2ω(q)h.

Lemma 1. Given a treeplex Q and a dilated entropy function ω(·) with weights β j > 0, we have

h⊤∇2ω(q)h = ∑
j∈SQ

β j

[

∑
i∈I j

(
h2

i

qi

−
2hihp j

qp j

)
+

h2
p j

qp j

]
∀q ∈ ri(Q) and ∀h ∈ R

n. (7)

Proof. Consider q ∈ ri(Q) and any h ∈ R
n. For each j ∈ SQ and i ∈ I j, the second-order partial derivates of

ω(·) w.r.t. qi are:

∇2
q2

i
ω(q) =

β j

qi

+ ∑
k∈D i

j

∑
l∈Ik

βkql

q2
i

=
β j

qi

+ ∑
k∈D i

j

βk

qi

, (8)
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where the last equality holds because k ∈D i
j and thus ∑l∈Ik

ql = ‖qk‖1 = qpk
= qi. Also, for each j ∈ SQ, i ∈

I j,k ∈ D i
j, and l ∈ Ik, the second-order partial derivates w.r.t. qi,ql are given by:

∇2
qi,ql

ω(q) = ∇2
ql ,qi

ω(q) =−βk

qi

. (9)

Then equations (8) and (9) together imply

h⊤∇2ω(q)h = ∑
j∈SQ

∑
i∈I j


h2

i


β j

qi

+ ∑
k∈D i

j

βk

qi


− ∑

k∈D i
j

∑
l∈Ik

hihl

2βk

qi


 . (10)

Given j ∈ SQ and i ∈ I j, we have pk = i for each k ∈ D i
j and for any k ∈ D i

j, there exists some other j′ ∈ SQ

corresponding to k in the outermost summation. Then we can rearrange the following terms:

∑
j∈SQ

∑
i∈I j

h2
i ∑

k∈D i
j

βk

qi

= ∑
j∈SQ

β j

h2
p j

qp j

and ∑
j∈SQ

∑
i∈I j

∑
k∈D i

j

∑
l∈Ik

hihl

2βk

qi

= ∑
j∈SQ

∑
i∈I j

β j

2hihp j

qp j

.

Using these two equalities in the relation (10) leads to (7) and proves the lemma.

6.2 Proofs of our main theorems

The majority of the work for our strong-convexity results is performed by the following lemma, from which

our strong convexity results follow easily.

Lemma 2. For any treeplex Q, the dilated entropy function with weights satisfying recurrence (6) satisfies

the following inequality:

h⊤∇2ω(q)h ≥ ∑
j∈SQ

∑
i∈I j

h2
i

qi

∀q ∈ ri(Q) and ∀h ∈ R
n. (11)

Proof. We will prove this by induction. First we will prove an inductive hypothesis over the set of non-root

simplexes ŜQ =
{

j ∈ SQ

∣∣∣ b
j
Q > 0

}
. In order to state our inductive hypothesis we will need a notion of the

set of simplexes currently at the “top” of the recursion: for a given depth d, we let the set of simplexes at

the top be Ŝd
Q =

{
k ∈ ŜQ

∣∣∣ dk ≤ d,∃ j, i s.t. k ∈ D i
j,d j > d

}
. This is simply the set of simplexes such that

their depth is less than d and the depth of their parent simplex is strictly greater than d. The reader may

wonder why we do not perform the induction over simplices such that d j = d. This is in order to avoid some

technicalities relating to cases where two child simplexes from the same parent have different depths. By

using Ŝd
Q, we ensure that the right-hand side of the inductive hypothesis always consists of the simplexes

that are at the top of the treeplex given the current induction depth. We now show the following inductive

hypothesis for any depth d ≥ 1:

∑
j∈ŜQ:d j≤d

β j

[

∑
i∈I j

(
h2

i

qi

−
2hihp j

qp j

)
+

h2
p j

qp j

]
− ∑

j∈ŜQ:d j≤d

∑
i∈I j

h2
i

qi

≥− ∑
j∈Ŝd

Q

β jα j

β j −α j

h2
p j

qp j

.
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We first show the inductive step, as the base case will follow from the same logic. Consider a treeplex

Q of depth d > 1. By applying the inductive hypothesis we have

∑
j∈ŜQ:d j≤d

β j

[

∑
i∈I j

(
h2

i

qi

−
2hihp j

qp j

)
+

h2
p j

qp j

]
− ∑

j∈ŜQ:d j≤d

∑
i∈I j

h2
i

qi

≥ ∑
j∈ŜQ:d j=d

β j

[

∑
i∈I j

(
h2

i

qi

−
2hihp j

qp j

)
+

h2
p j

qp j

]
− ∑

j∈ŜQ:d j=d

∑
i∈I j

h2
i

qi

− ∑
j∈Ŝd−1

Q

β jα j

β j −α j

h2
p j

qp j

. (12)

Now we can rearrange terms: First we split Ŝd−1
Q into two sets Ŝd−1

Q ∩ Ŝd
Q and Ŝd−1

Q \ Ŝd
Q. The sum over

j ∈ Ŝd−1
Q \ Ŝd

Q is equivalent to a sum over the immediate descendant information sets k ∈ D i
j inside the

square brackets since for each such k ∈ Ŝd−1
Q \ Ŝd

Q there exists some j ∈ Ŝd
Q such that d j = d (otherwise k

would be in Ŝd
Q). Ignoring Ŝd−1

Q ∩ Ŝd
Q in (12) for now, we can write

∑
j∈ŜQ:d j=d

β j

[

∑
i∈I j

(
h2

i

qi

−
2hihp j

qp j

)
+

h2
p j

qp j

]
− ∑

j∈ŜQ:d j=d

∑
i∈I j

h2
i

qi

− ∑
j∈Ŝd−1

Q \Ŝd
Q

β jα j

β j −α j

h2
p j

qp j

. (13)

= ∑
j∈ŜQ:d j=d

β j


∑

i∈I j


h2

i

qi

−
2hihp j

qp j

− ∑
k∈D i

j

α j

β j −α j

h2
p j

qp j


+

h2
p j

qp j


− ∑

j∈ŜQ:d j=d

∑
i∈I j

h2
i

qi

.

