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The stochastic matching problem deals with finding a maximum matching in a graph whose edges are unknown but can

be accessed via queries. This is a special case of stochastic k-set packing, where the problem is to find a maximum packing

of sets, each of which exists with some probability. In this paper, we provide edge and set query algorithms for these two

problems, respectively, that provably achieve some fraction of the omniscient optimal solution.

Our main theoretical result for the stochastic matching (i.e., 2-set packing) problem is the design of an adaptive algorithm

that queries only a constant number of edges per vertex and achieves a (1 − ǫ) fraction of the omniscient optimal solution,

for an arbitrarily small ǫ > 0. Moreover, this adaptive algorithm performs the queries in only a constant number of rounds.

We complement this result with a non-adaptive (i.e., one round of queries) algorithm that achieves a (0.5 − ǫ) fraction of

the omniscient optimum. We also extend both our results to stochastic k-set packing by designing an adaptive algorithm that

achieves a ( 2
k
− ǫ) fraction of the omniscient optimal solution, again with only O(1) queries per element. This guarantee is

close to the best known polynomial-time approximation ratio of 3
k+1

− ǫ for the deterministic k-set packing problem [Fürer

and Yu 2013].

We empirically explore the application of (adaptations of) these algorithms to the kidney exchange problem, where pa-

tients with end-stage renal failure swap willing but incompatible donors. We show on both generated data and on real data

from the first 169 match runs of the UNOS nationwide kidney exchange that even a very small number of non-adaptive edge

queries per vertex results in large gains in expected successful matches.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics

General Terms: Algorithms, Economics, Experimentation

Additional Key Words and Phrases: Stochastic matching, stochastic k-set packing, kidney exchange

1. INTRODUCTION

In the stochastic matching problem, we are given an undirected graph G = (V,E), where we do
not know which edges in E actually exist. Rather, for each edge e ∈ E, we are given an existence
probability pe. Of interest, then, are algorithms that first query some subset of edges to find the ones
that exist, and based on these queries, produce a matching that is as large as possible. The stochastic
matching problem is a special case of stochastic k-set packing, where each set exists only with some
probability, and the problem is to find a packing of maximum size of those sets that do exist.

Without any constraints, one can simply query all edges or sets, and then output the maximum
matching or packing over those that exist—but this level of freedom may not always be available.
We are interested in the tradeoff between the number of queries and the fraction of the omnsicient
optimal solution achieved. Specifically, we ask: In order to perform as well as the omniscient opti-
mum in the stochastic matching problem, do we need to query (almost) all the edges, that is, do we
need a budget of Θ(n) queries per vertex, where n is the number of vertices? Or, can we, for any
arbitrarily small ǫ > 0, achieve a (1− ǫ) fraction of the omniscient optimum by using an o(n) per-
vertex budget? We answer these questions, as well as their extensions to the k-set packing problem.
We support our theoretical results empirically on both generated and real data from a large fielded
kidney exchange in the United States.

1.1. Our theoretical results and techniques

Our main theoretical result gives a positive answer to the latter question for stochastic matching, by
showing that, surprisingly, a constant per-vertex budget is sufficient to get ǫ-close to the omniscient
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optimum. Indeed, we design a polynomial-time algorithm with the following properties: for any
constant ǫ > 0, the algorithm queries at most O(1) edges incident to any particular vertex, requires
O(1) rounds of parallel queries, and achieves a (1− ǫ) fraction of the omniscient optimum.1

The foregoing algorithm is adaptive, in the sense that its queries are conditioned on the answers
to previous queries. Even though it requires only a constant number of rounds, it is natural to ask
whether a non-adaptive algorithm—one that issues all its queries in one round—can also achieve
a similar guarantee. We do not give a complete answer to this question, but we do present a non-
adaptive algorithm that achieves a 0.5(1 − ǫ)-approximation (for arbitrarily small ǫ > 0) to the
omniscient optimum. We extend our matching results to a more general stochastic model in Ap-
pendix C.

We extend our results to the stochastic k-set packing problem, where we are given a collection
of sets, each with cardinality at most k. Stochastic Matching is a special case of Stochastic k-set
packing: each set (which corresponds to an edge) has cardinality 2, that is, k = 2. In stochastic k-set
packing, each set s exists with some known probability ps, and we need to query the sets to find
whether they exist. Our objective is to output a collection of disjoint sets of maximum cardinality.
We present adaptive and non-adaptive polynomial-time algorithms that achieve, for any constant

ǫ > 0, at least ( 2k − ǫ) and (1 − ǫ) (2/k)
2

2/k+1 fraction, respectively, of the omniscient optimum, again

using O(1) queries per element and hence O(n) overall. For the sake of comparison, the best known
polynomial-time algorithm for optimizing k-set packing in the standard non-stochastic setting has
an approximation ratio of 3

k+1 − ǫ [Fürer and Yu 2013].

To better appreciate the challenge we face, we note that even in the stochastic matching setting, we
do not have a clear idea of how large the omniscient optimum is. Indeed, there is a significant body
of work on the expected cardinality of matching in complete random graphs (see, e.g., [Bollobás
2001, Chapter 7]), where the omniscient optimum is known to be close to n. But in our work we are
dealing with arbitrary graphs where it can be a much smaller number. In addition, naı̈ve algorithms
fail to achieve our goal, even if they are allowed many queries. For example, querying a sublinear
number of edges incident to each vertex, chosen uniformly at random, gives a vanishing fraction of
the omniscient optimum—as we show in Section 3.

The primary technical ingredient in the design of our adaptive algorithm is that if, in any round r
of the algorithm, the solution computed by round r (based on previous queries) is small compared to
the omniscient optimum, then the current structure must admit a large collection of disjoint constant-
sized ‘augmenting’ structures. These augmenting structures are composed of sets that have not been
queried so far. Of course, we do not know whether these structures we are counting on to help
augment our current matching actually exist; but we do know that these augmenting structures
have constant size (and so each structure exists with some constant probability) and are disjoint
(and therefore the outcomes of the queries to the different augmenting structures are independent).
Hence, by querying all these structures in parallel in round r, in expectation, we can close a constant
fraction of the gap between our current solution and the omniscient optimum. By repeating this
argument over a constant number of rounds, we achieve a (1−ǫ) fraction of the omniscient optimum.
In the case of stochastic matching, these augmenting structures are simply augmenting paths; in the
more general case of k-set packing, we borrow the notion of augmenting structures from Hurkens
and Schrijver [1989].

1.2. Our experimental results: Application to kidney exchange

Our work is directly motivated by applications to kidney exchange, a medical approach that en-
ables kidney transplants. Transplanted kidneys are usually harvested from deceased donors; but as
of February 7, 2015, there are 101,556 people on the US national waiting list,2 making the median

1This guarantee holds as long as all the non-zero pe’s are bounded away from zero by some constant. The constant can be
arbitrarily small but should not depend on n.
2http://optn.transplant.hrsa.gov.

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2015.



Ignorance is Almost Bliss: Near-Optimal Stochastic Matching With Few Queries X:3

waiting time dangerously long. Fortunately, kidneys are an unusual organ in that donation by liv-
ing donors is also a possibility—as long as patients happen to be medically compatible with their
potential donors.

In its simplest form—pairwise exchange—two incompatible donor-patient pairs exchange kid-
neys: the donor of the first pair donates to the patient of the second pair, and the donor of the second
pair donates to the patient of the first pair. This setting can be represented as an undirected compati-
bility graph, where each vertex represents an incompatible donor-patient pair, and an edge between
two vertices represents the possibility of a pairwise exchange. A matching in this graph specifies
which exchanges take place.

