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Abstract

In practice, most mechanisms for selling, buying, matching, voting, and so on are not incen-
tive compatible. We present techniques for estimating how far a mechanism is from incentive
compatible. Given samples from the agents’ type distribution, we show how to estimate the
extent to which an agent can improve his utility by misreporting his type. We do so by first
measuring the maximum utility an agent can gain by misreporting his type on average over the
samples, assuming his true and reported types are from a finite subset—which our technique
constructs—of the type space. The challenge is that by measuring utility gains over a finite
subset of the type space, we might miss pairs of types θ and θ̂ where an agent with type θ can
greatly improve his utility by reporting the type θ̂. Our technique discretizes the type space by
constructing a learning-theoretic cover in a higher-dimensional space. The key technical con-
tribution is proving that the maximum utility gain over this finite subset nearly matches the
maximum utility gain overall, despite the volatility of the utility functions we study. We ap-
ply our tools to the single-item and combinatorial first-price auctions, generalized second-price
auction, discriminatory auction, uniform-price auction, and second-price auction with spiteful
bidders. To our knowledge, these are the first guarantees for estimating approximate incentive
compatibility from the mechanism designer’s perspective.

1 Introduction

Incentive compatibility [Hurwicz, 1972] is a fundamental concept in mechanism design. Under an
incentive compatible mechanism, it is in every agent’s best interest to report their type truthfully.
Nonetheless, practitioners have long employed mechanisms that are not incentive compatible, also
called manipulable mechanisms. This is the case in many settings for selling, buying, matching
(such as school choice), voting, and so on. For example, most real-world auctions are implemented
using the first-price mechanism. In multi-unit sales settings, the U.S. Treasury has used discrimi-
natory auctions, a variant of the first-price auction, to sell treasury bills since 1929 [Krishna, 2002].
Similarly, electricity generators in the U.K. use discriminatory auctions to sell their output [Kr-
ishna, 2002]. Sponsored search auctions are typically implemented using variants of the generalized
second-price auction [Edelman et al., 2007, Varian, 2007]. In the past year, many major display
ad exchanges including AppNexus, Rubicon, and Index Exchange have transitioned to first-price
auctions, driven by ad buyers who believe it offers a higher degree of transparency [Parkin, 2018,
Harada, 2018]. Finally, nearly all fielded combinatorial auctions are manipulable. Essentially all
combinatorial sourcing auctions are implemented using the first-price mechanism [Sandholm, 2013].
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Combinatorial spectrum auctions are conducted using a variety of manipulable mechanisms. Even
the “incentive auction” used to source spectrum licenses back from low-value broadcasters—which
has sometimes been hailed as obviously incentive compatible—is manipulable once one takes into
account the fact that many owners own multiple broadcasting stations, or the fact that stations do
not only have the option to keep or relinquish their license, but also the option to move to (two)
less desirable spectrum ranges [Nguyen and Sandholm, 2015].

Many reasons have been suggested why manipulable mechanisms are used in practice. First,
the rules are often easier to explain. Second, incentive compatibility ceases to hold even in the
relatively simple context of the Vickrey auction when determining one’s own valuation is costly
(for example, due to computation or information gathering effort) [Sandholm, 2000]. Third, bid-
ders may have even more incentive to behave strategically when they can conduct computation or
information gathering on each others’ valuations, and if they can incrementally decide how to allo-
cate valuation-determination effort [Larson and Sandholm, 2001, 2005]. Fourth, in combinatorial
settings, well-known incentive-compatible mechanisms such as the Vickrey-Clarke-Groves (VCG)
mechanism require bidders to submit bids for every bundle, which generally requires a prohibitive
amount of valuation computation (solving a local planning problem for potentially every bundle,
and each planning problem, itself, can be NP-complete) or information acquisition [Sandholm,
1993, Parkes, 1999, Conen and Sandholm, 2001, Sandholm and Boutilier, 2006]. Fifth, in settings
such as sourcing, single-shot incentive compatible mechanisms such as the VCG are generally not
incentive compatible when the bid-taker uses bids from one auction to adjust the parameters of
later auctions in later years [Sandholm, 2013]. Sixth, incentive compatible mechanisms may leak
the agents’ sensitive private information [Rothkopf et al., 1990]. Seventh, incentive compatibility
typically ceases to hold if agents are not risk neutral (i.e., the utility functions are not quasi-linear).
There are also sound theoretical reasons why the designer sometimes prefers manipulable mecha-
nisms. Specifically, there exist settings where the designer does better than under any incentive
compatible mechanism if the agents cannot solve hard computational or communication problems,
and equally well if they can [Conitzer and Sandholm, 2004, Othman and Sandholm, 2009].

Due in part to the ubiquity of manipulable mechanisms, a growing body of additional research
has explored mechanisms that are not incentive compatible [Kothari et al., 2003, Archer et al., 2004,
Conitzer and Sandholm, 2007, Dekel et al., 2010, Lubin and Parkes, 2012, Mennle and Seuken, 2014,
Dütting et al., 2015, Azevedo and Budish, 2018, Feng et al., 2018, Golowich et al., 2018, Dütting
et al., 2017]. A popular and widely-studied relaxation of incentive compatibility is γ-incentive
compatibility [Kothari et al., 2003, Archer et al., 2004, Dekel et al., 2010, Lubin and Parkes, 2012,
Mennle and Seuken, 2014, Dütting et al., 2015, Azevedo and Budish, 2018], which requires that no
agent can improve his utility by more than γ when he misreports his type.

1.1 Our contributions

Much of the literature on γ-incentive compatibility rests on the strong assumption that the agents’
type distribution is known. In reality, this information is rarely available. We relax this assumption
and instead assume we only have samples from the distribution [Likhodedov and Sandholm, 2004,
2005, Sandholm and Likhodedov, 2015]. We present techniques with provable guarantees that the
mechanism designer can use to estimate how far a mechanism is from incentive compatible. We
analyze both the ex-interim and ex-ante1 settings: in the ex-interim case, we bound the amount
any agent can improve his utility by misreporting his type, in expectation over the other agents’

1We do not study ex-post approximate incentive compatibility because it is a worst-case, distribution-independent
notion. Therefore, we cannot hope to measure the ex-post approximation factor using samples from the agents’ type
distribution.
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types, no matter his true type. In the weaker ex-ante setting, the expectation is also over the
agent’s true type as well.

Our estimate is simple: it measures the maximum utility an agent can gain by misreporting his
type on average over the samples, whenever his true and reported types are from a finite subset
of the type space. We bound the difference between our incentive compatibility estimate and the
true incentive compatibility approximation factor γ. We are the first paper to provide theoretical
guarantees for estimating approximate incentive compatibility from the mechanism designer’s per-
spective, to our knowledge. In settings where we can solve for the true approximation factor γ, we
provide experiments demonstrating that our estimates quickly converge to γ.

We apply our estimation technique to a variety of auction classes. We begin with the first-price
auction, in both single-item and combinatorial settings. Our guarantees can be used by display ad
exchanges, for instance, to measure the extent to which incentive compatibility will be compromised
if the exchange transitions to using first-price auctions [Parkin, 2018, Harada, 2018]. In the single-
item setting, we prove that the difference between our estimate and the true incentive compatibility

approximation factor is Õ
(

(

n+ κ−1
)

/
√
N
)

, where n is the number of bidders, N is the number

of samples, and [0, κ] contains the range of the density functions defining agents’ type distribution.
We prove the same bound for the second-price auction with spiteful bidders [Brandt et al., 2007,
Morgan et al., 2003, Sharma and Sandholm, 2010, Tang and Sandholm, 2012], where each bidder’s
utility not only increases when his surplus increases but also decreases when the other bidders’
surpluses increase.

In a similar direction, we analyze the class of generalized second-price auctions [Edelman et al.,
2007], where m sponsored search slots are for sale. The mechanism designer assigns a real-valued
weight per bidder, collects a bid per bidder indicating their value per click, and allocates the
slots in order of the bidders’ weighted bids. In this setting, we prove that the difference between
our incentive compatibility estimate and the true incentive compatibility approximation bound is

Õ
(

(

n3/2 + κ−1
)

/
√
N
)

.

We also analyze multi-parameter mechanisms beyond the first-price combinatorial auction,
namely, the uniform-price and discriminatory auctions, which are used extensively in markets
around the world [Krishna, 2002]. In both, the auctioneer has m identical units of a single good to
sell. Each bidder submits m bids indicating their value for each additional unit of the good. The
number of goods the auctioneer allocates to each bidder equals the number of bids that bidder has
in the top m bids. In both cases, we prove that the difference between our incentive compatibility

estimate and the true incentive compatibility approximation bound is Õ
(

(

nm2 + κ−1
)

/
√
N
)

.

A strength of our estimation techniques is that they are application-agnostic. For example, they
can be used as a tool in incremental mechanism design [Conitzer and Sandholm, 2007], a subfield
of automated mechanism design [Conitzer and Sandholm, 2002, Sandholm, 2003], where the mecha-
nism designer gradually adds incentive compatibility constraints to her optimization problem until
she has met a desired incentive compatibility guarantee. One line of work in the spirit of incremen-
tal mechanism design has studied mechanism design via deep learning [Feng et al., 2018, Dütting
et al., 2017, Golowich et al., 2018]. The learning algorithm receives samples from the distribution
over agents’ types. The resulting allocation and payment functions are characterized by neural net-
works, and thus the corresponding mechanism may not be incentive compatible. In an attempt to
make these mechanisms nearly incentive compatible, the authors of these works add constraints to
the deep learning optimization problem enforcing that the resulting mechanism be incentive com-
patible over a set of buyer values sampled from the underlying, unknown distribution. However,
they provide no guarantees indicating how far the resulting mechanism is from incentive compat-
ible. One of the goals of this paper is to provide techniques for relating a mechanism’s empirical
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incentive compatibility approximation factor to its expected incentive compatibility approximation
factor.

Key challenges. To prove our guarantees, we must estimate the value γ defined such that no
agent can misreport his type in order to improve his expected utility by more than γ, no matter
his true type. We propose estimating γ by measuring the extent to which an agent can improve
his utility by misreporting his type on average over the samples, whenever his true and reported
types are from a finite subset2 G of the type space. We denote this estimate as γ̂. The challenge is
that by searching over a subset of the type space, we might miss pairs of types θ and θ̂ where an
agent with type θ can greatly improve his expected utility by misreporting his type as θ̂. Indeed,
utility functions are often volatile in mechanism design settings. For example, under the first- and
second-price auctions, nudging an agent’s bid from below the other agents’ largest bid to above will
change the allocation, causing a jump in utility. Thus, there are two questions we must address:
which finite subset should we search over and how do we relate γ̂ to γ?

We provide two approaches to constructing the cover G. The first is to run a greedy procedure
based off a classic algorithm from learning theory. This approach is extremely versatile: it provides
strong guarantees no matter the setting. However, depending on the domain, it may be difficult to
implement. Meanwhile, implementing our second approach is straightforward: the cover is simply
a uniform grid over the type space (assuming the type space equals [0, 1]m for some integer m).
The efficacy of this approach depends on a “niceness” property that holds under mild assumptions.
To analyze this second approach, we must understand how the edge-length of the grid effects our
error bound relating γ̂ to γ. To do so, we rely on the notion of dispersion, introduced by Balcan
et al. [2018a] in the context of online and batch learning as well as private optimization. Roughly
speaking, a set of piecewise Lipschitz functions is (w, k)-dispersed if every ball of radius w in
the domain contains at most k of the functions’ discontinuities. Given a set of N samples from
the distribution over agents’ types, we analyze the set of N functions measuring the utility of an
agent with type θ and misreported type θ̂ when the other agents’ true and misreported types are
represented by one of the N samples. We show that if these functions are (w, k)-dispersed, we
can use a grid with edge-length w to discretize the agents’ type space. We then prove that if the
intrinsic complexity of the agents’ utility functions are not too large (as measured by the learning-
theoretic notion of pseudo-dimension [Pollard, 1984]), then γ̂ quickly converges to γ as the number
of samples grows.

Finally, we show that for a wide range of mechanism classes, dispersion holds under mild
assumptions. As we describe in Section 3.1.2, this requires us to prove that with high probability,
each function sequence from an infinite family of sequences is dispersed. This facet of our analysis
is notably different from prior research by Balcan et al. [2018a]: in their applications, it is enough
to show that with high probability, a single, finite sequence of functions is dispersed. Our proofs
thus necessitate that we carefully examine the structure of the utility functions that we analyze.

1.2 Additional related research

Sample complexity of revenue maximization. A long line of research has studied revenue
maximization via machine learning from a theoretical perspective [Balcan et al., 2008, Alon et al.,
2017, Elkind, 2007, Cole and Roughgarden, 2014, Huang et al., 2015, Medina and Mohri, 2014,
Morgenstern and Roughgarden, 2015, Roughgarden and Schrijvers, 2016, Devanur et al., 2016,
Gonczarowski and Nisan, 2017, Bubeck et al., 2017, Morgenstern and Roughgarden, 2016, Balcan

2This is the approach also taken in mechanism design via deep learning [Dütting et al., 2017, Feng et al., 2018,
Golowich et al., 2018], but without guarantees.
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et al., 2016, Syrgkanis, 2017, Medina and Vassilvitskii, 2017, Balcan et al., 2018b, Gonczarowski
and Weinberg, 2018, Cai and Daskalakis, 2017]. The mechanism designer receives samples from the
type distribution which she uses to find a mechanism that is, ideally, nearly optimal in expectation.
That research has only studied incentive compatible mechanism classes. Moreover, in this paper,
it is not enough to provide generalization guarantees; we must both compute our estimate of the
incentive compatibility approximation factor and bound our estimate’s error. This type of error
has nothing to do with revenue functions, but rather utility functions. These factors in conjunction
mean that our research differs significantly from prior research on generalization guarantees in
mechanism design.

In a related direction, Chawla et al. [2014, 2016, 2017] study counterfactual revenue estimation.
Given two auctions, they provide techniques for estimating one of the auction’s equilibrium revenue
from the other auction’s equilibrium bids. They also study social welfare in this context. Thus,
their research is tied to selling mechanisms, whereas we study more general mechanism design
problems from an application-agnostic perspective.

Strategy-proofness in the large. Azevedo and Budish [2018] propose a variation on approxi-
mate incentive compatibility called strategy-proofness in the large (SP-L). SP-L requires that it is
approximately optimal for agents to report their types truthfully in sufficiently large markets. As in
our paper, SP-L is a condition on ex-interim γ-incentive compatibility. The authors argue that SP-
L approximates, in large markets, attractive properties of a mechanism such as strategic simplicity
and robustness. They categorize a number of mechanisms as either SP-L or not. For example,
they show that the discriminatory auction is manipulable in the large whereas the uniform-price
auction is SP-L. Measuring a mechanism’s SP-L approximation factor requires knowledge of the
distribution over agents’ types, whereas we only require sample access to this distribution. More-
over, we do not make any large-market assumptions: our guarantees hold regardless of the number
of agents.