Now we split the term
h2

p j

qp j

into separate terms multiplied by
qi

qp j

and move it inside the parentheses by using

the fact that ∑i∈I j

qi

qp j

= 1, this gives

= ∑
j∈ŜQ:d j=d

β j


∑

i∈I j


h2

i

qi

−
2hihp j

qp j

− ∑
k∈D i

j

α j

β j −α j

h2
p j

qp j

+
qih

2
p j

q2
p j




− ∑

j∈ŜQ:d j=d

∑
i∈I j

h2
i

qi

.

Now we can move the sum over i ∈ I j outside the square brackets and consolidate the summation terms

to get

= ∑
j∈ŜQ:d j=d

∑
i∈I j




β j −1− ∑

k∈D i
j

βkαk

βk −αk


 h2

i

qi

−
(

2β jhihp j

qp j

)
+

qiβ jh
2
p j

q2
p j




≥ ∑
j∈ŜQ:d j=d

∑
i∈I j

[
(β j −α j)

h2
i

qi

−
(

2β jhihp j

qp j

)
+

qiβ jh
2
p j

q2
p j

]
, (14)

where the last inequality follows from the definition of α j.

For indices j ∈ SQ such that b
j
Q > 0 and i ∈ I j, the relations in (6) imply β j > α j, and so the expression

inside the square brackets in (14) is a convex function of hi. Taking its derivative w.r.t. hi and setting it to

zero gives hi =
β j

β j−α j

qi

qp j

hp j
. Thus, we arrive at

(14)≥ ∑
j∈ŜQ:d j=d

∑
i∈I j

[
β 2

j

β j −α j

qih
2
p j

q2
p j

−
β 2

j

β j −α j

2qih
2
p j

q2
p j

+
qiβ jh

2
p j

q2
p j

]

= ∑
j∈ŜQ:d j=d

h2
p j

qp j

[
( −β 2

j

β j −α j

+β j

)∑i∈I j
qi

qp j

]
=− ∑

j∈ŜQ:d j=d

β jα j

β j −α j

h2
p j

qp j

. (15)
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Now we take our lower bound (15) on (13) and apply it to (12). Noting that Ŝd
Q =

{
ŜQ : d j = d

}
∪

{
Ŝd−1

Q ∩ Ŝd
Q

}
we get

(12) ≥− ∑
j∈ŜQ:d j=d

β jα j

β j −α j

h2
p j

qp j

− ∑
j∈Ŝd−1

Q ∩Ŝd
Q

β jα j

β j −α j

h2
p j

qp j

=− ∑
j∈Ŝd

Q

β jα j

β j −α j

h2
p j

qp j

(16)

Hence, the induction step is complete. For the base case d = 0 we do not need the inductive assumption:

Because D i
j = /0, α j = 1, and we get (14) by definition; we can then apply the same convexity argument.

This proves our inductive hypothesis.

Then using Lemma 1, we now have

h⊤∇2ω(q)h− ∑
j∈SQ

∑
i∈I j

h2
i

qi

= ∑
j∈SQ

β j

[

∑
i∈I j

(
h2

i

qi

−
2hihp j

qp j

)
+

h2
p j

qp j

]
− ∑

j∈SQ

∑
i∈I j

h2
i

qi

≥ ∑
j∈SQ:b

j
Q=0


∑

i∈I j

β j

h2
i

qi

− ∑
k∈D i

j

βkαk

βk −αk

h2
i

qi

− h2
i

qi


≥ 0.

The first inequality follows from the fact that hp j
= 0 for all j ∈ SQ such that b

j
Q = 0, and for all j ∈ SQ such

that b
j
Q > 0, we used our induction. The last inequality follows from (6) and qi,h

2
i ≥ 0. This then proves

(11).

We are now ready to prove our two main theorems, which we restate before proving them.

Theorem 2. For a treeplex Q, the dilated entropy function with weights satisfying recurrence (6) is strongly

convex with modulus 1 with respect to the ℓ2 norm.

Proof. Since qi ≤ 1, Lemma 2 implies h⊤∇2ω(q)h ≥ ∑ j∈SQ
∑i∈I j

h2
i = ‖h‖2

2 for all q ∈ ri(Q) and for all

h∈R
n. Because the dilated entropy function ω(q) is twice differentiable on ri(Q), from Fact 3, we conclude

that ω(·) is strongly convex w.r.t. the ℓ2 norm on Q with modulus 1.

Remark 2. Note that the analysis in the proof of Theorem 2 is tight. By choosing a vector q ∈ {0,1}|Q| such

that ‖q‖1 = MQ, and setting hi =
β j

β j−α j

qi

qp j

hp j
for all indices i such that qi = 1 and hi = 0 otherwise, every

inequality in the proof of Lemma 2 becomes an equality.

Theorem 3. For a treeplex Q, the dilated entropy function with weights satisfying recurrence (6) is strongly

convex with modulus 1
MQ

with respect to the ℓ1 norm.