The edges of the compatibility graph can be determined based on the medical characteristics—
blood type and tissue type—of donors and patients. However, the compatibility graph only tells part
of the story. Before a transplant takes place, a more accurate medical test known as a crossmatch test
takes place. This test involves mixing samples of the blood of the patient and the donor (rather than
simply looking up information in a database), making the test relatively costly and time consuming.
Consequently, crossmatch tests are only performed for donors and patients that have been matched.
While some patients are more likely to pass crossmatch tests than others—the probability is related
to a measure of sensitization known as the person’s Panel Reactive Antibody (PRA)—the average
is as low as 30% in major kidney exchange programs [Dickerson et al. 2013; Leishman et al. 2013].
This means that, if we tested a perfect matching over n donor-patient pairs, we would expect only
0.09n of the patients to actually receive a kidney. In contrast, the omniscient solution that runs
crossmatch tests on all possible pairwise exchanges (in the compatibility graph) may be able to
provide kidneys to all n patients; but this solution is impractical.

Our adaptive algorithm for stochastic matching uncovers a sweet spot between these two ex-
tremes. On the one hand, it only mildly increases medical expenses, from one crossmatch test per
patient, to a larger, yet constant, number; and it is highly parallelizable, requiring only a constant
number of rounds, so the time required to complete all crossmatch tests does not scale with the
number of donors and patients. On the other hand, the adaptive algorithm essentially recovers the
entire benefit of testing all potentially feasible pairwise exchanges. The qualitative message of this
theoretical result is clear: a mild increase in number of crossmatch tests provides nearly the full
benefit of exhaustive testing.

The above discussion pertains to pairwise kidney exchange. However, modern kidney exchange
programs regularly employ swaps involving three donor-patient pairs, which are known to provide
significant benefit compared to pairwise swaps alone [Roth et al. 2007; Ashlagi and Roth 2014].
Mathematically, we can consider a directed graph, where an edge (u, v) means that the donor of
pair u is compatible with the patient of pair v (before a crossmatch test was performed). In this
graph, pairwise and 3-way exchanges correspond to 2-cycles and 3-cycles, respectively. Our adap-
tive algorithm for 3-set packing then provides a (2/3)-approximation to the omniscient optimum,
using only O(1) crossmatch tests per patient and O(n) overall. While the practical implications of
this result are currently not as crisp as those of its pairwise counterpart, future work may improve
the approximation ratio (using O(n) queries and an exponential-time algorithm), as we explain in
Section 8.1.

To bridge the gap between theory and practice, we provide experiments on both simulated data
and real data from the first 169 match runs of the United Network for Organ Sharing (UNOS) US
nationwide kidney exchange, which now includes 143 transplant centers—approximatey 60% of the
transplant centers in the US. The exchange began matching in October 2010 and now matches on
a biweekly basis. Using adaptations of the algorithms presented in this paper, we show that even a
small number of non-adaptive rounds, followed by a single period during which only those edges
selected during those rounds are queried, results in large gains relative to the omniscient matching.
We discuss the policy implications of this promising result in Section 8.2.
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2. RELATED WORK

While papers on stochastic matching often draw on kidney exchange for motivation—or at least
mention it in passing—these two research areas are almost disjoint. We therefore discuss them
separately in Sections 2.1 and 2.2.

2.1. Stochastic matching

Prior work has considered multiple variants of stochastic matching. A popular variant is the query-
commit problem, where the algorithm is forced to add any queried edge to the matching if the edge
is found to exist. In the papers of Goel and Tripathi [2012] and Costello et al. [2012], lower bounds
of 0.56 and 0.573, respectively, and upper bounds of 0.7916 and 0.898, respectively, are established
for graphs in which no information is available about the edges, and in which each edge e exists
with a given probability pe, respectively. Similarly to our work, these approximation ratios are with
respect to the omniscient optimum, but the informational disadvantage of the algorithm stems purely
from the query-commit restriction.

Within the query-commit setting, another thread of work [Chen et al. 2009; Adamczyk 2011;
Bansal et al. 2012] imposes an additional per-vertex budget constraint where the algorithm is not
allowed to query more than a specified number, bv , of edges incident to vertex v. With this additional
constraint, the benchmark that the algorithm is compared to switches from the omniscient optimum
to the constrained optimum, i.e., the performance of the best decision tree that obeys the per-vertex
budget constraints and the query-commit restriction. In other words, the algorithm’s disadvantage
compared to the benchmark is only that it is constrained to run in polynomial time. Here, again, the
best known approximation ratios are constant. A generalization of these results to packing problems
has been studied by Gupta and Nagarajan [2013].

Similarly to our work, Blum et al. [2013] consider a stochastic matching setting without the
query-commit constraint. They set the per-vertex budget to exactly 2, and ask which subset of edges
is queried by the optimal collection of queries subject to this constraint. They prove structural re-
sults about the optimal solution, which allow them to show that finding the optimal subset of edges
to query is NP-hard. In addition, they give a polynomial-time algorithm that finds an almost op-
timal solution on a class of random graphs (inspired by kidney exchange settings). Crucially, the
benchmark of Blum et al. [2013] is also constrained to two queries per vertex.

There is a significant body of work in stochastic optimization more broadly, for instance, the
papers of Dean et al. [2004] (Stochastic Knapsack), Gupta et al. [2012] (Stochastic Orienteering),
and Asadpour et al. [2008] (Stochastic submodular maximization).

2.2. Kidney exchange

Early models of kidney exchange did not explicitly consider the possibility of a modeled edge ex-
isting only probabilistically in reality. Recent research by Dickerson et al. [2013] and Anderson
et al. [2015b] focuses on the kidney exchange application and restricts attention to a single cross-
match test per patient (the current practice), with a similar goal of maximizing the expected number
of matched vertices, in a realistic setting (for example, they allow 3-cycles and chains initiated
by altruistic donors, who enter the exchange without a paired patient). They develop integer pro-
gramming techniques, which are empirically evaluated using real and synthetic data. Manlove and
O’Malley [2015] discuss the integer programming formulation used by the national exchange in the
United Kingdom, which takes edge failures into account in an ad hoc way by, for example, pre-
ferring shorter cycles to longer ones. To our knowledge, our paper is the first to describe a general
method for testing any number of edges before the final match run is performed—and to provide
experiments on real data showing the expected effect on fielded exchanges of such edge querying
policies.

Another form of stochasticity present in fielded kidney exchanges is the arrival and departure of
donor-patient pairs over time (and the associated arrival and departure of their involved edges in
the compatibility graph). Recent work has addressed this added form of dynamism from a theoret-
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ical [Ünver 2010; Akbarpour et al. 2014; Anderson et al. 2015a] and experimental [Awasthi and
Sandholm 2009; Dickerson et al. 2012a; Dickerson and Sandholm 2015] point of view. Theoreti-
cal models have not addressed the case where an edge in the current graph may not exist (as we
do in this paper); the more recent experimental papers have incorporated this possibility, but have
not considered the problem of querying edges before recommending a final matching. We leave as
future research the analysis of edge querying in stochastic matching in such a dynamic model.

3. THE MODEL

For any graph G = (V,E), let M(E) denote its maximum (cardinality) matching.3 In addition, for
two matchings M and M ′, we denote their symmetric difference by M∆M ′ = (M ∪M ′) \ (M ∩
M ′); it includes only paths and cycles consisting of alternating edges of M and M ′.

In the stochastic setting, given a set of edges X , define Xp to be the random subset formed by
including each edge of X independently with probability p. We will assume for ease of exposition
that pe = p for all edges e ∈ E. Our results hold when p is a lower bound, i.e., pe ≥ p for all
e ∈ E. Furthermore, in Appendix C, we show that we can extend our results to a more general
setting where the existence probabilities of edges incident to any particular vertex are correlated.