Comparing mechanisms by their vulnerability to manipulation. Pathak and Sönmez
[2013] analyze ex-post incentive compatibility without any connection to approximate incentive
compatibility. They say that one mechanism M is at least as manipulable as another M ′ if every
type profile that is vulnerable to manipulation under M is also vulnerable to manipulation under
M ′. They apply their formalism in the context of school assignment mechanisms, the uniform-
price auction, the discriminatory auction, and several keyword auctions. We do not study ex-post
approximate incentive compatibility because it is a worst-case, distribution-independent notion.
Therefore, we cannot hope to measure an ex-post approximation factor using samples from the
agents’ type distribution. Rather, we are concerned with providing data-dependent bounds on the
ex-interim and ex-ante approximation factors. Another major difference is that our work provides
quantitative results on manipulability while theirs provides boolean comparisons as to the relative
manipulability of mechanisms. Finally, our measure applies to all mechanisms while theirs cannot
rank all mechanisms because in many settings, pairs of mechanisms are incomparable according to
their boolean measure.

Incentive compatibility from a buyer’s perspective. Lahaie et al. [2018] also provide tools
for estimating approximate incentive compatibility, but from the buyer’s perspective rather than
the mechanism designer’s perspective. As such, the type of information available to their estimation
tools versus ours is different. Moreover, they focus on ad auctions, whereas we study mechanism
design in general and apply our techniques to a wide range of settings and mechanisms.
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2 Preliminaries and notation

There are n agents who each have a type. We denote agent i’s type as θi, which is an element of a
(potentially infinite) set Θi. A mechanism takes as input the agents’ reported types, which it uses to
choose an outcome. We denote agent i’s reported type as θ̂i ∈ Θi. We denote all n agents’ types as

θ = (θ1, . . . , θn) and reported types as θ̂ =
(

θ̂1, . . . , θ̂n

)

. For i ∈ [n], we use the standard notation

θ−i ∈ ×j 6=iΘj to denote all n− 1 agents’ types except agent i. Using this notation, we denote the

type profile θ representing all n agents’ types as θ = (θi,θ−i). Similarly, θ̂ =
(

θ̂i, θ̂−i

)

. We assume

there is a distribution D over all n agents’ types, and thus the support of D is contained in ×n
i=1Θi.

We use D|θi to denote the conditional distribution given θi, so the support of D|θi is contained in
×j 6=iΘj . We assume that we can draw samples θ(1),θ(2), . . . independently from D. This is the same
assumption made in a long line of work on mechanism design via machine learning [Balcan et al.,
2008, Alon et al., 2017, Elkind, 2007, Cole and Roughgarden, 2014, Huang et al., 2015, Medina and
Mohri, 2014, Morgenstern and Roughgarden, 2015, Roughgarden and Schrijvers, 2016, Devanur
et al., 2016, Gonczarowski and Nisan, 2017, Bubeck et al., 2017, Morgenstern and Roughgarden,
2016, Balcan et al., 2016, Syrgkanis, 2017, Medina and Vassilvitskii, 2017, Balcan et al., 2018b,
Gonczarowski and Weinberg, 2018, Cai and Daskalakis, 2017, Dütting et al., 2017, Feng et al.,
2018, Golowich et al., 2018, Likhodedov and Sandholm, 2004, 2005, Sandholm and Likhodedov,
2015].

Given a mechanism M and agent i ∈ [n], we use the notation ui,M

(

θ, θ̂
)

to denote the utility

agent i receives when the agents have types θ and reported types θ̂. We assume it maps to [−1, 1].
When θ−i = θ̂−i, we use the simplified notation ui,M

(

θi, θ̂i,θ−i

)

= ui,M

(

(θi,θ−i) ,
(

θ̂i,θ−i

))

.

At a high level, a mechanism is incentive compatible if no agent can ever increase her utility
by misreporting her type. A mechanism is γ-incentive compatible if each agent can increase her
utility by an additive factor of at most γ by misreporting her type [Kothari et al., 2003, Archer
et al., 2004, Conitzer and Sandholm, 2007, Dekel et al., 2010, Lubin and Parkes, 2012, Mennle and
Seuken, 2014, Dütting et al., 2015, Azevedo and Budish, 2018, Feng et al., 2018, Golowich et al.,
2018, Dütting et al., 2017]. In the main body, we concentrate on ex-interim approximate incentive
compatibility [Azevedo and Budish, 2018, Lubin and Parkes, 2012].

Definition 2.1. A mechanism M is ex-interim γ-incentive compatible if for each i ∈ [n] and all
θi, θ̂i ∈ Θi, agent i with type θi can increase her expected utility by an additive factor of at
most γ by reporting her type as θ̂i, so long as the other agents report truthfully. In other words,

Eθ−i∼D|θi [ui,M (θi, θi,θ−i)] ≥ Eθ−i∼D|θi

[

ui,M

(

θi, θ̂i,θ−i

)]

− γ.

In Appendix F, we study ex-ante approximate incentive compatibility, where the above defini-
tion holds in expectation over θ ∼ D.

3 Estimating approximate ex-interim incentive compatibility

In this section, we show how to estimate the ex-interim incentive compatibility approximation
guarantee using data. We assume there is an unknown distribution D over agents’ types, and we
operate under the common assumption [Lubin and Parkes, 2012, Azevedo and Budish, 2018, Cai and
Daskalakis, 2017, Yao, 2014, Cai et al., 2016, Goldner and Karlin, 2016, Babaioff et al., 2017, Hart
and Nisan, 2012] that the agents’ types are independently distributed. In other words, for each agent
i ∈ [n], there exists a distribution φi over Θi such that D = ×n

i=1φi. (In Appendix F, we extend our
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analysis to approximate ex-ante incentive compatibility under no assumption about the underlying
distribution, which is a weaker notion of incentive compatibility, but also a weaker assumption on
the distribution.) For each agent i ∈ [n], we receive a set S−i of samples independently drawn from
D−i = ×j 6=iφj . For each mechanism M ∈ M, we show how to use the samples to estimate a value
γ̂M such that:

With probability 1−δ over the draw of the n sets of samples S−1, . . . ,S−n, for any agent

i ∈ [n] and all pairs θi, θ̂i ∈ Θi, Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]

≤ γ̂M .

To this end, one simple approach, informally, is to estimate γ̂M by measuring the extent to
which any agent i with any type θi can improve his utility by misreporting his type, averaged
over all profiles in S−i. In other words, we can estimate γ̂M by solving the following optimization
problem:

max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







. (1)

Unfortunately, in full generality, there might not be a finite-time procedure to solve this optimization
problem, so in Section 3.1, we propose more nuanced approaches based on optimizing over finite
subsets of Θi ×Θi. As a warm-up and a building block for our main theorems in that section, we
prove that with probability 1− δ, for all mechanisms M ∈M,

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]}

≤ max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ ǫM(N, δ), (2)

where ǫM(N, δ) is an error term that converges to zero as the number N of samples grows. Its
convergence rate depends on the intrinsic complexity of the utility functions corresponding to the
mechanisms in M, which we formalize using the learning-theoretic tool pseudo-dimension. We
define pseudo-dimension below for an abstract class A of functions mapping a domain X to [0, 1].

Definition 3.1 (Pseudo-dimension [Pollard, 1984]). Let S =
{

x(1), . . . , x(N)
}

⊆ X be a set of ele-

ments from the domain of A and let z(1), . . . , z(N) ∈ R be a set of targets. We say that z(1), . . . , z(N)

witness the shattering of S by A if for all subsets T ⊆ S, there exists some function aT ∈ A such
that for all x(j) ∈ T , aT

(

x(j)
)

≤ z(j) and for all x(j) 6∈ T , aT
(

x(j)
)

> z(j). If there exists some
vector z ∈ R

N that witnesses the shattering of S by A, then we say that S is shatterable by A. Fi-
nally, the pseudo-dimension of A, denoted Pdim (A), is the size of the largest set that is shatterable
by A.

Theorem 3.1 provides an abstract generalization bound in terms of pseudo-dimension.

Theorem 3.1 (Pollard [1984]). Let Φ be a distribution over X . With probability 1 − δ over

x(1), . . . , x(N) ∼ Φ, for all a ∈ A,
∣

∣

∣

1
N

∑N
j=1 a

(

x(j)
)

− Ex∼Φ[a(x)]
∣

∣

∣ ≤
√

2d
N ln eN

d +
√

1
2N ln 2

δ , where

d = Pdim(A).

We now use Theorem 3.1 to prove that the error term ǫM(N, δ) in Equation (2) converges
to zero as N increases. To this end, for any mechanism M , any agent i ∈ [n], and any pair
of types θi, θ̂i ∈ Θi, let ui,M,θi,θ̂i

: ×j 6=iΘj → [−1, 1] be a function that maps the types θ−i

7



of the other agents to the utility of agent i with type θi and reported type θ̂i when the other

agents report their types truthfully. In other words, ui,M,θi,θ̂i
(θ−i) = ui,M

(

θi, θ̂i,θ−i

)

. Let Fi,M
be the set of all such functions defined by mechanisms M from the class M. In other words,

Fi,M =
{

ui,M,θi,θ̂i

∣

∣

∣ θi, θ̂i ∈ Θi,M ∈M
}

. We now analyze the convergence rate of the error term

ǫM(N, δ). The full proof is in Appendix C.

Theorem 3.2. With probability 1 − δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i,

for all mechanisms M ∈M and agents i ∈ [n],

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]}

≤ max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ ǫM(N, δ),

where ǫM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

Proof sketch. Fix an arbitrary bidder i ∈ [n]. By Theorem 3.1, we know that with probability
1 − δ/n, for every pair of types θi, θ̂i ∈ Θi and every mechanism M ∈ M, the expected utility
of agent i with type θi and reported type θ̂i (in expectation over θ−i ∼ D−i) is ǫ-close to his

average utility (averaged over θ−i ∈ S−i), where ǫ = Õ
(

√

di/N
)

. We use this fact to show that

when agent i misreports his type, he cannot increase his expected utility by more than a factor of

2ǫ+maxθi,θ̂i∈Θi

{

1
N

∑N
j=1 ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)}

.

3.1 Incentive compatibility guarantees via finite covers

In the previous section, we presented an empirical estimate of the ex-interim incentive compatibility
approximation factor (Equation (1)) and we showed that it quickly converges to the true approx-
imation factor. However, there may not be a finite-time procedure for computing Equation (1) in
its full generality, restated below:

max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







. (3)

In this section, we address that challenge. A simple alternative approach is to fix a finite cover of
Θi ×Θi, which we denote as G ⊂ Θi ×Θi, and approximate Equation (3) by measuring the extent
to which any agent i can improve his utility by misreporting his type when his true and reported
types are elements of the cover G, averaged over all profiles in S−i. In other words, we estimate
Equation (3) as:

max
(θi,θ̂i)∈G







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







. (4)

This is the approach also taken in the recent line of research on mechanism design via deep learn-
ing [Dütting et al., 2017, Feng et al., 2018, Golowich et al., 2018]. This raises two natural questions:
how do we select the cover G and how close are the optimal solutions to Equations (3) and (4)? We
provide two simple, intuitive approaches to selecting the cover G. The first is to run a greedy pro-
cedure (see Section 3.1.1) and the second is to create a uniform grid over the type space (assuming
Θi = [0, 1]m for some integer m; see Section 3.1.2).
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Algorithm 1 Greedy cover construction

Input: Mechanism M ∈M, set of samples S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

, accuracy parameter ǫ > 0.

1: Let U be the set of vectors U ←



















1
N











ui,M

(

θi, θ̂i,θ
(1)
−i

)

− ui,M

(

θi, θi,θ
(1)
−i

)

...

ui,M

(

θi, θ̂i,θ
(N)
−i

)

− ui,M

(

θi, θi,θ
(N)
−i

)











: θi, θ̂i ∈ Θi



















.

2: Let V ← ∅ and G ← ∅.
3: while U \

(
⋃

v∈V B1 (v, ǫ)
)

6= ∅ do
4: Select an arbitrary vector v′ ∈ U \

(
⋃

v∈V B1 (v, ǫ)
)

.

5: Let θi, θ̂i ∈ Θi be the types such that v′ = 1
N











ui,M

(

θi, θ̂i,θ
(1)
−i

)

− ui,M

(

θi, θi,θ
(1)
−i

)

...

ui,M

(

θi, θ̂i,θ
(N)
−i

)

− ui,M

(

θi, θi,θ
(N)
−i

)











.

6: Add v′ to V and
(

θi, θ̂i

)

to G.
Output: The cover G ⊆ Θi ×Θi.

3.1.1 Covering via a greedy procedure

In this section, we show how to construct the cover G of Θi × Θi greedily, based off a classic
learning-theoretic algorithm. We then show that when we use the cover G to estimate the incentive
compatibility approximation factor (via Equation (4)), the estimate quickly converges to the true
approximation factor. This greedy procedure is summarized by Algorithm 1. For any v ∈ R

N , we
use the notation B1 (v, ǫ) = {v′ : ‖v′ − v‖1 ≤ ǫ}. To simplify notation, let U be the set of vectors
defined in Algorithm 1:

U =



















1

N











ui,M

(

θi, θ̂i,θ
(1)
−i

)

− ui,M

(

θi, θi,θ
(1)
−i

)

...

ui,M

(

θi, θ̂i,θ
(N)
−i

)

− ui,M

(

θi, θi,θ
(N)
−i

)











: θi, θ̂i ∈ Θi



















.

Note that the solution to Equation (3) equals maxv∈U
∑N

i=1 v[i]. The algorithm greedily selects
a set of vectors V ⊆ U , or equivalently, a set of type pairs G ⊆ Θi × Θi as follows: while U \
(
⋃

v∈V B1 (v, ǫ)
)

is non-empty, it chooses an arbitrary vector v′ in the set, adds it to V , and adds

the pair
(

θi, θ̂i

)

∈ Θi×Θi defining the vector v′ to G. Classic results from learning theory [Anthony

and Bartlett, 2009] guarantee that this greedy procedure will repeat for at most (8eN/(ǫdi))
2di

iterations, where di = Pdim (Fi,M).
We now relate the true incentive compatibility approximation factor to the solution to Equa-

tion (4) when the cover is constructed using Algorithm 1. The full proof is in Appendix C.

Theorem 3.3. Given a set S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

, a mechanism M ∈M, and accuracy parameter

ǫ > 0, let G (S−i,M, ǫ) be the cover returned by Algorithm 1. With probability 1− δ over the draw
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of the n sets S−i ∼ DN
−i, for every mechanism M ∈M and every agent i ∈ [n],

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]}

≤ max
(θi,θ̂i)∈G(S−i,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ ǫ+ Õ

(
√

di
N

)

, (5)

where di = Pdim (Fi,M). Moreover, with probability 1, |G (S−i,M, ǫ)| ≤ (8eN/ (ǫdi))
2di.

Proof sketch. Inequality (5) follows from Theorem 3.2, the fact that V is an ǫ-cover of U (where U
and V are the sets defined in Algorithm 1), and the equivalence of G (S−i,M, ǫ) and V . The bound
on |G (S−i,M, ǫ)| follows from classic learning-theoretic results [Anthony and Bartlett, 2009].