Proof. To show strong convexity with modulus 1 w.r.t. the ℓ1 norm, we lower bound the right-hand side

of (11) in Lemma 2:

∑
j∈SQ

∑
i∈I j

h2
i

qi

≥ 1

MQ

(
∑

j∈SQ

∑
i∈I j

qi

)
∑

j∈SQ

∑
i∈I j

h2
i

qi

≥ 1

MQ

(
∑

j∈SQ

∑
i∈I j

|hi|√
qi

√
qi

)2

=
1

MQ

‖h‖2
1,

where the first inequality follows from the fact that MQ is an upper bound on ‖q‖1 for any q ∈ Q, and the

second inequality follows from the Cauchy-Schwarz inequality.
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Hence, we deduce h⊤∇2ω(q)h ≥ 1
MQ

‖h‖2
1 holds for all q ∈ ri(Q) and for all h ∈R

n. Because the dilated

entropy function ω(q) is twice differentiable on ri(Q), from Fact 3, we conclude that ω(·) is strongly convex

w.r.t. the ℓ1 norm on Q with modulus ϕ = 1
MQ

.

6.3 Treeplex width

The convergence rates of FOMs such as MP and EGT algorithms depend on the diameter-to-strong convexity

parameter ratio Ω
ϕ , as described in Section 4.1. In order to establish full results on the convergence rates of

these FOMs, we now bound this ratio using Corollary 1 scaled by MQ.

Theorem 4. For a treeplex Q, the dilated entropy function with simplex weights β j =MQ(2+∑
d j

r=1 2r(MQ j,r−
1)) for each j ∈ SQ results in Ω

ϕ ≤ M2
Q2dQ+2 logm where m is the dimension of the largest simplex ∆ j for

j ∈ SQ in the treeplex structure.

Proof. For our choice of scaled weights β j, Corollary 1 implies that the resulting dilated entropy function

is strongly convex with modulus ϕ = 1. Hence, we only need to bound Ω.

Any q ∈ Q satisfying qi ∈ {0,1} for all i maximizes ω(q) and results in maxq∈Q ω(q) = 0. For the

minimum value, consider any q ∈ ri(Q). Applying the well-known lower bound of − logm for the negative

entropy function on an m-dimensional simplex gives

ω(q) = ∑
j∈SQ

β jqp j ∑
i∈I j

qi

qp j

log
qi

qp j

≥− ∑
j∈SQ

β jqp j
logm =−

dQ

∑
d=0

∑
j∈SQ:d j=d

β jqp j
logm

=−
dQ

∑
d=1

∑
j∈SQ:d j=d

β jqp j
logm− ∑

j∈SQ:d j=0

β jqp j
logm

=−MQ logm

dQ

∑
d=1

∑
j∈SQ:d j=d

qp j

(
2+

d

∑
r=1

2r(MQ j,r −1)

)
−MQ ∑

j∈SQ:d j=0

2qp j
logm

≥−MQ logm

dQ

∑
d=1

∑
j∈SQ:d j=d

qp j
MQ j

d

∑
r=1

2r −2MQ logm ∑
j∈SQ:d j=0

qp j
, (17)

where the last inequality follows because for each j ∈ SQ with d j = 0, the definition of MQ implies ∑ j∈SQ:d j=0 qp j
≤

MQ, and for each j ∈ SQ with d j = d ≥ 1, we have 2+∑
d
r=1 2r(MQ j,r−1)≤∑

d
r=1 2rMQ j,r ≤∑

d
r=1 2rMQ j

since

MQ j,r ≤ MQ j
. Also, from Fact 1(b), we have ∑ j∈SQ:d j=d qp j

MQ j
≤ MQ. Then we arrive at

(17)≥−M2
Q logm

(
2+

dQ

∑
d=1

d

∑
r=1

2r

)
=−M2

Q logm

(
2+

dQ

∑
d=1

(2d+1 −2)

)

=−M2
Q logm

(
2+

dQ

∑
d=1

2d+1 −2dQ

)
≥−M2

Q(logm)2dQ+2,

where the last inequality follows because for dQ = 0 we have 2dQ+2 = 4> 2 and for dQ ≥ 1 we have 2dQ ≥ 2.

This lower bound on the minimum value, i.e., minq∈Q ω(q)≥−M2
Q(logm)2dQ+2, coupled with maxq∈Q ω(q)≤

0, establishes the theorem.
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7 EGT for extensive-form game solving

We now describe how to instantiate EGT for solving two-player zero-sum EFGs of the form (1) with treeplex

domains. Below we state the customization of all the definitions from Section 4 for our problem.

Let m be the size of the largest simplex in either of the treeplexes X ,Y . Because X and Y are

treeplexes, they are closed, convex, and bounded. We use the ℓ1 norm on both of the embedding spaces

Ex,Ey. As our DGFs for X ,Y compatible with the ℓ1 norm, we use the dilated entropy DGF scaled with

weights given in Theorem 4. Then Theorem 4 gives our bound on ΩX

ϕX
and ΩY

ϕY
. Because the dual norm of

the ℓ1 norm is the ℓ∞ norm, the matrix norm is given by ‖A‖= maxy∈Y {‖Ay‖∗1 : ‖y‖1 = 1}= maxi, j |Ai, j|.

Remark 3. Note that ‖A‖ is not at the scale of the maximum payoff difference in the original game. The

values in A are scaled by the probability of the observed nature outcomes on the path of each sequence.

Thus, ‖A‖ is exponentially smaller (in the number of observed nature steps on the path to the maximizing

sequence) than the maximum payoff difference in the original EFG.

Theorem 4 immediately leads to the following convergence rate result for FOMs equipped with dilated

entropy DGFs to solve EFGs (and more generally BSPPs over treeplex domains).

Theorem 5. Consider a BSPP over treeplex domains X ,Y . Then EGT algorithm equipped with the dilated

entropy DGF with weights β j = 2+∑
d j

r=1 2r(MX j,r −1) for all j ∈ SX and the corresponding setup for Y

will return an ε-accurate solution to the BSPP in at most the following number of iterations:

maxi, j |Ai, j|
√

M2
X

2dX +2M2
Y

2dY +2 logm

ε
.