Given a graph G = (V,E), define M(E) to be E[|M(Ep)|], where the expectation is taken
over the random draw Ep. In addition, given the results of queries on some set of edges T , define

M(E|T ) to be E[|M(Xp ∪ T ′)|], where T ′ ⊆ T is the subset of edges of T that are known to exist
based on the queries, and X = E \ T .

In the non-adaptive version of our problem, the goal is to design an algorithm that, given a graph
G = (V,E) with |V | = n, queries a subset X of edges in parallel such that |X| = O(n), and

maximizes the ratio M(X)/M(E).
In contrast, an adaptive algorithm proceeds in rounds, and in each round queries a subset of

edges in parallel. Based on the results of the queries up to the current round, it can choose the subset
of edges to test in the next round. Formally, an R-round adaptive stochastic matching algorithm
selects, in each round r, a subset of edges Xr ⊆ E, where Xr can be a function of the results
of the queries on

⋃

1≤i≤r Xi. The objective is to maximize the ratio E[|M(
⋃

1≤i≤R Xi)|]/M(E),
where the expectation in the numerator is taken over the outcome of the query results and the sets
Xi chosen by the algorithm.

To gain some intuition about our goal of arbitrarily good approximations to the omniscient opti-
mum, and why it is challenging, let us consider the naı̈ve (non-adaptive) algorithm which queries
o(n) random neighbors of each vertex. The following example shows that this algorithm performs
poorly.

Example 3.1. Consider the graph G = (V,E) whose vertices are partitioned into sets A, B,
C, and D, such that |A| = |D| = tβ and |B| = |C| = t, for some 1 > β > 0. Note that in
this graph n = Θ(t). Let E consist of one perfect matching between vertices of B and C, and two
complete bipartite graphs, one between A and B, and another between C and D. See Figure 1 for
an illustration. Let p = 0.5 be the existence probability of any edge.

The omniscient optimal solution can use any edge, and, in particular, it can use the edges between
B and C. Since, these edges form a matching of size t and p = 0.5, they alone provide a matching
of expected size t/2. Hence, M(E) ≥ t/2.

Now, for any α < β, consider the algorithm that queries tα random neighbors for each vertex. For

every vertex in B, the probability that its edge to C is chosen is at most tα

tβ+1
(similarly for the edges

from C to B). Therefore, the expected number of edges chosen between B and C is at most 2t1+α

tβ+1
,

and the expected number of existing edges between B and C, after the coin tosses, is at most t1+α

tβ+1
.

A and D each have tβ vertices, so they contribute at most 2tβ edges to any matching. Therefore, the

3In the notation M(E), we intentionally suppress the dependence on the vertex set V , since we care about the maximum
matchings of different subsets of edges for a fixed vertex set.
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B C DA

Fig. 1. Illustration of the construction in Example 3.1, for t = 4 and β = 1/2.

expected size of the overall matching is no more than t1+α−β + 2tβ . Using n = Θ(t), we conclude
that the approximation ratio of the naı̈ve algorithm approaches 0, as n → ∞. For α = 0.5 and
β = 0.75, the approximation of the naı̈ve algorithm ratio is O(1/n0.25), at best.

4. ADAPTIVE ALGORITHM: (1− ǫ)-APPROXIMATION

In this section, we present our main result: an adaptive algorithm—formally given as Algorithm 1—
that achieves a (1 − ǫ) approximation to the omniscient optimum for arbitrarily small ǫ > 0, using
O(1) queries per vertex and O(1) rounds.

The algorithm is initialized with the empty matching M0. At the end of each round r, our goal is
to maintain a maximum matching Mr on the set of edges that are known to exist (based on queries
made so far). To this end, at round r, we compute the maximum matching Or on the set of edges that
are known to exist and the ones that have not been queried yet (Step 2a). We consider augmenting
paths in Or∆Mr−1, and query all the edges in them (Steps 2b and 2c). Based on the results of these
queries (Qr), we update the maximum matching (Mr). Finally, we return the maximum matching

MR computed after R = log(2/ǫ)
p2/ǫ rounds. (Let us assume that R is an integer for ease of exposition.)

Algorithm 1 ADAPTIVE ALGORITHM FOR STOCHASTIC MATCHING: (1− ǫ) APPROXIMATION

Input: A graph G = (V,E).

Parameter: R = log(2/ǫ)
p2/ǫ

Algorithm:

(1) Initialize M0 to the empty matching and W1 ← ∅.
(2) For r = 1, . . . , R, do

(a) Compute a maximum matching, Or, in (V,E \Wr).
(b) Set Qr to the collection of all augmenting paths in Or∆Mr−1.
(c) Query the edges in Qr. Let Q′

r and Q′′
r represent the set of existing and non-existing edges.

(d) Wr+1 ←Wr ∪Q′′
r .

(e) Set Mr to the maximum matching in
(

V,
⋃r

j=1 Q
′
j

)

.

(3) Output MR.

It is easy to see that this algorithm queries at most
log(2/ǫ)
p2/ǫ edges per vertex: In a given round r,

the algorithm queries edges that are in augmenting paths of Or∆Mr−1. Since there is at most one
augmenting path using any particular vertex, the algorithm queries at most one edge per vertex in

each round. Furthermore, the algorithm executes
log(2/ǫ)
p2/ǫ rounds. Therefore, the number of queries

issued by the algorithm per vertex is as claimed.
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The rest of the section is devoted to proving that the matching returned by this algorithm after R
rounds has cardinality that is, in expectation, at least a (1− ǫ) fraction of M(E).

THEOREM 4.1. For any graph G = (V,E) and any ǫ > 0, Algorithm 1 returns a matching

whose expected cardinality is at least (1− ǫ) M(E) in R = log(2/ǫ)
p(2/ǫ) rounds.

As mentioned in Section 1, one of the insights behind this result is the existence of many disjoint
augmenting paths of bounded length that can be used to augment a matching that is far from the
omniscient optimum, that is, a lower bound on the number of elements in Qr of a given length L.
This observation is formalized in the following lemma. (We emphasize that the lemma pertains to
the non-stochastic setting.)

LEMMA 4.2. Consider a graph G = (V,E) with two matchings M1 and M2. Suppose |M2| >
|M1|. Then in M1∆M2, for any odd length L ≥ 1, there exist at least |M2| − (1 + 2

L+1 )|M1|
augmenting paths of length at most L, which augment the cardinality of M1.

PROOF. Let xl be the number of augmenting paths of length l (for any odd l ≥ 1) found in
M1∆M2 that augment the cardinality of M1. Each augmenting path increases the size of M1 by 1,
so the total number of augmenting paths

∑

l≥1 xl is at least |M2|−|M1|. Moreover, each augmenting

path of length l has l−1
2 edges in M1. Hence,

∑

l≥1
l−1
2 xl ≤ |M1|. In particular, this implies that

L+1
2

∑

l≥L+2 xl ≤ |M1|. We conclude that

L
∑

l=1

xl =
∑

l≥1

xl −
∑

l≥L+2

xl ≥ (|M2| − |M1|)−
2

L+ 1
|M1| = |M2| −

(

1 +
2

L+ 1

)

|M1|.

The rest of the theorem’s proof requires some additional notation. At the beginning of any
given round r, the algorithm already knows about the existence (or non-existence) of the edges

in
⋃r−1

i=1 Qi. We use Zr to denote the expected size of the maximum matching in graph G = (V,E)

given the results of the queries
⋃r−1

i=1 Qi. More formally, Zr = M(E|
⋃r−1

i=1 Qi). Note that

Z1 = M(E).
For a given r, we use the notation EQr

[X] to denote the expected value of X where the expecta-
tion is taken only over the outcome of query Qr, and fixing the outcomes on the results of queries
⋃r−1

i=1 Qi. Moreover, for a given r, we use EQr,...,QR
[X] to denote the expected value of X with the

expectation taken over the outcomes of queries
⋃R

i=r Qi, and fixing an outcome on the results of

queries
⋃r−1

i=1 Qi.