3.1.2 Covering via a uniform grid

The greedy approach in Section 3.1.1 is extremely versatile: no matter the type space Θi, when
we use the resulting cover to estimate the incentive compatibility approximation factor (via Equa-
tion (4)), the estimate quickly converges to the true approximation factor. However, implementing
the greedy procedure (Algorithm 1) might be computationally challenging because at each round,
it is necessary to check if U \

(
⋃

v∈V B1 (v, ǫ)
)

is nonempty and if so, select a vector from the set.
In this section, we propose an alternative, extremely simple approach to selecting a cover G: using
a uniform grid over the type space. The efficacy of this approach depends on a “niceness” assump-
tion that holds under mild assumptions, as we prove in Section 3.2. Throughout this section, we
assume that Θi = [0, 1]m for some integer m. We propose covering the type space using a w-grid
Gw over [0, 1]m, by which we mean a finite set of vectors in [0, 1]m such that for all p ∈ [0, 1]m,
there exists a vector p′ ∈ Gw such that ‖p− p′‖1 ≤ w. For example, if m = 1, we could define

Gw =
{

0, 1
⌊1/w⌋ ,

2
⌊1/w⌋ , . . . , 1

}

. We will estimate the expected incentive compatibility approximation

factor using Equation (4) with G = Gw×Gw. Throughout the rest of the paper, we discuss how the
choice of w effects the error bound. To do so, we will use the notion of dispersion, defined below.

Definition 3.2 (Balcan et al. [2018a]). Let a1, . . . , aN : Rd → R be a set of functions where each ai
is piecewise Lipschitz with respect to the ℓ1-norm over a partition Pi of Rd. We say that Pi splits
a set A ⊆ R

d if A intersects with at least two sets in Pi. The set of functions is (w, k)-dispersed if
for every point p ∈ R

d, the ball
{

p′ ∈ R
d : ‖p− p′‖1 ≤ w

}

is split by at most k of the partitions
P1, . . . ,PN .

The smaller w is and the larger k is, the more “dispersed” the functions’ discontinuities are.
Moreover, the more jump discontinuities a set of functions has, the more difficult it is to approxi-
mately optimize its average using a grid. We illustrate this phenomenon in Example 3.1.

Example 3.1. Suppose there are two agents and M is the first-price single-item auction. For any

trio of types θ1, θ2, θ̂1 ∈ [0, 1], u1,M

(

θ1, θ̂1, θ2

)

= 1{θ̂1>θ2}
(

θ1 − θ̂1

)

. Suppose θ1 = 1. Figure 1a

displays the function 1
4

∑

θ2∈S2
u1,M

(

1, θ̂1, θ2

)

where S2 =
{

1
5 ,

2
5 ,

3
5 ,

4
5

}

and Figure 1b displays the

function 1
4

∑

θ2∈S′

2
u1,M

(

1, θ̂1, θ2

)

where S ′2 =
{

31
40 ,

32
40 ,

33
40 ,

34
40

}

.

In Figure 1, we evaluate each function on the grid G =
{

0, 14 ,
1
2 ,

3
4 , 1
}

. In Figure 1a, the maximum
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Condition 1. For all mechanisms M ∈M, agents i ∈ [n], types θi ∈ [0, 1]m, and pairs of reported

types θ̂i, θ̂
′
i ∈ [0, 1]m, if

∥

∥

∥θ̂i − θ̂′
i

∥

∥

∥

1
≤ wi, then

∣

∣

∣

1
N

∑N
j=1 ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θ̂
′
i,θ

(j)
−i

)∣

∣

∣
≤

Liwi +
2ki
N .

Condition 2. For all mechanisms M ∈ M, agents i ∈ [n], reported types θ̂i ∈ [0, 1]m, and pairs

of types θi,θ
′
i ∈ [0, 1]m, if ‖θi − θ′

i‖1 ≤ wi, then
∣

∣

∣

1
N

∑N
j=1 ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θ′
i, θ̂i,θ

(j)
−i

)∣

∣

∣ ≤
Liwi +

2ki
N .

We claim that Inequality (8) holds so long as Conditions 1 and 2 hold. To see why, suppose
they do both hold, and fix an arbitrary agent i ∈ [n], mechanism M ∈ M, and pair of types
θi, θ̂i ∈ [0, 1]m. Consider the average amount agent i with type θi can improve his utility by
misreporting his type as θ̂i:

1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)

. (9)

By definition of the grid Gwi
, we know there are points p, p̂ ∈ Gwi

such that ‖θi − p‖1 ≤ wi and
∥

∥

∥θ̂i − p̂

∥

∥

∥

1
≤ wi. Based on Conditions 1 and 2, we show that if we “snap” θi to p and θ̂i to p̂, we

will not increase Equation (9) by more than an additive factor of O (Liwi + ki/N). Since p and p̂

are elements of Gwi
, Inequality (8) holds so long as Conditions 1 and 2 hold. Since Conditions 1

and 2 hold with probability 1− δ, the lemma statement holds.

In Section 3.2, we prove that under mild assumptions, for a wide range of mechanisms, Con-

ditions 1 and 2 in Lemma 3.4 hold with Li = 1, wi = O
(

1/
√
N
)

, and ki = Õ
(√

N
)

, ignoring

problem-specific multiplicands. Thus, we find that 4Liwi + 8ki/N quickly converges to 0 as N
grows.

Theorem 3.2 and Lemma 3.4 immediately imply this section’s main theorem. At a high level, it
states that any agent’s average utility gain when restricted to types on the grid is a close estimation
of the true incentive compatibility approximation factor, so long as his utility function applied to
the samples demonstrates dispersion. The full proof is in Appendix C.

Theorem 3.5. Suppose that for each agent i ∈ [n], there exist Li, ki, wi ∈ R such that with

probability 1 − δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, for each mechanism

M ∈M and agent i ∈ [n], the following conditions hold:

1. For any θi ∈ [0, 1]m, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

2. For any θ̂i ∈ [0, 1]m, the functions ui,M

(

·, θ̂i,θ(1)
−i

)

, . . . , ui,M

(

·, θ̂i,θ(N)
−i

)

are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

Then with probability 1− 2δ, for every mechanism M ∈M and every agent i ∈ [n],

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ ǫ,

12



where ǫ = 4Liwi +
8ki
N + 2

√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

Proof sketch. Theorem 3.2 guarantees that with probability at most δ, the extent to which any
agent i can improve his utility by misreporting his type, averaged over all profiles in S−i, does not
approximate the true incentive compatibility approximation factor, as summarized below:

Bad event 1. For some mechanism M ∈M and agent i ∈ [n],

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

> max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ ǫM(N, δ), (10)

where ǫM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

By Lemma 3.4, we also know that with probability at most δ, we cannot approximate Equa-
tion (10) by discretizing the agent’s type space, as summarized by the following bad event:

Bad event 2. For some mechanism M ∈M and agent i ∈ [n],

max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







> max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ 4Liwi +
8ki
N

. (11)

With probability 1−2δ, neither bad event occurs, so Equation (11) approximates Equation (10).

In Appendix C, we show that if, given a set of samples S−i, one can measure the dispersion
parameters Li, ki, wi ∈ R such that Conditions 1 and 2 in Theorem 3.5 hold, then the theorem’s
inequality holds. In Section 4, we demonstrate this technique via experiments.

We conclude with one final comparison of the greedy approach in Section 3.1.1 and the uniform
grid approach in this section. In Section 3.1.1, we use the functional form of the utility functions
in order to bound the cover size, as quantified by pseudo-dimension. When we use the approach
based on dispersion, we do not use these functional forms to the fullest extent possible; we only
use simple facts about the functions’ discontinuities and Lipschitzness.

3.2 Dispersion and pseudo-dimension guarantees

We now provide dispersion and pseudo-dimension guarantees for a variety of mechanism classes.
The theorems in this section allow us to instantiate the bounds from the previous section and thus
understand how well our empirical incentive compatibility approximation factor matches the true
approximation factor.

Given an agent i ∈ [n], a true type θi ∈ [0, 1]m, and a set of samples θ
(1)
−i , . . . ,θ

(N)
−i ∼ D−i,

we often find that the discontinuities of each function ui,M

(

θi, ·,θ(j)
−i

)

are highly dependent on

the vector θ
(j)
−i . For example, under the first-price single-item auction, the discontinuities of the
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We now use Lemma 3.6 to prove our first dispersion guarantee. The full proof is in Appendix D.

Theorem 3.7. Suppose each agent’s type has a κ-bounded density function. With probability 1− δ

over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, we have that for all agents i ∈ [n] and

types θi ∈ [0, 1], the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise 1-Lipschitz and
(

O
(

1/
(

κ
√
N
))

, Õ
(

n
√
N
))

-dispersed.

Proof sketch. Based on Lemma 3.6, in order to prove the theorem, it is enough to show that with

probability 1− δ/n, any interval of width O
(

1/
(

κ
√
N
))

contains at most Õ
(

n
√
N
)

points from

the set
{∥

∥

∥
θ
(j)
−i

∥

∥

∥

∞

}

j∈[N ]
. We do so by relying on the κ-bounded assumption, which allows us to

analyze the concentration of the discontinuities within any interval.

Theorem 3.8. For all agents i ∈ [n], reported types θ̂i ∈ [0, 1], and type profiles θ−i ∈ [0, 1]n−1,

the function ui,M

(

·, θ̂i,θ−i

)

is 1-Lipschitz.

Proof. Since the reported types
(

θ̂i,θ−i

)

are fixed, the allocation is fixed. Thus, ui,M

(

·, θ̂i,θ−i

)

is either a constant function if θ̂i ≤ ‖θ−i‖∞ or a linear function if θ̂i > ‖θ−i‖∞.

Next, we prove the following pseudo-dimension bound. The full proof is in Appendix D.

Theorem 3.9. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is 2.

Proof sketch. First, we prove Pdim (Fi,M ) ≤ 2. For a contradiction, suppose there exists a set

S−i =
{

θ
(1)
−i ,θ

(2)
−i ,θ

(3)
−i

}

that is shattered by Fi,M . Without loss of generality, assume
∥

∥

∥
θ
(1)
−i

∥

∥

∥

∞
<

∥

∥

∥
θ
(2)
−i

∥

∥

∥

∞
<
∥

∥

∥
θ
(3)
−i

∥

∥

∥

∞
. Since S−i is shatterable, there exist z(1), z(2), z(3) ∈ R witnessing the shatter-

ing.
We split the proof into two cases: z(3) > 0 or z(3) ≤ 0. In this sketch, we analyze the former case.

Since S−i is shatterable, there is a value θi ∈ [0, 1] and bid θ̂i ∈ [0, 1] such that ui,M

(

θi, θ̂i,θ
(1)
−i

)

≥
z(1), ui,M

(

θi, θ̂i,θ
(2)
−i

)

< z(2), and ui,M

(

θi, θ̂i,θ
(3)
−i

)

≥ z(3). Since ui,M

(

θi, θ̂i,θ
(3)
−i

)

≥ z(3) > 0

and ui,M

(

θi, θ̂i,θ
(3)
−i

)

= 0 if
∥

∥

∥θ
(3)
−i

∥

∥

∥

∞
≥ θ̂i, it must be that θ̂i >

∥

∥

∥θ
(3)
−i

∥

∥

∥

∞
>
∥

∥

∥θ
(2)
−i

∥

∥

∥

∞
>
∥

∥

∥θ
(1)
−i

∥

∥

∥

∞
.

Therefore, θi− θ̂i ≥ z(1) and θi− θ̂i < z(2), so z(1) < z(2). Similarly, there must also be θ′i ∈ [0, 1] and

θ̂′i ∈ [0, 1] such that ui,M

(

θ′i, θ̂
′
i,θ

(1)
−i

)

< z(1), ui,M

(

θ′i, θ̂
′
i,θ

(2)
−i

)

≥ z(2), and ui,M

(

θ′i, θ̂
′
i,θ

(3)
−i

)

≥ z(3).

By a similar argument, this means z(1) > z(2), which is a contradiction. We prove that in the case
where z(3) ≤ 0, we also arrive at a contradiction. Therefore, Pdim (Fi,M ) ≤ 2. Furthermore, we
exhibit a set of size 2 that is shattered by Fi,M , which means that Pdim (Fi,M ) ≥ 2. Therefore, the
theorem statement holds.

3.2.2 First-price combinatorial auction

Under this auction, there are ℓ items for sale and each agent’s type θi ∈ [0, 1]2
ℓ
indicates his value

for each bundle b ⊆ [ℓ]. We denote his value and bid for bundle b as θi(b) and θ̂i(b), respectively.
The allocation (b∗1, . . . , b

∗
n) is the solution to the winner determination problem:

maximize
∑n

i=1 θ̂i (bi)
subject to bi ∩ bi′ = ∅ ∀i, i′ ∈ [n], i 6= i′.
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Each agent i ∈ [n] pays θ̂i (b
∗
i ).

We begin with dispersion guarantees. The full proof of the following theorem is in Appendix D.

Theorem 3.10. Suppose that for each pair of agents i, i′ ∈ [n] and each pair of bundles b, b′ ⊆ [ℓ],
the values θi(b) and θi′(b

′) have a κ-bounded joint density function. With probability 1 − δ over

the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, we have that for all agents i ∈ [n] and

types θi ∈ [0, 1]2
ℓ
, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise 1-Lipschitz

and
(

O
(

1/
(

κ
√
N
))

, Õ
(

(n+ 1)2ℓ
√
Nℓ
))

-dispersed.

Proof sketch. Consider agent 1. Fix an arbitrary sample j ∈ [N ] and pair of allocations (b1, . . . , bn)

and (b′1, . . . , b
′
n). We know that (b′1, . . . , b

′
n) will not be the allocation so long as θ̂1 ∈ [0, 1]2

ℓ
is chosen

such that θ̂1(b1) +
∑n

i=2 θ
(j)
i (bi) > θ̂1(b

′
1) +

∑n
i=2 θ

(j)
i (b′i). This means that across all θ1 ∈ [0, 1]2

ℓ
,

there is a fixed set Hj of
(

(n+1)ℓ

2

)

hyperplanes (one per pair of allocations) such that for any

connected component C of [0, 1]2
ℓ \ Hj , the allocation given bids

(

θ̂1,θ
(j)
−1

)

is invariant across all

θ̂1 ∈ C. When the allocation is fixed, agent 1’s utility is 1-Lipschitz as a function of θ̂1.

Next, consider the set S−1 =
{

θ
(1)
−1, . . . ,θ

(N)
−1

}

of type profiles and the corresponding sets

H1, . . . ,HN of hyperplanes. These hyperplanes can be partitioned into
(

(n+1)ℓ

2

)

buckets consisting
of parallel hyperplanes with offsets independently drawn from κ-bounded distributions. Within

each bucket, the offsets are (w′, k′)-dispersed with high probability with w′ = O
(

1/
(

κ
√
N
))

and

k′ = Õ
(√

Nℓ
)

. Since the hyperplanes within each bucket are parallel and since their offsets are

dispersed, for any ball B of radius w′ in [0, 1]2
ℓ
, at most k′ hyperplanes from each set intersect B.

The theorem statement holds by a union bound over the n agents and
(

(n+1)ℓ

2

)

buckets.