This rate in Theorem 5, to our knowledge, establishes the state-of-the-art for FOMs with O( 1
ε ) conver-

gence rate for EFGs.

7.1 Improvements in extensive-form game convergence rate

The ratio Ω
ϕ of set diameter over the strong convexity parameter is important for FOMs that rely on a prox

function, such as EGT and MP. Compared to the rate obtained by [20], we get the following improvement:

for simplicity, assume that the number of actions available at each information set is on average a, then our

bound improves the convergence rate of [20] by a factor of Ω(dX ·adX +dY ·adY ).
As mentioned previously, Hoda et al. [12] proved only explicit bounds for the special case of uniform

treeplexes that are constructed as follows: 1) A base treeplex Qb along with a subset of b indices from it

for branching operations is chosen. 2) At each depth d, a Cartesian product operation of size k is applied.

3) Each element in a Cartesian product is an instance of the base treeplex with a size b branching operation

leading to depth d − 1 uniform treeplexes constructed in the same way. Given bounds Ωb,ϕb for the base

treeplex, the bound of Hoda et al. [12] for a uniform treeplex with d uniform treeplex levels (note that the

total depth of the constructed treeplex is d ·dQb
, where dQb

is the depth of the base treeplex Qb) is

Ω

ϕ
≤ O

(
b2d−2k2d+2d2M2

Qb

Ωb

ϕb

)
.

Then when the base treeplex is a simplex of dimension m, their bound for the dilated entropy on a uniform

treeplex Q becomes
Ω

ϕ
≤ O

(
|SQ|2 d2

Q logm
)
.
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Even for the special case of a uniform treeplex with a base simplex, comparing Theorem 4 to their bound, we

see that our general bound improves the associated constants by exchanging O(|SQ|2 d2
Q) with O(M2

Q2dQ).
Since MQ does not depend on the branching operation in the treeplex, whereas |SQ| does, our bounds are

also the first bounds to remove an exponential dependence on the branching operation (we have only a

logarithmic dependence). In Example 1 we showed that there exist games where MQ =
√
|SQ|, and in

general MQ is much smaller than |SQ|. Consequently, our results establish the best known convergence

results for all FOMs based on dilated entropy DGF such as EGT, MP, and stochastic variants of FOMs for

BSPPs.

Gilpin et al. [10] give an equilibrium-finding algorithm presented as O(ln( 1
ε )); but this form of their

bound has a dependence on a certain condition number of the A matrix. Specifically, their iteration bound for

sequential games is O(
‖A‖2,2·ln(‖A‖2,2/ε)·

√
D

δ (A) ), where δ (A) is the condition number of A, ‖A‖2,2 = supx 6=0
‖Ax‖2

‖x‖2

is the Euclidean matrix norm, and D = maxx,x̄∈X ,y,ȳ∈Y ‖[x;y]− [x̄; ȳ]‖2
2. Unfortunately, the condition number

δ (A) is only shown to be finite for these games. Without any such unknown quantities based on condition

numbers, Gilpin et al. [10] establish a convergence rate of O(
‖A‖2,2·D

ε ). This algorithm, despite having

the same dependence on ε as ours in its convergence rate, i.e., O( 1
ε ), suffers from worse constants. In

particular, there exist matrices such that ‖A‖2,2 =
√

‖A‖1,∞‖A‖∞,1, where ‖A‖1,∞ and ‖A‖∞,1 correspond to

the maximum absolute column and row sums, respectively. Then together with the value of D, this leads to

a cubic dependence on the dimension of Q. For games where the players have roughly equal-size strategy

spaces, this is equivalent to a constant of O(M4
Q) as opposed to our constant of O(M2

Q). In addition, as

compared with previous work, the authors also only show experiments with their algorithm on instances

with 9 ·106 leaf nodes [10], whereas the previous EGT algorithm showed experiments on instances with up

to 4 ·1012 leaf nodes.

CFR, CFR+, and EGT all need to keep track of a constant number of current and/or average iterates,

so the memory usage of all three algorithms is of the same order. When gradients are computed using

tree traversal as opposed to storing the matrix A (or some decomposition thereof), each of these algorithms

require a constant times the number of sequences in the sequence-form representation; in particular, each

algorithm needs to keep track of some current x ∈ X and y ∈ Y iterate, as well as a small number of

gradients and intermediate solutions. Therefore, we compare mainly the number of iterations required by

each algorithm. Since the theoretical properties of CFR and CFR+ are comparable, we compare to CFR,

with all statements being valid for CFR+ as well.

CFR has a O( 1
ε2 ) convergence rate; but its dependence on the number of information sets is only linear

(and sometimes sublinear [23]). Since our results utilizing EGT have a quadratic dependence on M2
Q, CFR

sometimes has a better dependence on game constants and can be more attractive for obtaining low-quality

solutions quickly for games with many information sets. However, our theoretical results could be coupled

with a O( 1
ε2 ) convergence rate FOM such as mirror descent in order to achieve a similar dependence on game

constants. In practice, a sampling-based variant of CFR called Monte-Carlo CFR (MCCFR) is preferred for

certain applications [23]. MCCFR and CFR have a similar convergence rate, though MCCFR has cheaper

iterations. Using the gradient-sampling method described by Kroer et al. [20], our theoretical results can

be utilized with the stochastic mirror prox algorithm [16] in order to achieve the same iteration cost and

convergence rate as MCCFR.

8 Numerical experiments

We carried out numerical experiments to investigate the practical performance of EGT on EFGs when in-

stantiated with our DGF. We start out by comparing our DGF (henceforth referred to as new DGF) with

that of Kroer et al. [20] (henceforth referred to as old DGF) when used in the EGT algorithm, and then
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we compare EGT equipped with our DGF to CFR and CFR+, the practical state-of-the-art EFG-solving

algorithms.