In Lemma 4.3, for any round r and for any outcome of the queries
⋃r−1

i=1 Qi, we lower-bound the
expected increase in the size of Mr over the size of Mr−1, with the expectation being taken only
over the outcome of edges in Qr. This lower bound is a function of Zr.

LEMMA 4.3. For any r ∈ [R], odd L, and Q1, · · · , Qr−1, it holds that EQr
[|Mr|] ≥ (1 −

γ)|Mr−1|+ αZr, where γ = p(L+1)/2
(

1 + 2
L+1

)

and α = p(L+1)/2.

PROOF. By Lemma 4.2, there exist at least |Or| − (1 + 2
L+1 )|Mr−1| augmenting paths in

Or∆Mr−1 that augment Mr−1 and are of length at most L. The Or part of every augmenting path

of length at most L exists independently with probability at least p(L+1)/2. Therefore, the expected
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increase in the size of the matching is:

EQr
[|Mr|]− |Mr−1| ≥ p

L+1
2

(

|Or| −

(

1 +
2

L+ 1

)

|Mr−1|

)

= α|Or| − γ|Mr−1| ≥ αZr − γ|Mr−1|,

where the last inequality holds by the fact that Zr, which is the expected size of the optimal matching
with expectation taken over non-queried edges, cannot be larger than Or, which is the maximum
matching assuming that every non-queried edge exists.

We are now ready to prove the theorem.

PROOF OF THEOREM 4.1. Let L = 4
ǫ − 1; it is assumed to be an odd integer for ease of exposi-

tion.4 By Lemma 4.3, we know that for every r ∈ [R], EQr [|Mr|| ≥ (1− γ)|Mr−1|+ αZr, where

γ = p(L+1)/2(1 + 2
L+1 ), and α = p(L+1)/2. We will use this inequality repeatedly to derive our

result. We will also require the equality

EQr−1 [Zr] = EQr−1

[

M(E|
r−1
⋃

i=1

Qi)

]

= M(E|
r−2
⋃

i=1

Qi) = Zr−1. (1)

First, applying Lemma 4.3 at round R, we have that EQR
[|MR|] ≥ (1− γ)|MR−1|+ αZR. This

inequality is true for any fixed outcomes of Q1, . . . , QR−1. In particular, we can take the expectation
over QR−1, and obtain

EQR−1,QR
[|MR|] ≥ (1− γ) EQR−1

[|MR−1|] + α EQR−1
[ZR].

By Equation (3), we know that EQR−1
[ZR] = ZR−1. Furthermore, we can apply Lemma 4.3 to

EQR−1
[|MR−1|] to get the following inequality:

EQR−1,QR
[|MR|] ≥ (1− γ) EQR−1

[|MR−1|] + α EQR−1
[ZR]

≥ (1− γ) ((1− γ) |MR−2|+ α ZR−1) + α ZR−1

= (1− γ)2 |MR−2|+ α (1 + (1− γ)) ZR−1.

We repeat the above steps by sequentially taking expectations over QR−2 through Q1, and at each
step applying Equation (3) and Lemma 4.3. This gives us

EQ1,...,QR
[|MR|] ≥ (1− γ)R|M0|+ α (1 + (1− γ) + · · ·+ (1− γ)R−1)Z1

= α
1− (1− γ)R

γ
Z1,

where the second transition follows from the initialization of M0 as an empty matching. Since

L = 4
ǫ − 1 and R = log(2/ǫ)

p2/ǫ , we have

α

γ

(

1− (1− γ)R
)

=

(

1−
2

L+ 1

)

(

1− (1− γ)R
)

≥ 1−
2

L+ 1
− e−γR ≥ 1−

ǫ

2
−

ǫ

2
= 1− ǫ,

(2)

where the second transition is true because e−x ≥ 1 − x for all x ∈ R. We conclude that
EQ1,...,QR

[|MR|] ≥ (1 − ǫ) Z1. Because Z1 = M(E), it follows that expected size of the al-

gorithm’s output is at least (1− ǫ) M(E).

4Otherwise there exists ǫ/2 ≤ ǫ′ ≤ ǫ such that 4
ǫ′

− 1 is an odd integer. We use a similar simplification in the proofs of
other results in the appendix.
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In Appendix C, we extend our results to the setting where edges have correlated existence
probabilities—an edge’s probability is determined by parameters associated with its two vertices.
This generalization gives a better model for kidney exchange, as some patients are highly sensitized
and therefore harder to match in general; this means that all edges incident to such vertices are less
likely to exist. We consider two settings, first, where an adversary chooses the vertex parameters,
and second, where these parameters are drawn from a distribution. Our approach involves excluding
from our analysis edges whose existence probability is too low. We do so by showing that (under
specific conditions) excluding any augmenting path that includes such edges still leaves us with a
large number of constant-size augmenting paths.

5. NON-ADAPTIVE ALGORITHM: 0.5-APPROXIMATION

The adaptive algorithm, Algorithm 1, augments the current matching by computing a maximum
matching on queried edges that are known to exist, and edges that have not been queried. One
way to extend this idea to the non-adaptive setting is the following: we can simply choose several
edge-disjoint matchings, and hope that they help in augmenting each other. In this section, we ask:
How close can this non-adaptive interpretation of our adaptive approach take us to the omniscient
optimum?

In more detail, our non-adaptive algorithm—formally given as Algorithm 2—iterates R =
log(2/ǫ)
p2/ǫ times. In each iteration, it picks a maximum matching and removes it. The set of edges

queried by the algorithm is the union of the edges chosen in some iteration. We will show that,
for any arbitrarily small ǫ > 0, the algorithm finds a 0.5(1 − ǫ)-approximate solution. Since we
allow an arbitrarily small (though constant) probability p for stochastic matching, achieving a 0.5-
approximation independently of the value of p, while querying only a linear number of edges, is
nontrivial. For example, a naı̈ve algorithm that only queries one maximum matching clearly does
not guarantee a 0.5-approximation—it would guarantee only a p-approximation. In addition, the
example given in Section 3 shows that choosing edges at random performs poorly.

Algorithm 2 NON-ADAPTIVE ALGORITHM FOR STOCHASTIC MATCHING: 0.5-APPROXIMATION

Input: A graph G(V,E).

Parameter: R = log(2/ǫ)
p2/ǫ

Algorithm:

(1) Initialize W1 ← ∅.
(2) For r = 1, . . . , R, do

(a) Compute a maximum matching, Or, in
(

V,E \
⋃

1≤i≤r−1 Wi

)

.

(b) Wr ←Wr−1 ∪Or.
(3) Query all the edges in WR, and output the maximum matching among the edges that are found

to exist in WR.

The number of edges incident to any particular vertex that are queried by the algorithm is at

most
log(2/ǫ)
p2/ǫ , because the vertex can be matched with at most one neighbor in each round. The

next theorem, whose proof appears in Appendix A, establishes the approximation guarantee of
Algorithm 2.

THEOREM 5.1. Given a graph G = (V,E) and any ǫ > 0, the expected size M(WR) of the

matching produced by Algorithm 2 is at least a 0.5(1− ǫ) fraction of M(E).

As explained in Section 8.1, we do not know whether in general non-adaptive algorithms can
achieve a (1−ǫ)-approximation with O(1) queries per vertex. However, if there is such an algorithm,
it is not Algorithm 2! Indeed, the next theorem (whose proof is relegated to Appendix A) shows that
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the algorithm cannot give an approximation ratio better than 5/6 to the omniscient optimum. This
fact holds even when R = Θ(log n).

THEOREM 5.2. Let p = 0.5. For any ǫ > 0 there exists n and a graph (V,E) with |V | ≥ n such

that Algorithm 2, with R = O(log n), returns a matching with expected size of at most 5
6M(E)+ ǫ.