Theorem 3.11. For all agents i ∈ [n], reported types θ̂i ∈ [0, 1]2
ℓ
, and type profiles θ−i ∈

[0, 1](n−1)2ℓ, the function ui,M

(

·, θ̂i,θ−i

)

is 1-Lipschitz.

Proof. So long as all bids are fixed, the allocation is fixed, so ui,M

(

·, θ̂i,θ−i

)

is 1-Lipschitz.

Next, we prove the following pseudo-dimension bound.

Theorem 3.12. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is O
(

ℓ2ℓ log n
)

.

Proof. As we saw in the proof of Theorem 3.10, for any type profile θ−i ∈ [0, 1](n−1)2ℓ , there is

a set H of (n + 1)2ℓ hyperplanes such that for any connected component C of [0, 1]2
ℓ \ H, the

auction’s allocation given bids
(

θ̂i,θ−i

)

is invariant across all θ̂i ∈ C. So long as the allocation is

fixed, ui,M (·, ·,θ−i) is a linear function of
(

θi, θ̂i

)

. Therefore, the pseudo-dimension bound follows

from Theorem B.1 in Appendix B, which relates the class’s pseudo-dimension to the number of
hyperplanes splitting the type space into regions where the utility function is linear.

3.2.3 Generalized second-price auction

A generalized second-price auction allocates m advertising slots to a set of n > m agents. Each
slot s has a probability αs,i of being clicked if agent i’s advertisement is in that slot. We assume
αs,i is fixed and known by the mechanism designer. The mechanism designer assigns a weight
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ωi ∈ (0, 1] per agent i. Each agent has a value θi ∈ [0, 1] for a click and submits a bid θ̂i ∈
[0, 1]. The mechanism allocates the first slot to the agent with the highest weighted bid ωiθ̂i, the
second slot to the agent with the second highest weighted bid, and so on. Let π(s) be the agent
allocated slot s. If slot s is clicked on, agent π(s) pays the lowest amount that would have given

him slot s, which is ωπ(s+1)θ̂π(s+1)/ωπ(s). Agent π(s)’s expected utility is thus uπ(s),M

(

θ, θ̂
)

=

αs,π(s)

(

θπ(s) − ωπ(s+1)θ̂π(s+1)/ωπ(s)

)

.

For r ∈ Z≥1, letMr be the set of auctions defined by agent weights from the set {1/r, 2/r, . . . , 1}.
We begin by proving dispersion guarantees. The full proof is in Appendix D.

Theorem 3.13. Suppose each agent’s type has a κ-bounded density function. With probability

1− δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, we have that for all agents i ∈ [n],

types θi ∈ [0, 1], and mechanisms M ∈ Mr, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise 0-Lipschitz and
(

O
(

1/
(

rκ
√
N
))

, Õ
(√

n3N
))

-dispersed.

Proof sketch. Consider agent 1. Choose an arbitrary sample j ∈ [N ] and mechanism M ∈ Mr

with weights ω = (ω1, . . . , ωn). Let ωi1θ
(j)
i1
≤ · · · ≤ ωin−1θ

(j)
in−1

be the weighted types of all agents
except agent 1. Consider the n intervals delineated by these n− 1 weighted values and suppose we
vary θ̂1 in such a way that ω1θ̂1 remains within one interval. The allocation will be invariant, so
agent 1’s utility will be a constant function of θ̂1. Therefore, no matter the value of θ1 ∈ [0, 1], the

functions u1,M

(

θ1, ·,θ(1)
−1

)

, . . . , u1,M

(

θ1, ·,θ(N)
−1

)

are piecewise constant with discontinuities in the

set B1,ω =
{

ωiθ
(j)
i /ω1 : i ∈ {2, . . . , n}, j ∈ [N ]

}

. We use the κ-bounded assumption to show that

with probability 1− δ, for all ω and agents i ∈ [n], at most Õ
(

n3/2
√
N
)

of the values in each set

Bi,ω fall within any interval of length O
(

1/
(

rκ
√
N
))

.

Theorem 3.14. For all agents i ∈ [n], all reported types θ̂i ∈ [0, 1], all type profiles θ−i ∈ [0, 1]n−1,

and all generalized second-price auctions M , the function ui,M

(

·, θ̂i,θ−i

)

is 1-Lipschitz.

Proof. Since the reported types
(

θ̂i,θ−i

)

are fixed, the allocation is fixed. Let π(s) be the agent

who is allocated slot s. The function ui,M

(

θi, θ̂i,θ−i

)

is either a constant function of θi if agent i

is not allocated a slot or a linear function of θi with a slope of απ−1(i),i otherwise.

We now provide the following pseudo-dimension guarantee. The full proof is in Appendix D.

Theorem 3.15. For any agent i ∈ [n] and r ∈ Z≥1, Pdim (Fi,Mr) = O (n log n) .

Proof sketch. Suppose i = 1. Fix θ−1 = (θ2, . . . , θn) ∈ [0, 1]n−1. We denote agent 1’s util-

ity when the agents’ true types are (θ1,θ−1) and reported types are
(

θ̂1,θ−1

)

as the function

uθ−1

(

θ1, θ̂1, ω1, . . . , ωn

)

, which maps Rn+2 to [−1, 1]. We show that we can split Rn+2 into regions

where the allocation is fixed as we vary
(

θ1, θ̂1, ω1, . . . , ωn

)

over any one region. When the allo-

cation is fixed, uθ−1 is a linear function of (θ1, ω2/ω1, . . . , ωn/ω1). We prove that this partition of
R
n+2 is delineated by a small number of polynomials of degree at most 2 over these n+2 variables.

This fact allows us to bound the number of regions making up the partition. Since the utility
function is simple within each region, we use our bound on the number of regions to prove the
theorem.
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3.2.4 Discriminatory auction

Under the discriminatory auction, there are m identical units of a single item for sale. For each
agent i ∈ [n], his type θi ∈ [0, 1]m indicates how much he is willing to pay for each additional unit.
Thus, θi[1] is the amount he is willing to pay for one unit, θi[1]+ θi[2] is the amount he is willing to
pay for two units, and so on. We assume that θi[1] ≥ θi[2] ≥ · · · ≥ θi[m]. The auctioneer collects
nm bids θ̂i[µ] for i ∈ [n] and µ ∈ [m]. If exactly mi of agent i’s bids are among the m highest of
all nm bids, then agent i is awarded mi units and pays

∑mi

µ=1 θ̂i[µ].
We begin with dispersion guarantees. The full proof of the following theorem is in Appendix D.

Theorem 3.16. Suppose that each agent’s value for each marginal unit has a κ-bounded density

function. With probability 1 − δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, for

all agents i ∈ [n] and types θi ∈ [0, 1]m, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are

piecewise 1-Lipschitz and
(

O
(

1/
(

κ
√
N
))

, Õ
(

nm2
√
N
))

-dispersed.

Proof sketch. Consider agent 1 and suppose we sort
{

θ
(j)
i [µ] : i ∈ {2, . . . , n}, j ∈ [N ], µ ∈ [m]

}

. So

long as agent 1’s bid falls between these sorted bids, the allocations will be fixed across all j ∈ [N ],

and thus each u1,M

(

θ1, ·,θ(j)
−1

)

is 1-Lipschitz. Across all θ1 ∈ [0, 1]m, the partition Pj splitting

u1,M

(

θ1, ·,θ(j)
−1

)

into Lipschitz portions is delineated by the set of hyperplanes

{

θ
(j)
i [µ]− θ̂1[µ

′] = 0 : i ∈ {2, . . . , n}, µ, µ′ ∈ [m]
}

.

We partition these hyperplanes into m2(n−1) buckets consisting of parallel hyperplanes with offsets
independently drawn from κ-bounded distributions. The remainder of the proof is similar to that
of Theorem 3.10.

Theorem 3.17. For all agents i ∈ [n], reported types θ̂i ∈ [0, 1]m, and type profiles θ−i ∈
[0, 1](n−1)m, the function ui,M

(

·, θ̂i,θ−i

)

is 1-Lipschitz.

Proof. So long as all bids are fixed, the allocation is fixed, so ui,M

(

·, θ̂i,θ−i

)

is 1-Lipschitz.

Next, we prove the following pseudo-dimension bound.

Theorem 3.18. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is O (m log(nm)).

Proof. As we saw in the proof of Theorem 3.16, for any θ−i ∈ [0, 1](n−1)m, there is a set H of
O
(

m2n
)

hyperplanes such that for any connected component C of [0, 1]m\H, the allocation is fixed

across all θ̂i ∈ C. So long as the allocation is fixed, ui,M (·, ·,θ−i) is a linear function of
(

θi, θ̂i

)

.

Therefore, the pseudo-dimension bound follows directly from Theorem B.1 in Appendix B.

3.2.5 Uniform-price auction

Under this auction, the allocation rule is the same as in the discriminatory auction (Section 3.2.4).
However, all m units are sold at a “market-clearing” price, meaning the total amount demanded
equals the total amount supplied. See the formal definition in Appendix D.1. We obtain the same
bounds as we do in Section 3.2.4, so we state the theorems in Appendix D.1.
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the first-price auction with n = 5, Equation (12) equals 0.08. Under the the second-price auction
with n = 3, Equation (12) equals 0.05. Finally, under the the second-price auction with n = 5,
Equation (12) equals 0.03. These values correspond to the horizontal lines in Figure 4. In all four
cases, we range the sample size N up to 360,000 and follow the following procedure. For each bidder

i ∈ [n], we draw S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i. In both cases, we know from Lemmas 3.6 and 3.19

that the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are 1-Lipschitz and their discontinuities

fall within the set T−i =
{∥

∥

∥θ
(1)
−i

∥

∥

∥

∞
, . . . ,

∥

∥

∥
θ
(N)
−i

∥

∥

∥

∞

}

. We set ki = ⌊3
√
N/2⌋ and we define wi to be

the largest w such that at most ki points from T−i fall within any interval of width 2w. In other
words, wi = 2 · supw∈(0,1] {w : |[a, a+ w] ∩ T−i| ≤ ki, ∀a ∈ [0, 1]}. Figure 4 displays the bound from
Theorem C.5 (a variation on Theorem 3.5) with δ = 0.01. In all settings, we observe that our
estimate quickly converges to the true incentive compatibility approximation factor.

5 Conclusion

In this paper, we provided techniques for estimating how far a mechanism is from ex-interim
and ex-ante incentive compatible. We introduced an empirical variant of approximate incentive
compatibility which intuitively measures the maximum utility an agent can gain by misreporting
his type, on average over the samples. We bounded the difference between our empirical incentive
compatibility estimate and the true incentive compatibility approximation factor. To do so, we
relied on a subtle mixture of tools from learning theory, including dispersion and pseudo-dimension.
We thus derived strong guarantees for many important manipulable mechanisms, including the first-
price auction, generalized second-price auction, discriminatory auction, uniform price auction, and
second-price auction under spiteful agents.

As in prior research on auction design via machine learning, we assumed that we could receive
independent samples from the type distribution. One direction for future work would be to relax
this assumption in the spirit of incentive-aware learning [Epasto et al., 2018]. Another would be
to relax the assumption that each agent’s type is independent from the others’ in the ex-interim
setting.
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Sébastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. Online auctions and multi-
scale online learning. Proceedings of the ACM Conference on Economics and Computation (EC),
2017.

R. C. Buck. Partition of space. Amer. Math. Monthly, 50:541–544, 1943. ISSN 0002-9890.

Yang Cai and Constantinos Daskalakis. Learning multi-item auctions with (or without) samples.
In Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), 2017.

Yang Cai, Nikhil R. Devanur, and S. Matthew Weinberg. A duality based unified approach to
Bayesian mechanism design. In Proceedings of the Annual Symposium on Theory of Computing
(STOC), 2016.

Shuchi Chawla, Jason Hartline, and Denis Nekipelov. Mechanism design for data science. In
Proceedings of the ACM Conference on Economics and Computation (EC), 2014.

Shuchi Chawla, Jason Hartline, and Denis Nekipelov. A/B testing of auctions. In Proceedings of
the ACM Conference on Economics and Computation (EC), 2016.

Shuchi Chawla, Jason D. Hartline, and Denis Nekipelov. Mechanism redesign. arXiv preprint
arXiv:1708.04699, 2017.

22



Richard Cole and Tim Roughgarden. The sample complexity of revenue maximization. In Proceed-
ings of the Annual Symposium on Theory of Computing (STOC), 2014.

Wolfram Conen and Tuomas Sandholm. Preference elicitation in combinatorial auctions: Extended
abstract. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages 256–
259, Tampa, FL, 2001. More detailed description of algorithmic aspects in IJCAI-01 Workshop
on Economic Agents, Models, and Mechanisms, pp. 71–80.

Vincent Conitzer and Tuomas Sandholm. Complexity of mechanism design. In Proceedings of the
18th Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 103–110, Edmon-
ton, Canada, 2002.

Vincent Conitzer and Tuomas Sandholm. Computational criticisms of the revelation principle. In
The Conference on Logic and the Foundations of Game and Decision Theory (LOFT), Leipzig,
Germany, 2004. Earlier versions: AMEC-03, EC-04.

Vincent Conitzer and Tuomas Sandholm. Incremental mechanism design. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India,
2007.

Ofer Dekel, Felix Fischer, and Ariel D Procaccia. Incentive compatible regression learning. Journal
of Computer and System Sciences, 76(8):759–777, 2010.

Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample complexity of
auctions with side information. In Proceedings of the Annual Symposium on Theory of Computing
(STOC), 2016.

Paul Dütting, Felix Fischer, Pichayut Jirapinyo, John K Lai, Benjamin Lubin, and David C Parkes.
Payment rules through discriminant-based classifiers. ACM Transactions on Economics and
Computation (TEAC), 3(1):5, 2015.

Paul Dütting, Zhe Feng, Harikrishna Narasimhan, and David C Parkes. Optimal auctions through
deep learning. arXiv preprint arXiv:1706.03459, 2017.

Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the general-
ized second-price auction: Selling billions of dollars worth of keywords. The American Economic
Review, 97(1):242–259, March 2007. ISSN 0002-8282.

Edith Elkind. Designing and learning optimal finite support auctions. In Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2007.

Alessandro Epasto, Mohammad Mahdian, Vahab Mirrokni, and Song Zuo. Incentive-aware learning
for large markets. 2018.

Zhe Feng, Harikrishna Narasimhan, and David C Parkes. Deep learning for revenue-optimal auc-
tions with budgets. In Autonomous Agents and Multi-Agent Systems, 2018.

Kira Goldner and Anna R Karlin. A prior-independent revenue-maximizing auction for multiple
additive bidders. In International Workshop On Internet And Network Economics (WINE),
2016.

Noah Golowich, Harikrishna Narasimhan, and David C Parkes. Deep learning for multi-facility
location mechanism design. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2018.

23



Yannai A Gonczarowski and Noam Nisan. Efficient empirical revenue maximization in single-
parameter auction environments. In Proceedings of the Annual Symposium on Theory of Com-
puting (STOC), pages 856–868, 2017.

Yannai A Gonczarowski and S Matthew Weinberg. The sample complexity of up-to-ε multi-
dimensional revenue maximization. In Proceedings of the Annual Symposium on Foundations
of Computer Science (FOCS), 2018.