We consider two variants of EGT: the original algorithm of Nesterov [29] as is, and a new variant

where we incorporate several heuristics for speeding up practical convergence by avoiding overly pessimistic

parameters. We demonstrate and discuss the practical convergence issues in comparison experiments later.

First we describe our practical variant.

Our preliminary experiments for EGT demonstrated that the initial values for the smoothing parameters

µ1,µ2 are much too conservative in practice. Instead, in our aggressive EGT we follow an automated

tuning procedure. The goal of this procedure is to find a pair of initial smoothing parameters µ1,µ2 that

fit the problem instance at hand. At the beginning of the algorithm we perform a binary search over 16

logarithmically-spaced numbers between 0.001
Ωx

and 1.0 for µ1. For each number, we binary search 3 multiples

of µ1 in order to choose µ2: 0.75,1, and 1.25. We choose the smallest pair of parameters that give an

excessive gap greater than 0.001 after computing x0,y0 in Algorithm 1.

Because we are choosing the smoothing parameters this way, we are no longer guaranteed convergence

according to the EGT theory; however we can fix this problem by numerically checking the excessive gap

condition at every iteration. We perform this check as a part of the following more aggressive step-sizing

policy: instead of setting τ = 2
t+3

at every iteration t, we use the aggressive µ reduction heuristic of Hoda

et al. [12], where a constant stepsize is used, and then whenever the post-step check of the excessive gap

condition fails the step is retraced and τ is halved. We start τ at 1
2
. In addition to only decreasing τ when the

excessive gap check fails, we also increase it by a factor of 1.11 whenever a step was successful. We also

introduce a new heuristic for checking whether a step was successful: we check whether the saddle-point

residual εsad(z) deteriorated by a factor of more than 1.1 after each step. If it did, we retrace and halve τ .

This heuristic can be computed essentially for free (in particular using the gradients from the excessive gap

check) and thus only requires two treeplex traversals.

We test the algorithms on two games. The first game is a scaled up variant of the poker game Leduc

holdem [35], a benchmark problem in the imperfect-information game-solving community. In our version,

the deck consists of k pairs of cards 1 . . .k, for a total deck size of 2k. Each player initially pays one chip to

the pot, and is dealt a single private card. After a round of betting, a community card is dealt face up. After

a subsequent round of betting, if neither player has folded, both players reveal their private cards. If either

player pairs their card with the community card they win the pot. Otherwise, the player with the highest

private card wins. In the event both players have the same private card, they draw and split the pot. We

consider decks with 6, 30, and 70 cards. The smallest game has about 2000 nodes in the game tree, and the

largest has about 3.2 million nodes in the game tree.

The second game is a zero-sum variant of a search-game played on the graph shown in Figure 2, we

will refer to it as Search. Search is a simultaneous-move game (which can be modeled as a turn-taking EFG

with appropriately chosen information sets). A defender controls two patrols that can each move within

their respective shaded areas (labeled P1 and P2), and at each time step the controller chooses a move for

both patrols. An attacker tries to move from the S node to one of the three payoff nodes. The attacker can

move freely to any adjacent node (except at patrolled nodes, the attacker cannot move from a patrolled node

to another patrolled node). The attacker can also choose to wait in place for a time step in order to clean up

their traces. If a patrol visits a node that was previously visited by the attacker, and the attacker did not wait

to clean up their traces, they can see that the attacker was there. If the attacker reaches any of the rightmost

nodes they received the respective payoff at the node (5, 10, or 3, respectively) and the defender loses that

amount. If the attacker and any patrol are on the same node at any time step, the attacker is captured, which

leads to payoffs of 1 and −1 for the defender and attacker respectively. Finally, the game times out after

5 simultaneous moves, in which case both players receive a payoff 0. Search has 87,927 nodes and 11,830

and 69 defender and attacker sequences. General-sum variants of this game were studied by Bošanskỳ and

Čermák [1], Bošanskỳ et al. [2], and Kroer et al. [22]. One particularly noteworthy feature of this game
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is that the strategy spaces are extremely imbalanced: it is huge for one player and tiny for the other. This

is in stark contrast with Leduc (and other poker games) where the strategy spaces are almost the same. In

addition to our general results that we are about to present, we believe that our results are the first of their

kind in demonstrating strong FOM performance on such imbalanced EFGs.

P1 P2

S

5

10

3

Figure 2: A search game between a defender and an attacker.

In our comparisons, we use loglog plots that show the results for a particular game. In each plot, we

show the performance of the algorithms, with the x-axis showing the number of tree traversals, and the y-axis

showing the solution accuracy, i.e. the saddle-point residual. We note that tree-traversals is a good proxy

for overall computational effort because the majority of the time in the algorithms EGT and CFR algorithms

for EFG solving is spent on gradient computations, which in our case directly translates into tree-traversals.

All EGT experiments include the tree traversals needed for automated parameter tuning described in the

previous paragraph as part of the number of tree traversals performed by the algorithm.

First, we investigate the impact of applying the weights used in recurrence (6), as compared to the

previous scheme introduced in Kroer et al. [20]. To instantiate recurrence (6) we have to choose a way to

set β j relative to α j. We use the scheme of Corollary 1. This scheme will henceforth be referred to as new

weights. We compare these new weights to the weights used in Kroer et al. [20] (henceforth referred to as

old weights). Figure 3 shows the result of running EGT with the old and the new weights for Leduc with

a 6-card (on the left) deck and Search (on the right). The top row shows results when instantiating EGT

with the parameters dictated by the theory, whereas the bottom row shows EGT using all our heuristics.