Despite this somewhat negative result, in Section 7, we show experimentally on realistic kidney
exchange compatibility graphs that Algorithm 2 performs very well for even very small values of
R, across a wide range of values of p.

6. GENERALIZATION TO K-SET PACKING

So far we have focused on stochastic matching, for ease of exposition. But our approach directly
generalizes to the k-set packing problem. Here we describe this extension for the adaptive (Sec-
tion 6.1) and non-adaptive (Section 6.2) cases, and relegate the details—in particular, most proofs—
to Appendix B.

Formally, a k-set packing instance (U,A) consists of a set of elements U , |U | = n, and a collec-
tion of subsets A, such that each subset S in A contains at most k elements of U , that is, S ⊆ U and
|S| ≤ k. Given such an instance, a feasible solution is a collection of sets B ⊆ A such that any two
sets in B are disjoint. We use K(A) to denote the largest feasible solution B.

Finding an optimal solution to the k-set packing problem is NP-hard (see, e.g., [Abraham et al.
2007] for the special case of k-cycle packing). Hurkens and Schrijver [1989] designed a polynomial-
time local search algorithm with an approximation ratio of ( 2k − η), using local improvements of
constant size that depends only on η and k. We denote this constant by sη,k. More formally, consider
an instance (U,A) of k-set packing and let B ⊆ A be a collection of disjoint k-sets. (C,D) is said
to be an augmenting structure for B if removing D and adding C to B increases the cardinality and
maintains the disjointness of the resulting collection, i.e., if (B ∪ C) \D is a disjoint collection of
k-sets and |(B ∪ C) \D| > |B|, where C ⊆ A and D ⊆ B.

Hurkens and Schrijver [1989] have also shown that an approximation ratio better than 2/k cannot
be achieved with structures of constant size. While subsequent work [Fürer and Yu 2013] has im-
proved the approximation ratio, their local search algorithm finds structures of super-constant size.
This is inconsistent with our technical approach, as we need each queried structure to exist (in its
entirety) with constant probability.

To be more precise, Hurkens and Schrijver [1989] prove:

LEMMA 6.1 ([HURKENS AND SCHRIJVER 1989]). Given a collection B of disjoint sets such
that |B| < (2/k − η)|K(A)|, there exists an augmenting structure (C,D) for B such that both C
and D have at most sη,k sets, for a constant sη,k that depends only on η and k.

However, we need to find many augmenting structures. We use Lemma 6.1 to prove:

LEMMA 6.2. If |B| < |K(A)|, then there exist 1
k sη,k

(|K(A)| − |B|
2
k−η

) disjoint augmenting

structures that augment the cardinality of B, each with size at most sη,k. Moreover, this collection
of augmenting structures can be found in polynomial time.

PROOF. We prove the lemma using Algorithm 3. We claim that if we run this algorithm on
the k-set packing instance (U,A) and the collection B, then it will return a collection Q of at

least T = 1
k sη,k

(|K(A)| − |B|
2
k−η

) disjoint augmenting structures (C,D) for B. By Step 2c, we are

guaranteed that Q consists of disjoint augmenting structures. Hence, all that is left to show is that in
each of the first T iterations, at Step 2a, we are able to find a nonempty augmenting structure (C,D)
for B.

By Lemma 6.1, we know that if at iteration t it is the case that |B| < ( 2k − η)|K(At)|, then we
will find an augmenting structure (C,D) of size sη,k for B. To prove that the inequality holds at
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each iteration t ≤ T , we first claim that for all t,

|K(At)| ≥ |K(A)| − (t− 1) · k · sη,k (3)

We prove this by induction. The claim is clearly true for the base case of t = 1. For the inductive
step, suppose it is true for t, then we know that |K(At)| ≥ |K(A)| − (t− 1) · k · sη,k. At iteration t,
the augmenting structure (C,D) can intersect with at most sη,k · k sets of K(At). This is true since
K(At) consists of disjoint sets, and the augmenting structure (C,D) is of size at most sη,k. Hence,
Step 2c reduces |K(At)| by at most k · sη,k. So, |K(At+1)| ≥ |K(At)| − k · sη,k. Combining the
two inequalities, |K(At)| ≥ |K(A)| − (t − 1) · k · sη,k and |K(At+1)| ≥ |K(At)| − k · sη,k, we
have |K(At+1)| ≥ |K(A)| − t · k · sη,k. This establishes Equation (3).

We conclude that if the for-loop adds non-empty augmenting structures only for the first t rounds,
it must be the case that |B| ≥ ( 2k −η)|K(At+1)|, and therefore |B| ≥ ( 2k −η)(|K(A)|− t ·k ·sη,k)

which implies that t ≥ 1
k sη,k

(|K(A)| − |B|
2
k−η

).

Algorithm 3 FINDING CONSTANT-SIZE DISJOINT AUGMENTING STRUCTURES FOR k-SETS

Input: k-set packing instance (U,A) and a collection B ⊆ A of disjoint sets.
Output: Collection Q of disjoint augmenting structures (C,D) for B.
Parameter: sη,k (the desired maximum size of the augmenting structures)
Algorithm:

(1) Initialize A1 ← A and Q← φ (empty set).
(2) For t = 1, · · · , |A|

(a) Find an augmenting structure (C,D) of size sη,k for B on the k-set instance (U,At).
(b) Add (C,D) to Q. (If C is an empty set, break out of the loop.)
(c) Set At+1 to be At minus the collection C and any set in At \B that intersects with C.

(3) Output Q.

6.1. Adaptive algorithm for k-set packing

Turning to the stochastic version of the problem, given (U,A), let Ap be a random subset of A

where each set from A is included in Ap independently with probability p. We then define K(A) to
be E[|K(Ap)|], where the expectation is taken over the random draw Ap. Similarly to the matching
setting, this is the omniscient optimum—our benchmark.

We extend the ideas introduced earlier in the paper for matching, together with Lemma 6.2 and
additional ingredients, to obtain the following result for the adaptive problem.

THEOREM 6.3. There exists an adaptive polynomial-time algorithm that, given a k-set instance
(U,A) and ǫ > 0, uses O(1) rounds and O(n) queries overall, and returns a set BR whose expected

cardinality is at least a (1− ǫ) 2k fraction of K(A).

With an eye toward Theorem 6.3, Algorithm 4 is a polynomial-time algorithm that can be used
to find such a packing that approximates the omniscient optimum. In each round r, the algorithm
maintains a feasible k-set packing Br based on the k-sets that have been queried so far. It then com-
putes a collection Qr of disjoint, small augmenting structures with respect to the current solution
Br, where the augmenting structures are composed of sets that have not been queried so far. It issues
queries to these augmenting structures, and uses those that are found to exist to augment the current
solution. The augmented solution is fed into the next round.

Similarly to our matching results, for any element v ∈ U , the number of sets that it belongs to
and are also queried is at most R. Indeed, in each of the R rounds, Algorithm 4 issues queries to
disjoint augmenting structures, and each augmenting structure includes at most one set per element.
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Algorithm 4 ADAPTIVE ALGORITHM FOR STOCHASTIC k-SET PACKING

Input: A k-set instance (U,A), and ǫ > 0.

Parameters: η = ǫ
k and R =

( 2
k−η) k sη,k

psη,k log( 2ǫ ) (For a (1− ǫ)( 2k )-approximation)

Algorithm:

(1) Initialize r ← 1, B0 ← ∅ and A1 ← A.
(2) For r = 1, . . . , R, do

(a) Initialize Br to Br−1.
(b) Let Qr be the set of augmenting structures given by Algorithm 3 on the input consisting of

the k-set packing instance (U,Ar), the collection Br, and the parameter sη,k.
(c) For each augmenting structure (C,D) ∈ Qr.

i. Query all sets in C.
ii. If all the sets of C exist, augment the current solution: Br ← (Br \D) ∪ C.