Matt Harada. The ad exchanges place in a first-price world. Marketing Technol-
ogy Insights, 2018. URL https://martechseries.com/mts-insights/guest-authors/

ad-exchanges-place-first-price-world/.

Sergiu Hart and Noam Nisan. Approximate revenue maximization with multiple items. In Pro-
ceedings of the ACM Conference on Economics and Computation (EC), 2012.

Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. Making the most of your samples. In
Proceedings of the ACM Conference on Economics and Computation (EC), 2015.

L. Hurwicz. On informationally decentralized systems. In C.B McGuire and R. Radner, editors,
Decision and Organization. Amsterdam: North Holland, 1972.

Anshul Kothari, David Parkes, and Subhash Suri. Approximately-strategyproof and tractable
multi-unit auctions. In Proceedings of the ACM Conference on Electronic Commerce (ACM-
EC), pages 166–175, San Diego, CA, 2003.

Vijay Krishna. Auction Theory. Academic Press, 2002.
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A Helpful lemmas

Lemma A.1 (Anthony and Bartlett [2009]). Suppose f1, . . . , fp are polynomials of degree at most
d in v ≤ p variables. Then

∣

∣

∣

∣

∣

∣

∣

















sign (f1(x))
...

sign (fp(x))






: x ∈ R

v











∣

∣

∣

∣

∣

∣

∣

≤ 2

(

2epd

v

)v

.

Lemma A.2 (Shalev-Shwartz and Ben-David [2014]). Let α ≥ 1 and β > 0. If x < α log x + β,
then x < 4α log(2α) + 2β.

A.1 Dispersion lemmas

We now include a few lemmas about dispersion from work by Balcan et al. [2018a] as well as a few
variations we prove ourselves for our specific applications.

Lemma A.3 (Balcan et al. [2018a]). Let B = {β1, . . . , βr} ⊂ R be a collection of samples where
each βi is drawn from a distribution with a κ-bounded density function. For any δ ≥ 0, the following
statements hold with probability at least 1− δ:

26



1. If the βi are independent, then every interval of width w contains at most k = O(rwκ +
√

r log(1/δ)) samples. In particular, for any α ≥ 1/2 we can take w = 1/(κr1−α) and
k = O(rα

√

log(1/δ)).

2. If the samples can be partitioned into P buckets B1, . . . ,BP such that each Bi contains in-
dependent samples and |Bi| ≤ M , then every interval of width w contains at most k =
O(PMwκ+

√

M log(P/δ). In particular, for any α ≥ 1/2 we can take w = 1/(κM1−α) and
k = O(PMα

√

log(P/δ)).

Lemma A.4 (Balcan et al. [2018a]). Suppose X is a random variable with κ-bounded density
function and suppose c 6= 0 is a constant. Then cX has a κ

|c| -bounded density function.

Lemma A.5. Suppose X and Y are random variables taking values in [0, 1] and suppose that their
joint distribution has a κ-bounded density function. Then the distribution of X+Z has a κ-bounded
density function.

Proof. Let Z = X +Y . We will perform change of variables using the function g(x, y) = (x, x+ y).
Let g−1(x, z) = h(x, z) = (x, z − x). Then

Jh(x, z) = det

(

1 0
−1 1

)

= 1.

Therefore, fX,Z(x, z) = fX,Y (x, z − x). This means that fZ(z) =
∫ 1
0 fX,Y (x, z − x) dx ≤ κ, so the

theorem statement holds.

Lemma A.6. Suppose X and Y are random variables taking values in [0, 1] and suppose that their
joint distribution has a κ-bounded density function. Then the distribution of X−Z has a κ-bounded
density function.

Proof. Let Z = X −Y . We will perform change of variables using the function g(x, y) = (x, x− y).
Let g−1(x, z) = h(x, z) = (x, x− z). Then

Jh(x, z) = det

(

1 0
1 −1

)

= −1.

Therefore, fX,Z(x, z) = fX,Y (x, x− z). This means that fZ(z) =
∫ 1
0 fX,Z(x, z) dx =

∫ 1
0 fX,Y (x, x−

z) dx ≤ κ, so the theorem statement holds.

Definition A.1 (Hyperplane delineation). Let Ψ be a set of hyperplanes in R
m and let P be a

partition of a set Rm. Let K1, . . . ,Kq be the connected components of Rm \Ψ. Suppose every set
in P is the union of some collection of sets Ki1 , . . . ,Kij together with their limit points. Then we
say that the set Ψ delineates P.
Lemma A.7 (Balcan et al. [2018a]). Let u1, . . . , uN be a set of piecewise L-Lipschitz functions
mapping R

m to R, drawn i.i.d. from a distribution D. For each j ∈ [N ], let Pj be the partition
of [0, 1]m such that over any R ∈ Pj, uj is L-Lipschitz. Suppose the hyperplane sets Ψ1, . . . ,ΨN

delineate the partitions P1, . . . ,PN . Moreover, suppose the multi-set union of Ψ1, . . . ,ΨN can be
partitioned into P multi-sets B1, . . . ,BP such that for each multi-set Bi:

1. The hyperplanes in Bi are parallel with probability 1 over the draw of u1, . . . , uN .

2. The offsets of the hyperplanes in Bi are independently drawn from κ-bounded distributions.

With probability at least 1− δ over the draw of u1, . . . , uN , the functions are
(

1

2κ
√

max |Bi|
, O

(

P

√

max |Bi| ln
P

δ

))

-dispersed.
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B Delineable utility functions

To prove some of our pseudo-dimension guarantees, we use the notion of delineability introduced
by Balcan et al. [2018b]. They used it in the context of profit-maximization, so here we adapt it
to our setting.

Given a mechanism M and agent i ∈ [n], let Fi,M =
{

ui,M,θi,θ̂i

∣

∣

∣
θi, θ̂i ∈ Θi

}

, where ui,M,θi,θ̂i

is the function introduced in Section 3. Moreover, for a fixed type profile θ−i ∈ ×j 6=iΘj , let

uθ−i
: Θ2

i → [−1, 1] be a function that maps a pair of types θi, θ̂i ∈ Θi to ui,M,θi,θ̂i
(θ−i).

Definition B.1 ((m, t)-delineable). Given a mechanism M and agent i ∈ [n], we say the function
class Fi,M is (m, t)-delineable if:

1. Each agent’s type space is a subset of [0, 1]m; and

2. For any θ−i ∈ [0, 1]m(n−1), there is a set H of t hyperplanes such that for any connected

component C of [0, 1]2m \ H, the function uθ−i

(

θi, θ̂i

)

is linear over C.

The following theorem is similar to Balcan et al.’s main theorem [Balcan et al., 2018b], though
we have adapted it to our setting. We include the proof for completeness.

Theorem B.1. If Fi,M is (m, t)-delineable, the pseudo dimension of Fi,M is O (m log (mt)).

Proof. Suppose Pdim (Fi,M ) = N . By definition, there exists a set S =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

that is

shattered by Fi,M . Let z(1), . . . , z(N) ∈ R be the points that witness this shattering. Again, by

definition, we know that for any T ⊆ [N ], there exists a pair of types θ
(T )
i , θ̂

(T )
i ∈ [0, 1]m such that

u
i,M,θ

(T )
i ,θ̂

(T )
i

(

θ
(j)
−i

)

≥ z(j) if and only if j ∈ T . Let Θ∗ =
{(

θ
(T )
i , θ̂

(T )
i

)

: T ⊆ [N ]
}

. To show that

the pseudo-dimension N of Fi,M is O(m log(mt)), we will show that |Θ∗| = 2N < 4m2t2mN4m,
which means that N = O(m log(mt)).

To this end, for θ
(j)
−i ∈ S, let H(j) be the set of t hyperplanes such that for any connected

component C of [0, 1]2m \ H(j), u
θ
(j)
−i

(

θi, θ̂i

)

is linear over C. We now consider the overlay of all N

partitions [0, 1]2m \H(1), . . . , [0, 1]2m \H(N). Formally, this overlay is made up of the sets C1, . . . , Cτ
which are the connected components of [0, 1]2m \

(

⋃N
j=1H(j)

)

. For each set Cℓ and each j ∈ [N ],

Cℓ is completely contained in a single connected component of [0, 1]2m \ H(j), which means that

u
θ
(j)
−i

(

θi, θ̂i

)

is linear over Cℓ. As we know from work by Buck [1943], since
∣

∣H(j)
∣

∣ ≤ t for all

j ∈ [N ], τ < 2m(Nt)2m.

Now, consider a single connected component Cℓ of [0, 1]2m \
(

⋃N
j=1H(j)

)

. For any sample

θ
(j)
−i ∈ S, we know that u

θ
(j)
−i

(

θi, θ̂i

)

is linear over Cℓ. Let a
(j)
ℓ ∈ R

2m and b
(j)
ℓ ∈ R be the

weight vector and offset such that u
θ
(j)
−i

(

θi, θ̂i

)

= a
(j)
ℓ ·

(

θi, θ̂i

)

+ b
(j)
ℓ for all

(

θi, θ̂i

)

∈ Cℓ. We

know that there is a hyperplane a
(j)
ℓ ·

(

θi, θ̂i

)

+ b
(j)
ℓ = z(j) where on one side of the hyperplane,

u
θ
(j)
−i

(

θi, θ̂i

)

≤ z(j) and on the other side, u
θ
(j)
−i

(

θi, θ̂i

)

> z(j). Let HCℓ be all N hyperplanes

for all N samples
(

HCℓ =
{

a
(j)
ℓ ·

(

θi, θ̂i

)

+ b
(j)
ℓ = z(j) : j ∈ [N ]

})

. Notice that in any connected

component C of Cℓ \ HCℓ , for all j ∈ [N ], u
θ
(j)
−i

(

θi, θ̂i

)

is either greater than z(j) or less than z(j)
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(but not both) for all
(

θi, θ̂i

)

∈ C. Thus, at most one vector
(

θi, θ̂i

)

∈ Θ∗ can come from C. In

total, the number of connected components of Cℓ \HCℓ is smaller than 2mN2m. The same holds for

every partition Cℓ. Thus, the total number of regions where for all j ∈ [N ], u
θ
(j)
−i

(

θi, θ̂i

)

is either

greater than z(j) or less than z(j) (but not both) is smaller than 2mN2m ·2m(Nt)2m. Therefore, we
may bound |Θ∗| = 2N < 2mN2m ·2m(Nt)2m. By Lemma A.2, we have that N = O(m log(mt)).

C Proofs about approximate ex-interim incentive compatibility
(Section 3)

Theorem 3.2. With probability 1 − δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i,

for all mechanisms M ∈M and agents i ∈ [n],

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]}

≤ max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ ǫM(N, δ),

where ǫM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

Proof. Fix an arbitrary agent i ∈ [n]. By Theorem 3.1, we know that with probability at least
1− δ/n over the draw of S−i, for all mechanisms M ∈M and all θi, θ̂i ∈ Θi,

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)]

− 1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

≤
√

2di
N

ln
eN

di
+

√

1

2N
ln

2n

δ

and

1

N

N
∑

j=1

ui,M

(

θi, θi,θ
(j)
−i

)

− Eθ−i∼D−i
[ui,M (θi, θi,θ−i)] ≤

√

2di
N

ln
eN

di
+

√

1

2N
ln

2n

δ
.

Therefore,

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)]

− Eθ−i∼D−i
[ui,M (θi, θi,θ−i)]

= Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)]

− 1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

+
1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)

+
1

N

N
∑

j=1

ui,M

(

θi, θi,θ
(j)
−i

)

− Eθ−i∼D−i
[ui,M (θi, θi,θ−i)]

≤ max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ ǫM(N, δ).
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Since the above inequality holds for all i ∈ [n] with probability 1− δ/n, a union bound implies
that with probability 1− δ, for all i ∈ [n] and all mechanism M ∈M,

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]

≤ max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ ǫM(N, δ),

where ǫM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

Theorem 3.3. Given a set S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

, a mechanism M ∈M, and accuracy parameter

ǫ > 0, let G (S−i,M, ǫ) be the cover returned by Algorithm 1. With probability 1− δ over the draw
of the n sets S−i ∼ DN

−i, for every mechanism M ∈M and every agent i ∈ [n],

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]}

≤ max
(θi,θ̂i)∈G(S−i,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ ǫ+ Õ

(
√

di
N

)

, (5)

where di = Pdim (Fi,M). Moreover, with probability 1, |G (S−i,M, ǫ)| ≤ (8eN/ (ǫdi))
2di.

Proof. Let θ∗i and θ̂∗i be the types in Θi that maximize

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)

.

By definition of the set G (S−i,M, ǫ), we know there exists a pair
(

θ′i, θ̂
′
i

)

∈ G (S−i,M, ǫ) such that

max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







=
1

N

N
∑

j=1

ui,M

(

θ∗i , θ̂
∗
i ,θ

(j)
−i

)

− ui,M

(

θ∗i , θ
∗
i ,θ

(j)
−i

)

≤ 1

N

N
∑

j=1

ui,M

(

θ′i, θ̂
′
i,θ

(j)
−i

)

− ui,M

(

θ′i, θ
′
i,θ

(j)
−i

)

+ ǫ

≤ max
θi,θ̂i∈G(S−i,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ ǫ.
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Therefore, by this inequality and Theorem 3.2, we know that with probability at least 1− δ,

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]

− max
(θi,θ̂i)∈G(S−i,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







=Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]

− max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







+ max
θi,θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







− max
(θi,θ̂i)∈G(S−i,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θi,θ
(j)
−i

)







≤ ǫ+ Õ

(
√

di
N

)

.

The bound on |G (S−i,M, ǫ)| follows from Lemma C.1.

Lemma C.1. For any G returned by Algorithm 1, |G| ≤ (8eN/ (ǫdi))
2di, where di = Pdim (Fi,M).

Proof. Let N1(ǫ, U) be the ǫ-covering number of U and let P1(ǫ, U) be the ǫ-packing number of
U . In other words, N1(ǫ, U) is the size of the smallest set V ′ ⊆ R

N such that for all v ∈ U , there
is a vector v′ ∈ V ′ such that ‖v − v′‖1 ≤ ǫ, and P1(ǫ, U) is the size of the largest set P ⊆ U
such that for all v,v′ ∈ P , if v 6= v′, then ‖v − v′‖1 ≥ ǫ. As Anthony and Bartlett [2009] prove,
P(ǫ, U) ≤ N (ǫ/2, U).

By construction, for every pair of vectors v and v′ in the set V defined in Algorithm 1, we know
that ‖v − v′‖1 ≥ ǫ. Therefore, |V | ≤ P(ǫ, U) ≤ N (ǫ/2, U). In the following claim, we prove that

N (ǫ/2, U) ≤ (8eN/ (ǫdi))
2di , which proves the theorem.

Claim C.2. N (ǫ/2, U) ≤ (8eN/ (ǫdi))
2di.

Proof. Let U ′ be the set of vectors

U ′ =



















1

N











ui,M

(

θi, θ̂i,θ
(1)
−i

)

...

ui,M

(

θi, θ̂i,θ
(N)
−i

)











: θi, θ̂i ∈ Θi



















.