When instantiating parameters according to theory the most important observation is that the parameters

are way too pessimistic, out of thousands of gradient computations, the majority are spent decreasing the

smoothing parameters until they are small enough that the algorithms start to make progress. That said, this

happens significantly faster for the new parameters than the old ones; for the search game 20,000 gradient

computations is not enough to start progressing with the old parameters. For our aggressive EGT variant

we find that both DGFs perform much better, though our new weights still perform better on both games,

significantly so for Search.

We next compare the performance of EGT with our new weights to that of the CFR and CFR+ algo-

rithms on three Leduc variants (6, 30, and 70-card decks) and Search. For CFR we use two variants: the

vanilla CFR algorithm with RM as the regret minimizer, and CFR with the RM+ regret minimizer and al-

ternating minimization. Finally we have CFR+ which adds linear stepsizing on top of RM+ and alternating

minimization. The results are shown in Figure 4. We find that EGT instantiated with our DGF outperforms

CFR with both RM and RM+ and alternating minimization, whereas CFR+ is slightly faster still. EGT

maintains a stronger convergence rate across all iterations. It starts out slightly worse because its first iterate

is shifted outward on the x-axis due to paying the upfront cost of our automated tuning based initialization.

However, its convergence rate is immediately superior to CFR, and almost immediately overtakes both CFR

algorithms.

The performance we get from EGT (with aggressive stepsizing) relative to CFR is in sharp contrast to

the previous conventional practical wisdom in the field. In Kroer et al. [20] it was found that, while EGT has
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Figure 3: Solution accuracy as a function of the number of iterations for EGT with our weighting scheme

(New weights) and with the weighting scheme from Kroer et al. [20] (Old weights). Both axes are on a log

scale. The top row shows the effect of our weighting scheme when using EGT instantiated according to the

original theory. The bottom row shows the effect when using our aggressive EGT variant.
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Figure 4: Solution accuracy as a function of the number of tree traversals in three different variants of Leduc

hold’em and the Search game. Results are shown for CFR with regret mathing, CFR with regret mathing+,

CFR+, and our aggressive EGT algorithm. Both axes are shown on a log scale.
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better asymptotic convergence rate, CFR had better initial convergence rate, and it was only after a certain

number of iterations that EGT took over. Furthermore, the switching point where EGT is preferable was

found to shift outward on the x-axis as the Leduc game size was increased. This sentiment has been mirrored

by Brown and Sandholm [4]. In contrast to this, we find that our DGF along with proper initialization leads

to EGT having a better convergence rate than not only CFR, but also CFR with RM+. Furthermore, scaling

up the game size does not seem to adversely affect this relationship.

The numerical results in Figure 4 suggest that our DGF may be useful in practice for solving large-scale

zero-sum EFGs. Moreover, these results are with a particular FOM, EGT, and there is a myriad of possible

ways that our DGF could be combined with other FOMs.

9 Conclusions

We have investigated FOMs for computing Nash equilibria in two-player zero-sum perfect-recall EFGs. On

the theoretical side, we analyzed the strong convexity properties of the dilated entropy DGF over treeplexes.

By introducing specific weights that are tied to the structure of the treeplex, we improved prior results on

treeplex diameter from O(|SQ|MQd2d logm) to O(M2
Q2dQ+2 logm), thereby removing all but a logarithmic

dependence on branching associated with the branching operator in the treeplex definition. These results

lead to significant improvements in the theoretical convergence rates of FOMs that can be equipped with

dilated entropy DGFs and used for EFG solving including, but not limited to, EGT, MP, and Stochastic MP.

We numerically investigated the performance of EGT and compared it to the practical state-of-the-art

algorithms CFR and CFR+. Our experiments showed that EGT equipped with the dilated entropy DGF,

when tuned with a proper scaling, has better practical, as well as theoretical, convergence rate than CFR

even with RM+, as opposed to the cross-over point phenomena based on the size of the games. While

CFR+ is still faster, our results are for a specific FOM instantiated with our DGF; it seems likely that future

experimental work could lead to even faster algorithms based on our DGF, for example by incorporating

randomization to reduce the cost of gradient computation, or other FOMs.

Theorems 2 and 3 establish bounds for a general class of weights β j satisfying the recurrence (6). Then

in Corollary 1, we have selected a particular weighting scheme for β j satisfying (6) and performed our

numerical tests. There may be other interesting choices of β j satisfying the recurrence (6). Thus, finding

a way to optimally choose among the set of weights satisfying (6) to minimize the polytope diameter for

specific games is appealing.

On a separate note, in practice CFR is often paired with an abstraction technique [33]. This is sometimes

despite the lack of any theoretical justification. Effective ways to pair FOMs such as MP and EGT with

practical abstraction techniques [5] or abstraction techniques that achieve solution-quality guarantees [18,

19, 24] are also worth further consideration.
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A Notation and results described from an EFG perspective

In the body of the paper we described our results using notation oriented toward the convex-optimization

perspective on treeplexes: the results are for general treeplexes, and so we view them as a general convex

set. In this section we give an overview of our results from a standard EFG-specific perspective, in the hopes

that it may be helpful for researchers who are familiar with that literature, but not the first-order methods

literature and convex analysis.

First we define notation, then we give a description of how our treeplex results map onto traditional EFG

notation, and finally we give a description of the dilated entropy smoothed best response tree traversal and

EGT in terms of this notation.

A.1 Extensive-form games and the sequence-form

Extensive-form games (EFGs) can be thought of as a game tree, where each node in the tree corresponds to

some history of actions taken by all players. Each node belongs to some player, and the actions available to

the player at a given node are represented by the branches. Uncertainty is modeled by having a special player,

Nature, that moves with some predefined fixed probability distribution over actions at each node belonging

to Nature. EFGs model imperfect information by having groups of nodes in information sets, which is a

group of nodes all belonging to the same player such that the player cannot distinguish among them. Finally

we assume perfect recall, which requires that no player ever forgets their past actions (equivalently, for each

information set there is only a single possible last action taken by the player to whom the information set

belongs).