(d) Set Ar+1 to be Ar after removing queried sets that were found not to exist.
(3) Return BR.

6.2. Non-adaptive algorithm for k-set packing

Once again, when going from the adaptive case to the non-adaptive case, the fraction of the omni-
scient optimum that we can obtain becomes significantly worse.

THEOREM 6.4. There exists a non-adaptive polynomial-time algorithm that, given a k-set in-
stance (U,A) and ǫ > 0, uses O(n) queries overall and returns a k-set packing with expected

cardinality (1− ǫ) (2/k)
2

2/k+1K(A).

We present such a polynomial-time non-adaptive algorithm, Algorithm 5, that proceeds as fol-
lows. For R rounds, at every round, using the local improvement algorithm of Hurkens and Schrijver
[1989], we find a ( 2k − η)-approximate solution to the k-set instance and remove it. Then, we query
every set that is included in these R solutions. We show that the expected cardinality of the maxi-

mum packing on the chosen sets is a (1− ǫ) (2/k)
2

2/k+1 approximation of the expected optimal packing.

As usual, it is easy to see that O(n) queries are issued overall.

Algorithm 5 NON-ADAPTIVE ALGORITHM FOR STOCHASTIC k-SET PACKING

Input: A k-set packing instance (U,A), and ǫ > 0.

Parameters: η = ǫ
2k and R =

( 2
k−η) k sη,k

psη,k log( 2ǫ ). (For (1− ǫ) (2/k)
2

2/k+1 -approximation)

Algorithm:

(1) Let B0 ← ∅.
(2) For r = 1, . . . , R, do

(a) Or ← a ( 2k − η)-approximate solution to the k-set instance (U,A \
⋃r−1

i=1 Bi). (Or is found
using the local improvement algorithm of Hurkens and Schrijver [1989].)

(b) Set Br ← Br−1 ∪Or.
(3) Query the sets in O1, and assign Q1 to be the sets that are found to exist.
(4) For r = 2, · · · , R, do

(a) Find augmenting structures in Or that augment Qr−1. This is achieved by giving the in-
stance (U,Qr−1 ∪Or) and solution Qr−1 as input (with parameter sη,k) to Algorithm 3.

(b) Query all the augmenting structures in Or, and augment Qr−1 with the ones that are found
to exist. Call the augmented solution Qr.

(5) Output QR.
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Importantly, the statements of Theorems 4.1 and 5.1 are special cases of the statements of The-
orems 6.3 and 6.4, respectively, for k = 2, although on a technical level the k = 2 case must be
handled separately (as we did, with less cumbersome terminology and technical constructions than
in the general k-set packing setting).

7. EXPERIMENTAL RESULTS ON KIDNEY EXCHANGE COMPATIBILITY GRAPHS

In this section, we support our theoretical results with empirical simulations from two kidney ex-
change compatibility graph distributions. The first distribution, due to Saidman et al. [2006], was
designed to mimic the characteristics of a nationwide exchange in the United States in steady state.
Fielded kidney exchanges have not yet reached that point, though; with this in mind, we also in-
clude results on real kidney exchange compatibility graphs drawn from the first 169 match runs
of the UNOS nationwide kidney exchange. While these two families of graphs differ substantially,
we find that even a small number R of non-adaptive rounds, followed by a single period during
which only those edges selected during the R rounds are queried, results in large gains relative to
the omniscient matching.

As is common in the kidney exchange literature, in the rest of this section we will loosely use the
term “matching” to refer to both 2-set packing (equivalent to the traditional definition of matching,
where two vertices connected by directed edges are translated to two vertices connected by a single
undirected edge) and k-set packing, possibly with the inclusion of altruist-initiated chains.

This section does not directly test the algorithms presented in this paper. For the 2-cycles-only
case, we do directly implement Algorithm 2. However, for the cases involving longer cycles and/or
chains, we do not restrict ourselves to polynomial time algorithms (unlike in the theory part of this
paper), instead choosing to optimally solve matching problems using integer programming during
each round, as well as for the final matching and for the omniscient benchmark matching. This
decision is informed by the current practice in kidney exchange, where computational resources are
much less of a problem than human or monetary resources (of which the latter two are necessary
for querying edges).

In our experiments, the planning of which edges to query proceeds in rounds as follows. Each
round of matching calls as a subsolver the matching algorithm presented by Dickerson et al. [2013],
which includes edge failure probabilities in the optimization objective to provide a maximum dis-
counted utility matching. The set of cycles and chains present in a round’s discounted matching
are added to a set of edges to query, and then those cycles and chains are constrained from ap-
pearing in future rounds. After all rounds are completed, this set of edges is queried, and a final
maximum discounted utility matching is compared against an omniscient matching that knows the
set of non-failing edges up front.

7.1. Experiments on dense generated graphs due to Saidman et al. [2006]

We begin by looking at graphs drawn from a distribution due to Saidman et al. [2006], hereafter
referred to as “the Saidman generator.” This generator takes into account the blood types of patients
and donors (such that the distribution is drawn from the general United States population), as well
as three levels of PRA and various other medical characteristics of patients and donors that may
affect the existence of an edge. Fielded kidney exchanges currently do not uniformly sample their
pairs from the set of all needy patients and able donors in the US, as assumed by the Saidman
generator; rather, exchanges tend to get hard-to-match patients who have not received an organ
through other means. Because of this, the Saidman generator tends to produce compatibility graphs
that are significantly denser than those seen in fielded kidney exchanges today (see, e.g., [Ashlagi
et al. 2011, 2013]).

Figure 2 presents the fraction of the omniscient objective achieved by R ∈ {0, 1, . . . , 5} non-
adaptive rounds of edge testing for generated graphs with 250 patient-donor pairs and no altruistic
donors, constrained to 2-cycles only (left) and both 2- and 3-cycles (right). Note that the case R = 0
corresponds to no edge testing, where a maximum discounted utility matching is determined by the
optimizer and then compared directly to the omniscient matching. The x-axis varies the uniform
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8. CONCLUSIONS & FUTURE RESEARCH

In this paper, we addressed stochastic matching and its generalization to k-set packing from both
a theoretical and experimental point of view. For the stochastic matching problem, we designed an
adaptive algorithm that queries only a constant number of edges per vertex and achieves a (1 − ǫ)
fraction of the omniscient solution, for an arbitrarily small ǫ > 0—and performs the queries in
only a constant number of rounds. We complemented this result with a non-adaptive algorithm that
achieves a (0.5− ǫ) fraction of the omniscient optimum.

We then extended our results to the more general problem of stochastic k-set packing by designing
an adaptive algorithm that achieves a ( 2k − ǫ) fraction of the omniscient optimal solution, again with
only O(1) queries per element. This guarantee is quite close to the best known polynomial-time
approximation ratio of 3

k+1 − ǫ for the standard non-stochastic setting [Fürer and Yu 2013].

We adapted these algorithms to the kidney exchange problem and, on both generated and real
data from the first 169 runs of the UNOS US nationwide kidney exchange, explored the effect of a
small number of edge query rounds on matching performance. In both cases—but especially on the
real data—a very small number of non-adaptive edge queries per donor-patient pair results in large
gains in expected successful matches across a wide range of edge failure probabilities.

8.1. Open theoretical problems

Two main open theoretical problems remain open. First, our adaptive algorithm for the matching
setting achieves a (1 − ǫ)-approximation in O(1) rounds and using O(1) queries per vertex. Is
there a non-adaptive algorithm that achieves the same guarantee? Such an algorithm would make
the practical message of the theoretical results even more appealing: instead of changing the status
quo in two ways—more rounds of crossmatch tests, more tests per patient—we would only need to
change it in the latter way.