Note that U ⊆ {v − v′ : v,v′ ∈ U ′}. We claim that N (ǫ/2, U) ≤ N (ǫ/4, U ′)2 ≤ (8eN/ (ǫdi))
2di ,

where the second inequality follows from a theorem by Anthony and Bartlett [2009]. To see why the
first inequality holds, suppose C ′ is an ǫ

4 -cover of U
′ with minimal size. Let C = {c− c′ : c, c′ ∈ C ′}.

Then for all v ∈ U , we know that v = v′−v′′ for some v′,v′′ ∈ U ′. Moreover, we know that there are
vectors c′, c′′ ∈ C ′ such that ‖v′ − c′‖1 ≤ ǫ/4 and ‖v′′ − c′′‖1 ≤ ǫ/4. Therefore, ‖v − (c′ − c′′)‖1 =
‖(v′ − v′′)− (c′ − c′′)‖1 ≤ ǫ/2. Since c′ − c′′ ∈ C, we have that C is a cover of U . Therefore,

N (ǫ/2, U) ≤ |C| ≤ |C ′|2 = N (ǫ/4, U ′)2 ≤ (8eN/ (ǫdi))
2di .
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Lemma C.3. Let M be a class of mechanisms. For each i ∈ [n], let S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

be a

set of type profiles for all agents except agent i and let Li, ki, wi ∈ R be real values such that for
each mechanism M ∈M, the following conditions hold:

1. For any θi ∈ [0, 1]m, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

2. For any θ̂i ∈ [0, 1]m, the functions ui,M

(

·, θ̂i,θ(1)
−i

)

, . . . , ui,M

(

·, θ̂i,θ(N)
−i

)

are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

Then for all M ∈M and i ∈ [n],

max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ 4Liwi +
8ki
N

. (13)

Proof. By definition of dispersion, we know that the following conditions hold:

Condition 1. For all mechanisms M ∈ M, all agents i ∈ [n], all types θi ∈ [0, 1]m, and all

reported types θ̂i, θ̂
′
i ∈ [0, 1]m, if

∥

∥

∥
θ̂i − θ̂′

i

∥

∥

∥

2
≤ wi, then

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θ̂
′
i,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

. (14)

Condition 2. For all mechanisms M ∈M, all agents i ∈ [n], all reported types θ̂i ∈ [0, 1]m, and
all types θi,θ

′
i ∈ [0, 1]m, if ‖θi − θ′

i‖2 ≤ wi, then

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θ′
i, θ̂i,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

. (15)

We claim that the inequality from the lemma statement (Equation (13)) holds so long as Con-
ditions 1 and 2 hold.

Claim C.4. If Conditions 1 and 2 hold, then for all M ∈M and i ∈ [n],

max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ 4Liwi +
8ki
N

.
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Proof of Claim C.4. Fix an agent i ∈ [n] and let θi and θ̂i be two fixed, arbitrary vectors in [0, 1]m.
By definition of Gw, there must be a point p ∈ Gw such that ‖θi − p‖1 ≤ wi. By Equation (14),

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi,θi,θ
(j)
−i

)

− ui,M

(

θi,p,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

and by Equation (15),
∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi,p,θ
(j)
−i

)

− ui,M

(

p,p,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

.

Similarly, there must be a point p̂ ∈ Gw such that
∥

∥

∥
p̂− θ̂i

∥

∥

∥

1
≤ wi. By Equation (14),

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, p̂,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

and by Equation (15),
∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi, p̂,θ
(j)
−i

)

− ui,M

(

p, p̂,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

.

Therefore,
∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi,θi,θ
(j)
−i

)

− ui,M

(

θi, θ̂i,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi,θi,θ
(j)
−i

)

− ui,M

(

θi,p,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi,p,θ
(j)
−i

)

− ui,M

(

p,p,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

p,p,θ
(j)
−i

)

− ui,M

(

p, p̂,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

p, p̂,θ
(j)
−i

)

− ui,M

(

θi, p̂,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi, p̂,θ
(j)
−i

)

− ui,M

(

θi, θ̂i,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

p,p,θ
(j)
−i

)

− ui,M

(

p, p̂,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

+ 4Liwi +
8ki
N

.

Since p, p̂ ∈ Gwi
, the claim holds.
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The lemma thus follows from Claim C.4.

Theorem C.5. Let M be a mechanism class. Given n sets of samples S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼
DN

−i, for each i ∈ [n] let Li, ki, wi ∈ R be defined such that for each M ∈M, the following conditions
hold:

1. For any θi ∈ [0, 1]m, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

2. For any θ̂i ∈ [0, 1]m, the functions ui,M

(

·, θ̂i,θ(1)
−i

)

, . . . , ui,M

(

·, θ̂i,θ(N)
−i

)

are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

Then with probability 1− δ, for every M ∈M, every agent i ∈ [n], and every pair θi, θ̂i ∈ Θi,

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]

≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ 4Liwi +
8ki
N

+ ǫM(N, δ)

where ǫM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

Proof. From Theorem 3.2, we know that with probability 1− δ, for every mechanism M ∈M and
every agent i ∈ [n],

max
θi,θ̂i∈[0,1]m

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

≤ max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ ǫM(N, δ).

Moreover, from Lemma C.3, we know that the following inequality holds:

max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ 4Liwi +
8ki
N

.
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Therefore, with probability 1− δ, for every mechanism M ∈M and every agent i ∈ [n],

max
θi,θ̂i∈[0,1]m

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

= max
θi,θ̂i∈[0,1]m

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

− max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







− max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ 4Liwi +
8ki
N

+ ǫM(N, δ).

Lemma 3.4. Suppose that for each agent i ∈ [n], there exist Li, ki, wi ∈ R such that with probability

1− δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, for each mechanism M ∈ M and

agent i ∈ [n], the following conditions hold:

1. For any type θi ∈ [0, 1]m, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise

Li-Lipschitz and (wi, ki)-dispersed.

2. For any reported type θ̂i ∈ [0, 1]m, the functions ui,M

(

·, θ̂i,θ(1)
−i

)

, . . . , ui,M

(

·, θ̂i,θ(N)
−i

)

are

piecewise Li-Lipschitz and (wi, ki)-dispersed.

Then with probability 1− δ over the draw of the n sets S−i ∼ DN
−i, for all mechanisms M ∈M and

agents i ∈ [n],

max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ 4Liwi +
8ki
N

. (8)

Proof. By definition of dispersion, we know that with probability 1− δ over the draw of the n sets

S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, the following conditions hold:
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Condition 1. For all mechanisms M ∈ M, all agents i ∈ [n], all types θi ∈ [0, 1]m, and all

reported types θ̂i, θ̂
′
i ∈ [0, 1]m, if

∥

∥

∥θ̂i − θ̂′
i

∥

∥

∥

1
≤ wi, then

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi, θ̂
′
i,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

. (16)

Condition 2. For all mechanisms M ∈M, all agents i ∈ [n], all reported types θ̂i ∈ [0, 1]m, and
all types θi,θ

′
i ∈ [0, 1]m, if ‖θi − θ′

i‖1 ≤ wi, then
∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θ′
i, θ̂i,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

. (17)

From Claim C.4, we know that Equation (8) holds so long as Conditions 1 and 2 hold. Since
Conditions 1 and 2 hold with probability 1− δ, the lemma statement holds.

Theorem 3.5. Suppose that for each agent i ∈ [n], there exist Li, ki, wi ∈ R such that with

probability 1 − δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, for each mechanism

M ∈M and agent i ∈ [n], the following conditions hold:

1. For any θi ∈ [0, 1]m, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

2. For any θ̂i ∈ [0, 1]m, the functions ui,M

(

·, θ̂i,θ(1)
−i

)

, . . . , ui,M

(

·, θ̂i,θ(N)
−i

)

are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

Then with probability 1− 2δ, for every mechanism M ∈M and every agent i ∈ [n],

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ ǫ,

where ǫ = 4Liwi +
8ki
N + 2

√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

Proof. Theorem 3.2 guarantees that with probability at most δ, the extent to which any agent i can
improve his utility by misreporting his type, averaged over all profiles in S−i, does not approximate
the true incentive compatibility approximation factor, as summarized below:

Bad event 1. For some mechanism M ∈M and agent i ∈ [n],

max
θi,θ̂i∈Θi

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

> max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ ǫM(N, δ),

where ǫM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

By Lemma 3.4, we also know that with probability at most δ, we cannot approximate Equa-
tion (10) by discretizing the agent’s type space, as summarized by the following bad event:
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Bad event 2. For some mechanism M ∈M and agent i ∈ [n],

max
θi,θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







> max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ 4Liwi +
8ki
N

.

By a union bound, the probability that either Bad Event 1 or Bad Event 2 occurs is at most 2δ.
Therefore, the probability that neither occurs is at least 1 − 2δ. If neither occurs, then for every
mechanism M ∈M and every agent i ∈ [n],

max
θi,θ̂i∈[0,1]m

{

Eθ−i∼D−i

[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

≤ max
θi,θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θi, θ̂i,θ
(j)
−i

)

− ui,M

(

θi,θi,θ
(j)
−i

)







+ ǫ,

where ǫ = 4Liwi +
4ki
N + 2

√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

D Proofs about dispersion and pseudo-dimension (Section 3.2)

Theorem 3.7. Suppose each agent’s type has a κ-bounded density function. With probability 1− δ

over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, we have that for all agents i ∈ [n] and

types θi ∈ [0, 1], the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise 1-Lipschitz and
(

O
(

1/
(

κ
√
N
))

, Õ
(

n
√
N
))

-dispersed.

Proof. Consider an arbitrary bidder, and without loss of generality, suppose that bidder is bidder 1.

Next, choose an arbitrary sample θ
(j)
−1 =

(

θ
(j)
2 , . . . , θ

(j)
n

)

. For any value θ1 ∈ [0, 1] and bid θ̂1 ∈ [0, 1],

we know that u1,M

(

θ1, θ̂1,θ
(j)
−1

)

= 1{
θ̂1>

∥

∥

∥
θ
(j)
−1

∥

∥

∥

∞

}

(

θ1 − θ̂1

)

, as illustrated in Figure 2. Therefore,

if θ̂1 ≤
∥

∥

∥θ
(j)
−1

∥

∥

∥

∞
, then u1,M

(

θ1, θ̂1,θ
(j)
−1

)

is a constant function of θ̂1, whereas if θ̂1 >
∥

∥

∥θ
(j)
−1

∥

∥

∥

∞
, then

u1,M

(

θ1, θ̂1,θ
(j)
−1

)

is a linear function of θ̂1 with a slope of −1. Therefore, for all θi ∈ [0, 1], the

function u1,M

(

θ1, ·,θ(j)
−1

)

is piecewise 1-Lipschitz with a discontinuity at
∥

∥

∥θ
(j)
−1

∥

∥

∥

∞
.

We now prove that with probability 1− δ
n , for all θ1 ∈ [0, 1], the functions

u1,M

(

θ1, ·,θ(1)
−1

)

, . . . , u1,M

(

θ1, ·,θ(N)
−1

)

are (w, k)-dispersed. Since for any θ1 ∈ [0, 1] the function u1,M

(

θ1, θ̂1,θ
(j)
−1

)

will only have a

discontinuity at a point in the set
{

θ
(j)
2 , . . . , θ

(j)
n

}

, it is enough to prove that with probability 1− δ
n ,

at most k points in the set B =
⋃N

j=1

{

θ
(j)
2 , . . . , θ

(j)
n

}

fall within any interval of width w. The

theorem statement then holds by a union bound over all n bidders.
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Claim D.1. With probability 1 − δ
n , at most k points in the set

⋃N
j=1

{

θ
(j)
2 , . . . , θ

(j)
n

}

fall within

any interval of width w.

Proof of Claim D.1. For i ∈ {2, . . . , n}, let Bi =
{

θ
(j)
i

}

j∈[N ]
. The claim follows from Lemma A.3

in Appendix A.1.

Theorem 3.9. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is 2.

Proof. First, we prove that Pdim (Fi,M ) ≤ 2.

Claim D.2. The pseudo-dimension of Fi,M is at most 2.

Proof of Claim D.2. For a contradiction, suppose there exists a set S−i =
{

θ
(1)
−i ,θ

(2)
−i ,θ

(3)
−i

}

that is

shattered by Fi,M . Without loss of generality, assume that
∥

∥

∥θ
(1)
−i

∥

∥

∥

∞
<
∥

∥

∥θ
(2)
−i

∥

∥

∥

∞
<
∥

∥

∥θ
(3)
−i

∥

∥

∥

∞
. Since

S−i is shatterable, there exists three values z(1), z(2), z(3) ∈ R that witness the shattering of S−i by
Fi,M . We split the proof into two cases: one where z(3) > 0 and one where z(3) ≤ 0.

Case 1: z(3) > 0. Since S−i is shatterable, there is a value θi ∈ [0, 1] and bid θ̂i ∈ [0, 1] such

that ui,M

(

θi, θ̂i,θ
(1)
−i

)

≥ z(1), ui,M

(

θi, θ̂i,θ
(2)
−i

)

< z(2), and ui,M

(

θi, θ̂i,θ
(3)
−i

)

≥ z(3). Recall that for

any θ−i ∈ [0, 1]n−1, ui,M

(

θi, θ̂i,θ−i

)

= 1{θ̂i>‖θ−i‖∞}
(

θi − θ̂i

)

. Since ui,M

(

θi, θ̂i,θ
(3)
−i

)

≥ z(3) > 0,

it must be that θ̂i >
∥

∥

∥
θ
(3)
−i

∥

∥

∥

∞
>
∥

∥

∥
θ
(2)
−i

∥

∥

∥

∞
>
∥

∥

∥
θ
(1)
−i

∥

∥

∥

∞
. Therefore, θi − θ̂i ≥ z(1) and θi − θ̂i < z(2),

which means that z(1) < z(2).
Next, there must also be a value θ′i ∈ [0, 1] and bid θ̂′i ∈ [0, 1] such that ui,M

(

θ′i, θ̂
′
i,θ

(1)
−i

)

< z(1),

ui,M

(

θ′i, θ̂
′
i,θ

(2)
−i

)

≥ z(2), and ui,M

(

θ′i, θ̂
′
i,θ

(3)
−i

)

≥ z(3). Again, since ui,M

(

θ′i, θ̂
′
i,θ

(3)
−i

)

≥ z(3) > 0,

it must be that θ̂′i >
∥

∥

∥θ
(3)
−i

∥

∥

∥

∞
>
∥

∥

∥θ
(2)
−i

∥

∥

∥

∞
>
∥

∥

∥θ
(1)
−i

∥

∥

∥

∞
. Therefore, θ′i − θ̂′i < z(1) and θ′i − θ̂′i ≥ z(2),

which means that z(2) > z(1), which is a contradiction.