Definition 4. A two-player extensive-form game with imperfect information and perfect recall Γ is a tuple

(H,Z,A,P,σc,I ,u) composed of:

• H: a finite set of possible sequences (or histories) of actions, such that the empty sequence /0 ∈ H, and

every prefix z of h in H is also in H.

• Z ⊆ H: the set of terminal histories, i.e. those sequences that are not a proper prefix of any sequence.

• A: a function mapping h ∈ H \Z to the set of available actions at non-terminal history h.
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• P: the player function, mapping each non-terminal history h ∈ H \ Z to {1,2,c}, representing the

player who takes action after h. If P(h) = c, the player is Nature.

• σ0: a function assigning to each h ∈ H \Z such that P(h) = 0 a probability mass function over A(h).

• Ii, for i ∈ {1,1}: partition of {h ∈ H : P(h) = i} with the property that A(h) = A(h′) for each h,h′ in

the same set of the partition. For notational convenience, we will write A(I) to mean A(h) for any of

the h ∈ I, where I ∈ Ii. Ii is the information partition of player i, while the sets in Ii are called the

information sets of player i.

• ui: utility function mapping z ∈ Z to the utility (a real number) gained by player i when the terminal

history is reached.

We further assume that all players have perfect recall.

A strategy for a player i is usually represented in behavioral form, which consists of probability dis-

tributions over actions at each information set in Ii. In this paper we will focus on an alternative, but

strategically equivalent, representation of the set of strategies, called the sequence form [17, 32, 37]. In the

sequence form, actions are instead represented by sequences. A sequence σi, is an ordered list of actions

taken by player i on the path to some history h. In perfect-recall games, all nodes in an information set I ∈Ii

correspond to the same sequence for player i, we let seq(I) denote this sequence. Given a sequence σi and

an action a that Player i can take immediately after σi, we let σia denote the resulting new sequence. Instead

of directly choosing the probability to put on an action, in the sequence form the probability of playing the

entire sequence is chosen, this is called the realization probability and is denoted by r(σi). A choice of

realization probabilities for every sequence belonging to Player i is called a realization plan and is denoted

ri : Σi → [0,1]|Σi|. This representation relies on perfect recall: for any information set I ∈ Ii we have that

each action a ∈ A(I) is uniquely represented by a single sequence σi = seq(I)a, since seq(I) corresponds to

exactly one sequence. In particular, this gives us a simple way to convert any strategy in sequence form to a

behavioral strategy: the probability of playing action a ∈ A(I) at information set I is simply
ri(seq(I)a)
ri(seq(I)) .

A.2 Mapping between convex analysis notation and EFG notation

First we describe the treeplex. A treeplex Q is used to model the sequence-form strategy space of each

player. Thus in an EFG, the treeplexes would be the sets of realization probabilities Σ1,Σ2. In the BSPP (1)

the typical representation would be that X = Σ1 and Y = Σ2. For the remainder we will describe the

notation in terms of Player 1 and Σ1. The set of simplexes in Σ1, with indices denoted by SΣ1
, is the set of

information sets I1 where Player 1 acts. The set D i
j of simplexes reached immediately after taking branch

i in simplex j is the set of potential information sets where Player 1 may have to act next. Which one is

reached of course depends on which actions are taken by Nature and Player 2. Another way to put this is

that D i
j corresponds to the set of information sets I ∈ I1 such that σ1(I) = σ1, where σ1 is the sequence

corresponding to taking the action i at simplex j. The table below gives an overview of treeplex notation

and how it corresponds to EFG notation and concepts. Not all our concepts are easily mapped to existing

EFG ideas. For example MQ and MQ,r, the maximum ℓ1 norm of Q and the r-depth-limited maximum ℓ1

norm, are still most easily thought of in terms of norms. It is the maximum number of information sets with

nonzero probability of being reached when player 1 has to follow a pure strategy while the other player may

follow a mixed strategy. Intuitively the maximum ℓ1 norm of Σ1 measures the branching factor associated

with observable opponent actions and Nature actions that cause Player 1 to reach different information sets,

while not measuring branching factor associated with Player 1 choosing actions at an information set (since

the ℓ1 norm sums to one at such information set).
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Treeplex notation EFG meaning

Q Σ1, the set of realization probabilities

SΣ1
I1, the set of information-set indices into the

treeplex Σ1

D i
j Set of information sets in Σ1 such that the sequence

corresponding to branch i at simplex j is the parent

sequence

qp j
The parent sequence σ1(I j), where I j is the informa-

tion set corresponding to simplex j

d j The length of the longest possible sequence of ac-

tions starting at I j

b
j
Σ1

The length of σ1(I j)

Our dilated entropy construction using the weights described in recurrence (6) can now be described in

terms of EFG notation as follows:

α j = 1+max
a∈AI j

∑
k∈Da

I j

αkβk

βk −αk

, ∀I j ∈ I1,

β j > α j, ∀I j ∈ I1 s.t. length(σ1(I j))> 0,

β j = α j, ∀I j ∈ I1 s.t. length(σ1(I j)) = 0.

(18)

If we then instantiate EGT with this DGF and use Theorem 3 we get the following convergence rate:

maxσ1∈Σ1,σ2∈Σ2
|g1(σ1,σ2)|

√
M2

Σ1
2dΣ1

+2M2
Σ2

2dΣ2
+2 maxI∈I log |AI|

ε
.