Second, for the case of k-set packing, we achieve a ( 2k−ǫ)-approximation using O(n) queries—in
polynomial time. In kidney exchange, however, our scarcest resource is crossmatch tests; compu-
tational hardness is circumvented daily, through integer programming techniques [Abraham et al.
2007]. Is there an exponential-time adaptive algorithm for k-set packing that requires O(1) rounds
and O(n) queries, and achieves a (1 − ǫ)-approximation to the omniscient optimum? A positive
answer would require a new approach, because ours is inherently constrained to constant-size aug-
menting structures, which cannot yield an approximation ratio better than 2

k − ǫ, even if we could
compute optimal solutions to k-set packing [Hurkens and Schrijver 1989].

8.2. Discussion of policy implications of experimental results

Policy decisions in kidney exchange have been linked to economic and computational studies since
before the first large-scale exchange was fielded in 2003–2004 [Roth et al. 2004, 2005]. A feedback
loop exists between the reality of fielded exchanges—now not only in the United States but inter-
nationally as well—and the theoretical and empirical models that inform their operation, such that
the latter has grown substantially closer to accurately representing the former in recent years. That
said, many gaps still exist between the mathematical models used in kidney exchange studies and
the systems that actually provide matches on a day-to-day basis.

More accurate models are often not adopted quickly, if at all, by exchanges. One reason for
this is complexity—and not in the computational sense. Humans—doctors, lawyers, and other pol-
icymakers who are not necessarily versed in optimization or theoretical economics and computer
science—and the organizations they represent rightfully wish to understand the workings of an ex-
change’s matching policy. The techniques described in this paper are particularly exciting in that
they are quite easy to explain in accessible language. At a high level, we are proposing to test some
small number of promising potential matches for some subset of patient-donor pairs in a pool. As
Section 7.2 shows, even a single extra edge test per pair will produce substantially better results.
Furthermore, these extra edge tests can be performed entirely in parallel if an exchange decides on

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2015.



Ignorance is Almost Bliss: Near-Optimal Stochastic Matching With Few Queries X:17

a non-adaptive testing strategy (which we showed is quite effective), so the temporal cost to waiting
time between a match run and transplant event would be minimal compared to the status quo.

Clearly, more extensive studies would need to be undertaken before an exact policy recommenda-
tion could be made. These studies could take factors like the monetary cost of an extra crossmatch
test or variability in testing prowess across different medical laboratories into account explicitly dur-
ing the optimization process. Furthermore, various prioritization schemes could be implemented to
help, for example, hard-to-match pairs find a feasible match by assigning them a higher edge query
budget than easier-to-match pairs. The positive theoretical results presented in this paper, combined
with the promising experimental results on real data, provide a firm basis and motivation for this
type of policy analysis.
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A. MISSING PROOFS FROM SECTION 4

A.1. Analysis of the Non-Adaptive Algorithm

LEMMA A.1. Let E1 be an arbitrary subset of edges of E, and let E2 = E\E1. Then M(E) ≤
M(E1) +M(E2).

PROOF. Let E′ be an arbitrary subset of edges of E, and let E′
1 = E1∩E

′ and E′
2 = E2∩E

′. We
claim that |M(E′)| ≤ |M(E′

1)| + |M(E′
2)|. This is because if T is the set of edges in a maximum

matching in graph (V,E′), then clearly T ∩ E′
1 and T ∩ E′

2 are valid matchings in E′
1 and E′

2
respectively, and thereby it follows that |M(E′

1)| ≥ |T ∩ E′
1| and |M(E′

2)| ≥ |T ∩ E′
2|, and

hence |M(E′)| ≤ |M(E′
1)| + |M(E′

2)|. Expectation is a convex combination of the values of the
outcomes. For every subset E′ of edges in E, multiplying the above inequality by the probability that
the outcome of the coin tosses on the edges of E is E′, and then summing the various inequalities,
we get M(E) ≤M(E1) +M(E2).

In order to lower bound M(WR), we first show that for any round r, either our current collection

of edges has an expected matching size M(Wr−1) that compares well with M(E), or in round r,

we have a significant increase in M(Wr) over M(Wr−1).

LEMMA A.2. At any iteration r ∈ [R] of Algorithm 2 and odd L, if M(Wr−1) ≤ M(E)/2,
then

M(Wr) ≥
α

2
M(E) + (1− γ)M(Wr−1),

where γ = p(L+1)/2(1 + L+1
2 ) and α = p(L+1)/2.

PROOF. Define U = E \Wr−1. Assume that M(Wr−1) ≤M(E)/2. By Lemma A.1, we know

that M(U) ≥ M(E) −M(Wr−1). Hence, |Or| = |M(U)| ≥ M(U) ≥ M(E) −M(Wr−1) ≥
M(E)/2.

In a thought experiment, say at the beginning of round r, we query the set Wr−1 and let W ′
r−1 be

the set of edges that are found to exist. By Lemma 4.2, there are at least |Or|−(1+
2

L+1 )|M(W ′
r−1)|

augmenting paths of length at most L in Or∆M(W ′
r−1) that augment M(W ′

r−1). Each of these

paths succeeds with probability at least p(L+1)/2. We have,

M(Or ∪W ′
r−1|W

′
r−1)− |M(W ′

r−1)| ≥ p(L+1)/2

(

|Or| − (1 +
2

L+ 1
)|M(W ′

r−1)|

)

≥ p(L+1)/2

(

1

2
M(E)− (1 +

2

L+ 1
)|M(W ′

r−1)|

)

,

c© 2015 ACM 0000-0000/2015/02-ARTX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000
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where the expectation on the left hand side is taken only over the outcome of the edges in Or.

Therefore, we have M(Or ∪W
′
r−1|W

′
r−1) ≥

α
2 M(E)+ (1− γ)|M(W ′

r−1)|, where α = p(L+1)/2

and γ = p(L+1)/2 (1+ 2
L+1 ). Taking expectation over the coin tosses on Wr−1 that create outcome

W ′
r−1, we have our result, i.e.,

M(Wr) ≥ EWr−1 [M(Or ∪W ′
r−1|W

′
r−1)] ≥M(Or ∪Wr−1) ≥

α

2
M(E) + (1− γ)M(Wr−1).

PROOF OF THEOREM 5.1. For ease of exposition, assume L = 4
ǫ − 1 is an odd integer. Then,

either M(WR) ≥ M(E)/2 in which case we are done. Or otherwise, by repeatedly applying
Lemma A.2 for R steps, we have

M(WR) ≥
α

2
(1 + (1− γ) + (1− γ)2 + · · ·+ (1− γ)R−1)M(E) ≥

α

2

(1− (1− γ)R)

γ
M(E).

Now, α
γ (1− (1−γ)R) ≥ 1− 2

L+1 − e−γR ≥ 1− ǫ for R = log(2/ǫ)
p2/ǫ . Hence, we have our 0.5(1− ǫ)

approximation.

A.2. Example Graph for the Non-Adaptive Algorithm

LEMMA A.3. Let G = (U ∪ V, U × V ) be a complete bipartite graph between U and V with

|U | = |V | = n. For any constant probability p, M(E) ≥ n− o(n).

PROOF. Denote by Ep the random set of edges formed by including each edge in U × V inde-

pendently with probability p. We show that with probability at least 1 − 1
n8 , over the draw Ep, the

maximum matching in the graph (U ∪ V,Ep) is at least n − c log(n), where c = 10/ log( 1
(1−p) ),

and this will complete our claim.
In order to show this, we prove that with probability at least 1− 1

n8 , over the draw Ep, all subsets
S ⊆ U of size at most n − c log(n), have a neighborhood of size at least |S|. By Hall’s theorem,
our claim will follow.