Case 2: z(3) ≤ 0. Since S−i is shatterable, there is a value θi ∈ [0, 1] and bid θ̂i ∈ [0, 1]

such that ui,M

(

θi, θ̂i,θ
(1)
−i

)

≥ z(1), ui,M

(

θi, θ̂i,θ
(2)
−i

)

< z(2), and ui,M

(

θi, θ̂i,θ
(3)
−i

)

< z(3). Since

ui,M

(

θi, θ̂i,θ
(3)
−i

)

< z(3) ≤ 0, it must be that θ̂i >
∥

∥

∥θ
(3)
−i

∥

∥

∥

∞
>
∥

∥

∥θ
(2)
−i

∥

∥

∥

∞
>
∥

∥

∥θ
(1)
−i

∥

∥

∥

∞
. Therefore,

θi − θ̂i ≥ z(1) and θi − θ̂i < z(2), which means that z(1) < z(2).

Next, there must also be a value θ′i ∈ [0, 1] and bid θ̂′i ∈ [0, 1] such that ui,M

(

θ′i, θ̂
′
i,θ

(1)
−i

)

< z(1),

ui,M

(

θ′i, θ̂
′
i,θ

(2)
−i

)

≥ z(2), and ui,M

(

θ′i, θ̂
′
i,θ

(3)
−i

)

< z(3). Again, since ui,M

(

θ′i, θ̂
′
i,θ

(3)
−i

)

< z(3) ≤ 0,

it must be that θ̂′i >
∥

∥

∥θ
(3)
−i

∥

∥

∥

∞
>
∥

∥

∥θ
(2)
−i

∥

∥

∥

∞
>
∥

∥

∥θ
(1)
−i

∥

∥

∥

∞
. Therefore, θ′i − θ̂′i < z(1) and θ′i − θ̂′i ≥ z(2),

which means that z(2) > z(1), which is a contradiction.
Since we arrive at a contradiction in both cases, we conclude that Pdim (Fi,M ) ≤ 2.

We now prove that Pdim (Fi,M ) ≥ 2.

Claim D.3. The pseudo-dimension of Fi,M is at least 2.
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θi θ̂i ui,M

(

θi, θ̂i,θ
(1)
−i

)

ui,M

(

θi, θ̂i,θ
(2)
−i

)

1 1 0 0

7/8 1/8 1/8

3/4 1/4 1/4

1/2 1/2 0

Table 1: Shattering of the example from Claim D.3.

Proof of Claim D.3. To prove this claim, we exhibit a set of size 2 that is shattered by Fi,M . Let

θ
(1)
−i and θ

(2)
−i be two sets of values such that

∥

∥

∥θ
(1)
−i

∥

∥

∥

∞
= 1/3 and

∥

∥

∥θ
(2)
−i

∥

∥

∥

∞
= 2/3. Table 1 illustrates

that z(1) = 3/16 and z(2) = 1/16 witness the shattering of
{

θ
(1)
−i ,θ

(2)
−i

}

by Fi,M .

Together, Claims D.2 and D.3 prove that Pdim (Fi,M ) = 2.

Theorem 3.10. Suppose that for each pair of agents i, i′ ∈ [n] and each pair of bundles b, b′ ⊆ [ℓ],
the values θi(b) and θi′(b

′) have a κ-bounded joint density function. With probability 1 − δ over

the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, we have that for all agents i ∈ [n] and

types θi ∈ [0, 1]2
ℓ
, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise 1-Lipschitz

and
(

O
(

1/
(

κ
√
N
))

, Õ
(

(n+ 1)2ℓ
√
Nℓ
))

-dispersed.

Proof. Fix an arbitrary agent, and without loss of generality, suppose that agent is agent 1. Next,

fix an arbitrary sample θ
(j)
−1 and pair of allocations (b1, . . . , bn) and (b′1, . . . , b

′
n). We know that

(b′1, . . . , b
′
n) will not be the allocation of the first-price combinatorial auction so long as agent 1’s

reported type θ̂1 ∈ [0, 1]2
ℓ
is chosen such that

θ̂1(b1) +

n
∑

i=2

θ
(j)
i (bi) > θ̂1(b

′
1) +

n
∑

i=2

θ
(j)
i (b′i).

This means that across all θ1 ∈ [0, 1]2
ℓ
, there is fixed a set Ψj of

(

(n+1)ℓ

2

)

hyperplanes (one per

pair of allocations) such that for any connected component C of [0, 1]2
ℓ \Ψj , the allocation of the

first-price combinatorial auction is invariant across all θ̂1 ∈ C. Namely,

Ψj =

{

θ̂1(b1)− θ̂1(b
′
1) =

n
∑

i=2

θ
(j)
i (b′i)− θ

(j)
i (bi) : (b1, . . . , bn) and

(

b′1, . . . , b
′
n

)

are allocations

}

.

So long as the allocation is fixed, agent 1’s utility is 1-Lipschitz in θ̂1.
For each pair of allocations b = (b1, . . . , bn) and b′ = (b′1, . . . , b

′
n), let

Bb,b′ =
{

θ̂1(b1)− θ̂1(b
′
1) =

n
∑

i=2

θ
(j)
i (b′i)− θ

(j)
i (bi) : j ∈ [N ]

}

.

Within each set, the hyperplanes are parallel with probability 1. By Lemmas A.5 and A.6 in
Appendix A.1, their offsets are independently drawn from distributions with κ-bounded density
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functions. Therefore, by Lemma A.7 in Appendix A.1, with probability 1− δ
n , for all θ1 ∈ [0, 1]2

ℓ
,

the functions u1,M

(

θ1, ·,θ(1)
−1

)

, . . . , u1,M

(

θ1, ·,θ(N)
−1

)

are (w, k)-dispersed with w = O
(

1
κ
√
N

)

and

k = O

(

(n+ 1)2ℓ
√

N log n(n+1)2ℓ

δ

)

. The theorem statement holds by a union bound over all n

agents.

Theorem 3.13. Suppose each agent’s type has a κ-bounded density function. With probability

1− δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, we have that for all agents i ∈ [n],

types θi ∈ [0, 1], and mechanisms M ∈ Mr, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise 0-Lipschitz and
(

O
(

1/
(

rκ
√
N
))

, Õ
(√

n3N
))

-dispersed.

Proof. Let w = O
(

1
rκ

√
N

)

and k = O
(

n3/2
√

N log nr
δ

)

. Consider an arbitrary agent, and with-

out loss of generality, suppose that agent is agent 1. Next, choose an arbitrary sample θ
(j)
−1 =

(

θ
(j)
2 , . . . , θ

(j)
n

)

and mechanism M ∈ Mr with agent weights ω = (ω1, . . . , ωn) ∈
{

1
r ,

2
r , . . . , 1

}n
.

Let ωi1θ
(j)
i1
≤ · · · ≤ ωin−1θ

(j)
in−1

be the weighted types of all agents except agent 1. Consider the n

intervals delineated by these n− 1 weighted values: I1 =
[

0, ωi1θ
(j)
i1

)

, . . . , In =
[

ωin−1θ
(j)
in−1

, 1
]

with

Iτ =
[

ωiτ−1θ
(j)
iτ−1

, ωiτ θ
(j)
iτ

)

.

Suppose we vary θ̂1 in such a way that ω1θ̂1 remains within a single interval Iτ . Said another way,
consider varying θ̂1 over the interval





ωiτ−1θ
(j)
iτ−1

ω1
,
ωiτ θ

(j)
iτ

ω1



 .

The allocation will be constant, which means agent 1’s utility will be a constant function of θ̂1.

Therefore, no matter the value of θ1, u1,M

(

θ1, ·,θ(1)
−1

)

, . . . , u1,M

(

θ1, ·,θ(N)
−1

)

are piecewise constant

with discontinuities in the set

B1,ω =

{

ωi′θ
(j)
i′

ω1
: i′ ∈ {2, . . . , n}, j ∈ [N ]

}

.

This means that in order to prove the theorem, it is enough to show that with probability 1 − δ,
for all ω ∈

{

1
r ,

2
r , . . . , 1

}n
and all agents i ∈ [n], at most k of the values in each set

Bi,ω =

{

ωi′θ
(j)
i′

ωi
: i′ ∈ [n] \ {i}, j ∈ [N ]

}

fall within any interval of length w. This follows from the following claim and a union bound.

Claim D.4. For a fixed ω = (ω1, . . . , ωn) ∈
{

1
r ,

2
r , . . . , 1

}n
and agent i ∈ [n], with probability

1− δ
nrn , at most k points from Bi,ω fall within any interval of width w.
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Proof of Claim D.4. For each i′ ∈ [n] \ {i}, let

Bi,i′,ω =

{

ωi′θ
(j)
i′

ωi
: j ∈ [N ]

}

.

Since
ωi′

ωi
≥ 1

r , Lemma A.4 in Appendix A.1 implies that the points in Bi,i′,ω are independent draws
from a rκ-bounded distribution. The claim then follows from Lemma A.3 in Appendix A.1.

Theorem 3.15. For any agent i ∈ [n] and r ∈ Z≥1, Pdim (Fi,Mr) = O (n log n) .

Proof. Fix an arbitrary agent, and without loss of generality, suppose that agent is agent 1. Fix a
vector θ−1 = (θ2, . . . , θn) ∈ [0, 1]n−1. We denote the utility of agent 1 when the agents’ types are

(θ1,θ−1) and reported types are
(

θ̂1,θ−1

)

as uθ−1

(

θ1, θ̂1, ω1, . . . , ωn

)

, which maps Rn+2 to [−1, 1].
We now show that we can split R

n+2 into regions R where the allocation of the generalized

second-price auction is fixed across all
(

θ1, θ̂1, ω1, . . . , ωn

)

∈ R, given the fixed set of reported

types θ−1 = (θ2, . . . , θn). Let π̄ be a permutation of the n agents, and let Rπ̄ ⊆ [0, 1]n+2 be the

set of all vectors
(

θ1, θ̂1, ω1, . . . , ωn

)

where the ordering of the elements
{

ω1θ̂1, ω2θ2, . . . , ωnθn

}

matches π̄. Specifically, for all
(

θ1, θ̂1, ω1, . . . , ωn

)

∈ Rπ̄, if i
′ = argmax

{

ω1θ̂1, ω2θ2, . . . , ωnθn

}

,

then π̄(1) = i′ and if i′′ = argmin
{

ω1θ̂1, ω2θ2, . . . , ωnθn

}

, then π̄(n) = i′′. By definition of the

generalized second-price auction, this means that the agent who receives the first slot is agent

π̄(1) and the agent who receives the mth is agent π̄(m). Therefore, for all
(

θ1, θ̂1, ω1, . . . , ωn

)

∈
Rπ̄, the allocation of the generalized second-price auction given agent weights (ω1, . . . , ωn) and

reported types
(

θ̂1,θ−1

)

is invariant. Next, consider the transformation φ :
(

θ1, θ̂1, ω1, . . . , ωn

)

7→
(

θ1,
ω2
ω1
, . . . , ωn

ω1

)

. Since the vector θ−1 is fixed, the function uθ−1

(

θ1, θ̂1, ω1, . . . , ωn

)

is a fixed linear

function of φ
(

θ1, θ̂1, ω1, . . . , ωn

)

across all
(

θ1, θ̂1, ω1, . . . , ωn

)

∈ Rπ̄.

Next, let S−1 =
{

θ
(1)
−1, . . . ,θ

(N)
−1

}

be a set of vectors that is shatterable by the set of functions

F1,Mr , where θ
(j)
−1 =

(

θ
(j)
2 , . . . , θ

(j)
n

)

. This means there is a set of values z(1), . . . , z(N) ∈ R that

witnesses the shattering of S−1 by F1,Mr . Therefore, for every T ⊆ [N ], there exists a pair of values

θT , θ̂T and a mechanism MT ∈ Mr such that u1,MT ,θT ,θ̂T

(

θ
(j)
−1

)

≤ z(j) if and only if j ∈ T . Let

(ω1,T , . . . , ωn,T ) be the set of agent weights corresponding to each such mechanism MT . We define

the set R to be the set of 2N vectors R =
{(

θT , θ̂T , ω1,T , . . . , ωn,T

)

: T ⊆ [N ]
}

⊂ R
n+2.

For each j ∈ [N ], let H(j) be the set of
(

n
2

)

+ n− 1 hypersurfaces

H(j) =
{

ω1θ̂1 − ωiθ
(j)
i = 0 : i ∈ {2, . . . , n}

}

∪
{

ωiθi − ωi′θ
(j)
i′ = 0 : i, i′ ∈ {2, . . . , n}

}

.

As we saw, as we range
(

θ1, θ̂1, ω1, . . . , ωn

)

over a single connected component of R
n+2 \ H(j),

the allocation of the generalized second-price auction with agent weights (ω1, . . . , ωn) and reported

types
(

θ̂1,θ
(j)
−1

)

is invariant. If we define H =
⋃N

j=1H(j), then as we range
(

θ1, θ̂1, ω1, . . . , ωn

)
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over a single connected component of Rn+2 \ H, the allocations are fixed across all j ∈ [N ]. By
Lemma A.1 in Appendix A, the number of connected components is at most

2

(

4eN
((

n
2

)

+ n− 1
)

n+ 2

)n+2

= 2 (2eN(n− 1))n+2 .

Next, fix a connected component C of Rn+2 \ H. We know that for each j ∈ [N ], there is a

constant αj ∈ [0, 1] and a bidder ij 6= 1 such that u
θ
(j)
−1

(

θ1, θ̂1, ω1, . . . , ωn

)

= αj

(

θ1 −
ωij

θij
ω1

)

(where αj = 0 if agent i does not receive any slot). Consider the N hypersurfaces HC =
{

αj

(

θ1 −
ωij

t
(j)
ij

ω1

)

= z(j) : j ∈ [N ]

}

. We know that at most one vector in R can come from each

connected component of C \ HC , of which there are at most 2
(

4eN
n

)n
. In total, this means that

2N = |R| ≤ 4 (2eN(n− 1))n+2 (4eN
n

)n
, so by Lemma A.2 in Appendix A, N = O(n log n).

Theorem 3.16. Suppose that each agent’s value for each marginal unit has a κ-bounded density

function. With probability 1 − δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, for

all agents i ∈ [n] and types θi ∈ [0, 1]m, the functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are

piecewise 1-Lipschitz and
(

O
(

1/
(

κ
√
N
))

, Õ
(

nm2
√
N
))

-dispersed.

Proof. Fix an arbitrary agent, and without loss of generality, suppose that agent is agent 1. Let

θ′1 ≤ θ′2 ≤ · · · ≤ θ′Nm(n−1) be the sorted values of
{

θ
(j)
i [µ] : i ∈ {2, . . . , n}, j ∈ [N ], µ ∈ [m]

}

, and

define θ′0 = 0 and θ′Nm(n−1)+1 = 1. So long as agent 1’s bids fall between these sorted bids,

the allocation will be fixed across all samples. More formally, for each µ ∈ [m], so long as θ′i <
θ̂1[µ] < θ′i+1 for some i ∈ {0, . . . , Nm(n − 1)}, the resulting allocation will be fixed across all N

samples. Now, for a given sample θ
(j)
−1, consider a region R ⊆ [0, 1]m where the allocation of the

discriminatory auction given bids
(

θ̂1,θ
(j)
−1

)

is invariant across all θ̂1 ∈ R. In particular, let mR be

the number of units allocated to agent 1. For a fixed θ1 ∈ [0, 1]m, agent 1’s utility will be linear

in θ̂1, because across all θ̂1 ∈ R, ui,M

(

θ1, θ̂1,θ
(j)
−1

)

=
∑mR

µ=1 θ1[µ]− θ̂1[µ]. Therefore, the functions

u1,M

(

θ1, ·,θ(1)
−1

)

, . . . , u1,M

(

θ1, ·,θ(N)
−1

)

are piecewise 1-Lipschitz.