A.3 EGT described as a tree traversal

Here we explain how to implement the Prox operation when using the dilated entropy function, as well as

how to compute smoothed best responses, i.e. xµ1
(y) or yµ2

(x) in Algorithm 5. Throughout we will present

algorithms for computing everything from the perspective of a player trying to minimize their opponent’s

utility, rather than maximize their own.

First, given yt , the gradient for Player 1 is Ayt where A is the payoff matrix for Player 2. This can be

implemented as follows: create an all-zero vector g of dimension |Σ1|. Traverse the game tree, and for each

leaf z add π0(z)y
t [σ2(z)]u2(z) at the entry in g corresponding to σ1(z).

Pseudocode for computing a smoothed best response is given in Algorithm 3. This gives an algorithm

for using the dilated entropy function with the negative entropy plus a constant term at each simplex ∆n:

∑x x log(x)+ log(n). By adding log(n) we ensure that the function is never negative; it is zero at xi =
1
n

for

all i. Since the constant does not change the second-order derivatives of the dilated entropy function we

retain the same strong convexity properties.

The smoothed best response implementation given here modifies the gradient g in place. Thus it is

important that g is not used to represent the gradient after a call to the function. However, the modified g

can be useful because the entry in g corresponding to the empty sequence then contains the value of the

smoothed best response function, which is needed for verifying e.g. the excessive gap condition.
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ALGORITHM 3: SmoothedBR

input : gradient g, smoothing parameter µ1, simplex weights βI

output: smoothed best response x in sequence form, modified g

// bottom-up traversal over infosets

for I ∈ I1 do

w = µ1βI;

// for numerical accuracy we perform an offset

o f f set = min(g[Istart , Iend ]);
// set x to smoothed best response

x[Istart , Iend ] ∝ exp(−(g[Istart , Iend ]−o f f set)/w);
b = max(x[Istart , Iend ]);
b index = index of max(x[Istart , Iend ]);
// propagate smoothed best response value at I

g[seq(I)] = g[b index]+w(log(b)+ log(|AI|));
// At the end, convert x to sequence form

The algorithm for smoothed best response calculation takes as input a vector g which is usually gradient

at the current iteration. This vector g is of length equal to the number of sequences for the player. We

assume that the sequences are ordered so that g[Istart , Iend ] denotes the subset of g corresponding to entries

for all the sequences that have their last action taken at I. Note that in setting the value of of the indices in

x corresponding to I, x[Istart , Iend ], we assume that exp is an index-wise exponential operator and o f f set is

subtracted from each entry.

Given our implementation for smoothed best responses above, the computation of the proximal operator

Proxx(g) can be performed easily: it is simply a smoothed best response where we shift the gradient g by

∇ω(x), where x is the point that we use as the prox center. The following algorithm shifts g in place:

ALGORITHM 4: ProxCenterGradient

input : prox-center x, gradient g, smoothing parameter µ1, simplex weights βI

output: smoothed best response x in behavioral form, modified g

// bottom-up traversal over infosets

for I ∈ I1 do

// shift g at the information set

g[Istart , Iend ] = g[Istart , Iend ]−µ1βI(1+ log( xi

xpI

));

// shift g at the parent of I by the value at I

g[seq(I)] = g[seq(I)]+µ1βI(1− log(|AI|))
Note that this implementation of the prox mapping does not give the actual value of the objective, only

the strategy vector that minimizes the objective. For smoothed best response the objective could be read

off the entry of the modified g at the empty sequence, but it does not hold the correct value for the prox

mapping. Unlike for smoothed best response, none of our EGT variants rely on the prox objective.

Once these primitives have been implemented, the high-level steps of Algorithms 1 and 5 are easy

to implement. First µ1 and µ2 are set to appropriate initial values (for example via the theory or the µ-

fitting approach that we use), and initial sequence-form strategies x0,y0 are computed for Players 1 and 2

using the above procedures. Then, we just take repeated alternating steps for Players 1 and 2, where the

stepsize can either be set to 2
t+3

, or chosen aggressively via heuristics. The most powerful stepsize heuristic

is checking whether the excessive gap condition φ̄µ2
(xt) ≤ φ̄µ1

(yt) is maintained after every iteration, and

then decreasing τ and redoing the most recent step when that condition fails. Given an implementation of

smoothed best response, the excessive gap value can be computed as the sum of the smoothed best response

values (this works because smoothed best response was implemented to give the value for each player when
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they are trying to minimize their opponent’s utility). The Step algorithm with these primitives is shown

below (assuming that A is the sequence-form payoff matrix for Player 2 and β1,β2 are the information-set

weights in the dilated entropy for the players):

ALGORITHM 5: StepEFG

input : µ1,µ2,x,y,τ
output: µ+

1 ,x+,y+
// x̂ = (1− τ)x+ τxµ1

(y)
g = Ay;

xµ1
(y) = SmoothedBR(g,µ1,β1);

x̂ = (1− τ)x+ τxµ1
(y);

// y+ = (1− τ)y+ τyµ2
(x̂)

g =−Ax̂;

yµ2
(x̂) = SmoothedBR(g,µ2,β2);

y+ = (1− τ)y+ τyµ2
(x̂);

// x̃ = Proxxµ1
(y)

(
τ

(1−τ)µ1
∇φ µ2

(x̂)
)

g = Ayµ2
(x̂);

ProxCenterGradient(xµ1
(y),g,µ1,β1);

x̃ = SmoothedBR(g,µ1,β1);
// update x+,u

+
1

x+ = (1− τ)x+ τ x̃;

µ+
1 = (1− τ)µ1;

Finally the EGT algorithm is straightforward as it just iterates calls to StepEFG. The initial points can

be computed via SmoothedBR and ProxCenterGradient just as in StepEFG.
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