Note that across all θ1 ∈ [0, 1]m, the partition Pj splitting u1,M

(

θ1, ·,θ(j)
−1

)

into Lipschitz

portions is invariant. In particular, no matter the value of θ1, the partition Pj is delineated by

the set of m2(n− 1) hyperplanes Hj =
{

θ
(j)
i [µ]− θ̂1[µ

′] = 0 : i ∈ {2, . . . , n}, µ, µ′ ∈ [m]
}

. For each

i ∈ {2, . . . , n} and pair µ, µ′ ∈ [m], let Bi,µ,µ′ be the set of hyperplanes

Bi,µ,µ′ =
{

θ
(j)
i [µ]− θ̂1[µ

′] = 0 : j ∈ [N ]
}

.

Within each set, the hyperplanes are parallel with probability 1 and their offsets are indepen-
dently drawn from κ-bounded distributions. Therefore, by Lemma A.7 in Appendix A.1, with

probability 1 − δ
n , for all θ1 ∈ [0, 1]m, the functions u1,M

(

θ1, ·,θ(1)
−1

)

, . . . , u1,M

(

θ1, ·,θ(N)
−1

)

are
(

O
(

1
κ
√
N

)

, Õ
(

nm2
√
N
))

-dispersed. The theorem holds by a union bound over the agents.
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Lemma 3.19. For any agent i ∈ [n], any S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

, and any type θi ∈ [0, 1], the

functions ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise 1-Lipschitz and their discontinuities

fall in the set
{∥

∥

∥
θ
(j)
−i

∥

∥

∥

∞

}

j∈[N ]
.

Proof. Consider an arbitrary bidder, and without loss of generality, suppose that bidder is bidder

1. Next, choose an arbitrary sample θ
(j)
−1 =

(

θ
(j)
2 , . . . , θ

(j)
n

)

. Letting j∗ = argmax
{

θ
(j)
2 , . . . , θ

(j)
n

}

and letting s(j) be the second-largest component of θ
(j)
−1, we know that either agent 1 will win and

pay
∥

∥

∥
θ
(j)
−1

∥

∥

∥

∞
or agent j∗ will win and pay the maximum of θ̂1 and s(j). Therefore, for any value

θ1 ∈ [0, 1] and bid θ̂1 ∈ [0, 1], we know that

u1,M

(

θ1, θ̂1,θ
(j)
−1

)

=



















(α1 − 1)
(∥

∥

∥
θ
(j)
−1

∥

∥

∥

∞
− s(j)

)

if θ̂1 ≤ s(j)

(α1 − 1)
(∥

∥

∥
θ
(j)
−1

∥

∥

∥

∞
− θ̂1

)

if s(j) < θ̂1 ≤
∥

∥

∥
θ
(j)
−1

∥

∥

∥

∞
α1

(

θ1 −
∥

∥

∥θ
(j)
−1

∥

∥

∥

∞

)

if θ̂1 >
∥

∥

∥θ
(j)
−1

∥

∥

∥

∞
.

(18)

This means that if θ̂1 >
∥

∥

∥θ
(j)
−1

∥

∥

∥

∞
, then u1,M

(

θ1, θ̂1,θ
(j)
−1

)

is a constant function of θ̂1, whereas if

θ̂1 ≤
∥

∥

∥θ
(j)
−1

∥

∥

∥

∞
, then u1,M

(

θ1, θ̂1,θ
(j)
−1

)

is a continuous function of θ̂1 with a slope of either 0 (if

θ̂1 < s(j)) or α1 − 1 (if θ̂1 ≥ s(j)). (See Figure 3 in Appendix D.) Since |α1 − 1| ≤ 1, this means

that for all θi ∈ [0, 1], the function u1,M

(

θ1, ·,θ(j)
−1

)

is piecewise 1-Lipschitz with a discontinuity at
∥

∥

∥θ
(j)
−1

∥

∥

∥

∞
.

D.1 Uniform-price auctions

Under the uniform-price auction, the allocation rule is the same as in the discriminatory auction
(Section 3.2.4). However, all m units are sold at a “market-clearing” price, meaning that the total
amount demanded is equal to the total amount supplied. We adopt the convention [Krishna, 2002]
that the market-clearing price equals the highest losing bid. Let c−i ∈ R

m be the vector θ̂−i of
competing bids facing agent i, sorted in decreasing order and limited to the top m bids. This

means that c−i[1] =
∥

∥

∥θ̂−i

∥

∥

∥

∞
is the highest of the other bids, c−i[2] is the second-highest, and so

on. Agent i will win exactly one unit if and only if θ̂i[1] > c−i[m] and θ̂i[2] < c−i[m − 1]; that
is, his bid must be higher than the lowest competing bid but not the second-lowest. Similarly,
agent i will win exactly two units if and only if θ̂i[2] > c−i[m − 1] and θ̂i[3] < c−i[m − 2]. More
generally, agent i will win exactly mi > 0 units if and only if θ̂i [mi] > c−i [m−mi + 1] and
θ̂i [mi + 1] < c−i [m−mi]. The market-clearing price, which equals the highest losing bid, is

p = max
{

θ̂i [mi + 1] , c−i [m−mi + 1]
}

. In a uniform-price auction, agent i pays mip.

Theorem D.5. Suppose that each agent’s value for each marginal unit has a κ-bounded density

function. With probability 1− δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . ,θ

(N)
−i

}

∼ DN
−i, we have

that for all agents i ∈ [n] and types θi ∈ [0, 1]m, the functions

ui,M

(

θi, ·,θ(1)
−i

)

, . . . , ui,M

(

θi, ·,θ(N)
−i

)

are piecewise 1-Lipschitz and
(

O
(

1
κ
√
N

)

, O
(

nm2
√

N log n
δ

)

)

-dispersed.
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In this section, we show how to estimate an ex-ante incentive compatibility approximation
guarantee using data. Unlike Section 3 we do not assume that the agents’ types are independently
distributed. For each agent i ∈ [n], we receive a set Si of samples independently drawn from D.
For each mechanism M ∈M, we show how to use the samples to estimate a value γ̂M such that:

With probability 1− δ over the draw of the n sets of samples S1, . . . ,Sn, for any agent

i ∈ [n] and all types θ̂i ∈ Θi, Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]

≤ γ̂M .

We begin with a parallel to Theorem 3.2. For any mechanism M , any agent i ∈ [n], and any
type θ̂i ∈ Θi, let ui,M,θ̂i

: ×n
i=1Θj → [−1, 1] be a function that maps the agents’ types θ to the utility

of agent i with type θi and reported type θ̂i when the other agents report their types truthfully.

In other words, ui,M,θ̂i
(θ) = ui,M

(

θi, θ̂i,θ−i

)

. Let F ′
i,M be the set of all such functions defined by

mechanisms M from the classM
(

F ′
i,M =

{

ui,M,θ̂i

∣

∣

∣ θ̂i ∈ Θi,M ∈M
})

.

Theorem F.1. With probability 1− δ over the draw of the n sets Si =
{

θ(1), . . . ,θ(N)
}

∼ DN , for
every mechanism M ∈M and every agent i ∈ [n],

max
θ̂i∈Θi

{

Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]}

≤ max
θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







+ ǫM(N, δ),

where ǫM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim
(

F ′
i,M

)

.

Proof. Fix an arbitrary agent i ∈ [n]. By Theorem 3.1, we know that with probability at least
1− δ/n over the draw of Si, for all mechanisms M ∈M and all θ̂i ∈ θi,

Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)]

− 1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

≤
√

2di
N

ln
eN

di
+

√

1

2N
ln

2n

δ

and

1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)

− Eθ∼D [ui,M (θi, θi,θ−i)] ≤
√

2di
N

ln
eN

di
+

√

1

2N
ln

2n

δ
.

Therefore,

Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)]

− Eθ∼D [ui,M (θi, θi,θ−i)]

= Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)]

− 1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

+
1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)

+
1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)

− Eθ∼D [ui,M (θi, θi,θ−i)]

≤ max
θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







+ ǫM(N, δ).
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Algorithm 2 Greedy cover construction for ex-ante incentive compatibility

Input: Mechanism M ∈M, set of samples Si =
{

θ(1), . . . ,θ(N)
}

, accuracy parameter ǫ > 0.
1: Let U be the set of vectors

U ←



















1

N











ui,M

(

θ
(1)
i , θ̂i,θ

(1)
−i

)

− ui,M

(

θ
(1)
i , θ

(1)
i ,θ

(1)
−i

)

...

ui,M

(

θ
(N)
i , θ̂i,θ

(N)
−i

)

− ui,M

(

θ
(N)
i , θ

(N)
i ,θ

(N)
−i

)











: θ̂i ∈ Θi



















.

2: Let V ← ∅ and G ← ∅.
3: while U \

(
⋃

v∈V B1 (v, ǫ)
)

6= ∅ do
4: Select an arbitrary vector v′ ∈ U \

(
⋃

v∈V B1 (v, ǫ)
)

.

5: Let θ̂i ∈ Θi be the type such that

v′ =
1

N











ui,M

(

θ
(1)
i , θ̂i,θ

(1)
−i

)

− ui,M

(

θ
(1)
i , θ

(1)
i ,θ

(1)
−i

)

...

ui,M

(

θ
(N)
i , θ̂i,θ

(N)
−i

)

− ui,M

(

θ
(N)
i , θ

(N)
i ,θ

(N)
−i

)











.

6: Add v′ to V and θ̂i to G.
Output: The cover G ⊆ Θi.

Since the above inequality holds for all i ∈ [n] with probability 1− δ/n, a union bound implies
that with probability 1− δ, for all i ∈ [n] and all mechanism M ∈M,

max
θ̂i∈Θi

{

Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]}

≤ max
θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







+ ǫM(N, δ),

where ǫM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim
(

F ′
i,M

)

.

F.1 Ex-ante incentive compatibility guarantees via finite covers

The following is a variation on Theorem 3.3.

Theorem F.2. Given a set of samples Si =
{

θ(1), . . . ,θ(N)
}

, a mechanism M ∈M, and accuracy
parameter ǫ > 0, let G (Si,M, ǫ) be the cover returned by Algorithm 2. With probability 1− δ over
the draw of the n sets Si =

{

θ(1), . . . ,θ(N)
}

∼ DN , for every mechanism M ∈ M, every agent

i ∈ [n], and every θ̂i ∈ Θi,

Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]

≤ max
θ̂i∈G(Si,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







+ ǫ+ Õ

(
√

di
N

)

, (19)

where di = Pdim
(

F ′
i,M

)

. Moreover, with probability 1, |G (Si,M, ǫ)| ≤ (8eN/ (ǫdi))
2di.
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Proof. Let θ̂∗i be the type in Θi that maximizes

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)

.

By definition of the set G (Si,M, ǫ), we know there exists θ̂′i ∈ G (Si,M, ǫ) such that

max
θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







=
1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂∗i ,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)

≤ 1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂′i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)

+ ǫ

≤ max
θ̂i∈G(Si,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







+ ǫ.

Therefore, by this inequality and Theorem F.1, we know that with probability at least 1− δ,

Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]

− max
θ̂i∈G(Si,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







=Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi, θi,θ−i)
]

− max
θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







+ max
θ̂i∈Θi







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







− max
θ̂i∈G(Si,M,ǫ)







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ

(j)
i ,θ

(j)
−i

)







≤ +ǫ+ Õ

(
√

di
N

)

.

The bound on |G (Si,M, ǫ)| follows from Lemma C.1.

Next, the following is a variation on Lemma 3.4. For the rest of this section, we assume
Θi = [0, 1]m.
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Lemma F.3. Suppose that for each i ∈ [n], there exist Li, ki, wi ∈ R such that with probability
1− δ over the n sets Si =

{

θ(j)
}

j∈[N ]
, for each M ∈M and i ∈ [n], the functions

ui,M

(

θ
(1)
i , ·,θ(1)

−i

)

, . . . , ui,M

(

θ
(N)
i , ·,θ(N)

−i

)

are piecewise Li-Lipschitz and (wi, ki)-dispersed. Then with probability 1 − δ over the draw of the
n sets Si ∼ DN , for all M ∈M and i ∈ [n],

max
θ̂i∈[0,1]m







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i ,θ

(j)
i ,θ

(j)
−i

)







≤ max
θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i ,θ

(j)
i ,θ

(j)
−i

)







+ Liwi +
2ki
N

. (20)

Proof. By definition of dispersion, we know that with probability 1− δ over the draw of the n sets
Si =

{

θ(1), . . . ,θ(N)
}

∼ DN , for all mechanisms M ∈ M, all agents i ∈ [n], and all reported types

θ̂i, θ̂
′
i ∈ [0, 1]m, if

∥

∥

∥θ̂i − θ̂′
i

∥

∥

∥

1
≤ wi, then

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ̂′

i,θ
(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

. (21)

By definition of Gw, there must be a point p̂ ∈ Gw such that
∥

∥

∥p̂− θ̂i

∥

∥

∥

1
≤ wi. By Equation (21),

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , p̂,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

≤ Liwi +
2ki
N

.

Therefore, with probability 1− δ

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θ
(j)
i ,θ

(j)
i ,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θ
(j)
i ,θ

(j)
i ,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , p̂,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θ
(j)
i , p̂,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ui,M

(

θ
(j)
i ,θ

(j)
i ,θ

(j)
−i

)

− ui,M

(

θ
(j)
i , p̂,θ

(j)
−i

)

∣

∣

∣

∣

∣

∣

+ Liwi +
ki
N

.

Since p̂ ∈ Gwi
, the lemma statement holds.

We conclude with a variation on Theorem 3.5.
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Theorem F.4. Suppose that for each i ∈ [n], there exist Li, ki, wi ∈ R such that with probability
1− δ over the n sets Si =

{

θ(j)
}

j∈[N ]
, for each M ∈M and i ∈ [n], the functions

ui,M

(

θ
(1)
i , ·,θ(1)

−i

)

, . . . , ui,M

(

θ
(N)
i , ·,θ(N)

−i

)

are piecewise Li-Lipschitz and (wi, ki)-dispersed. Then with probability 1−2δ, for every mechanism
M ∈M and every i ∈ [n],

max
θ̂i∈[0,1]m

{

Eθ∼D
[

ui,M

(

θi, θ̂i,θ−i

)

− ui,M (θi,θi,θ−i)
]}

≤ max
θ̂i∈Gwi







1

N

N
∑

j=1

ui,M

(

θ
(j)
i , θ̂i,θ

(j)
−i

)

− ui,M

(

θ
(j)
i ,θ

(j)
i ,θ

(j)
−i

)







+ ǫ,

where ǫ = Liwi +
ki
N + 2

√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim
(

F ′
i,M

)

.

Proof. This theorem follows from Theorem F.1 and Lemma F.3 in the exact same way that Theo-
rem 3.5 follows from Theorem 3.2 and Lemma 3.4.
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