Consider any set S ⊆ U of size at most n − c log(n). We will call set S ‘bad’ if there exists
some set T ⊆ V of size (|S| − 1) such that S does not have edges to V \ T . Fix any set T ⊆ V
of size |S| − 1. Over draws of Ep, the probability that S has no outgoing edges to V \ T is at most

(1 − p)|S||V \T | = (1 − p)|S|(n−|S|+1). Hence, by union bound, the probability that S is bad is at

most
(

n
|S|−1

)

(1− p)|S|(n−|S|+1).

Again, by union bound, the probability that some set S ⊆ U of size at most n − c log(n) is bad

is at most
∑

1≤|S|≤n−c log(n)

(

n
|S|

)(

n
|S|−1

)

(1− p)|S|(n−|S|+1) and this in turn is at most

∑

1≤|S|≤n−c log(n)

n
|S|

n
|S|(1− p)|S|(n−|S|+1)

≤
∑

1≤|S|≤n−c log(n)

e
|S|·(2 log(n)+(n+1) log(1−p)−|S| log(1−p))

Note that the exponent in the summation achieves its maximum for |S| = 1. For c =
10/ log( 1

1−p ), we have that the given sum is at most exp(−n
2 log( 1

1−p )), and hence with high prob-

ability, no set S ⊆ U of size at most n− c log(n) is bad.

PROOF OF THEOREM 5.2. Let (V,E) be a graph, illustrated in Figure 5, whose vertices are
partitioned into sets A, B, C, and D, such that |A| = |D| = t

2 , |B| = |C| = t. The edge set E
consists of one perfect matching between vertices of B and C, and two complete bipartite graphs,
one between A and B, and another between C and D. Let p = 0.5 be the existence probability of
any edge.

We first examine the value of the omniscient optimal, M(E). Since p = 0.5, in expectation, half
of the edges in the perfect matching between B and C exist, and therefore half of the vertices of B
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...

...

...

...

...
...

B1

B2

C1

C2

DA

Fig. 5. The blue and red edges represent the matching picked at rounds 1 and 2, respectively. The green edges represent
the edges picked at round 3 and above. The dashed edges are never picked by the algorithm.

and C will get matched. By Lemma A.3, with high probability, the complete bipartite graph between
the remaining half of B and A has a matching of size at least t/2 − o(t). And similarly, with high
probability, the complete bipartite graph between remaining half of C and D has a matching of size
at least t/2− o(t). Therefore, M(E) is at least 3

2 t− o(t).
Next, we look at Algorithm 2. For ease of exposition, let B1 and B2 denote the top and bottom

half of the vertices in B. Similarly, define C1 and C2. Since Algorithm 2 picks maximum matchings
arbitrarily, we show that there exists a way of picking maximum matchings such that the expected
matching size of the union of the edges picked in the matching is at most 5

4 t (= 5
6

3
2 t).

Consider the following choice of maximum matching picked by the algorithm: In the first round,
the algorithm picks the perfect matching between B1 and C1, and a perfect matching between A
and B2, and a perfect matching between C2 and D. In the second round, the algorithm picks the
perfect matching between B2 and C2, and a perfect matching each between A and B1, and between
C1 and D. After these two rounds, we can see that there are no more edges left between B and C.
For the subsequent R − 2 rounds, in each round, the algorithms picks a perfect matching between
A and B1, and a perfect matching between C1 and D. It is easy to verify that in every round, the
algorithm has picked a maximum matching from the remnant graph.

We analyze the expected size of matching output by the algorithm. For each of the vertices in
B2 and C2, the algorithm has picked only two incident edges. For any vertex in B2 and C2, with
probability at least (1 − p)2 = 1

4 , none of these two incident edges exist. Hence, the expected

number of vertices that are unmatched in B2 and C2 is at least 1
4 (

t
2 + t

2 ) =
t
4 . Since the vertices in

A can only be matched with vertices in B, and the vertices in D can only be matched with vertices
in C, it follows that at least t

4 of the vertices in A and C are unmatched in expectation. Hence, the

total number of edges included in the matching is at most 5
4 t. This completes our claim.

B. MISSING PROOFS FROM SECTION 5

In this section, we fill in the missing proofs for stochastic k-set packing. A notation that we will use
in some parts of the analysis is K(A|B) that we define as follows: Given a collection B ⊆ A that

has been queried and B′ ⊆ B that exists, we use K(A|B) to denote E[|K(Xp ∪B′)|] where Xp is
the random set formed by including every element of A \B independently with probability p.

B.1. Adaptive Algorithm for k-Set Packing

We introduce some notation that is used in the remainder of the proofs in this section. At the begin-

ning of the rth iteration of Algorithm 4, we know the results of the queries
⋃r−1

i=1 Qi. We define Zr

to be the expected cardinality of the instance (U,A) given the result of these queries. More formally,

Zr = K(A|
⋃r−1

i=1 Qi). We note that Z1 = K(A).
For a given r, we use the notation EQr

[X] to denote the expected value of X where the expecta-
tion is taken over only the outcome of query Qr, and fixing the outcomes on the results of queries
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⋃r−1
i=1 Qi. Moreover, for a given r, we use EQr,...,QR

[X] to denote the expected value of X with the

expectation taken over the outcomes of queries
⋃R

i=r Qi, and fixing an outcome on the results of

queries
⋃r−1

i=1 Qi.
The next result, Lemma B.1, proves a lower bound on the expected increase in the cardinality of

Br (the solution at round r) with respect to Br−1 (the solution in the previous round).

LEMMA B.1. For every r ∈ [R], it is the case that EQr
[|Br|] ≥ (1− γ)|Br−1|+ γ( 2k − η)Zr,

where γ = psη,k

( 2
k−η)k sη,k

.

PROOF. By Lemma 6.2, Qr is a collection of at least 1
k sη,k

(|K(Ar)| −
|Br−1|
2
k−η

) disjoint sη,k-

size augmenting structures (C,D) for Br−1. Since in each augmenting structure (C,D), C has at
most sη,k sets, on querying, the set C exists with probability at least psη,k . Therefore, the expected
increase in the size of the solution at Step 2c is:

EQr [|Br|]− |Br−1| ≥ pksη,k |Qr| ≥
psη,k

k sη,k

(

|K(Ar)| −
|Br−1|
2
k − η

)

≥ γ
(

(
2

k
− η) |K(Ar)| − |Br−1|

)

.

Noting that |K(Ar)| ≥ Zr, we have our result.

PROOF OF THEOREM 6.3. First, we make a technical observation about Zr: For every r ≤ R,
EQr−1 [Zr] = Zr−1. This is since

EQr−1 [Zr] = EQr−1 [K(A|
r−1
⋃

i=1

Qi)] = K(A|
r−2
⋃

i=1

Qi) = Zr−1. (4)

Now, similar to the proof of Theorem 4.1, we first apply Lemma B.1 to the Rth step and get
EQR

[|BR|] ≥ (1 − γ)|BR−1| + γ( 2k − η)ZR. Next taking expectation on both sides with respect

to QR−1, we get EQR−1,QR
[|BR|] ≥ (1 − γ)EQR−1

[|BR−1|] + γ( 2k − η)EQR−1
[ZR]. Applying

Lemma B.1 to EQR−1
[|BR−1|] and Equation (4) to EQR−1

[ZR], we get

EQR−1,QR
[|BR|] ≥ (1− γ)((1− γ)|BR−2|+ γ(

2

k
− η)ZR−1) + γ(

2

k
− η) ZR−1

= (1− γ)2|BR−2|+ γ(
2

k
− η)(1 + (1− γ)) ZR−1.

We can repeat the above steps, by sequentially taking expectation over QR−2 through Q1, and
applying Lemma B.1 and Equation (4) at each step, to achieve

EQ1,...,QR
[|BR|] ≥ (1− γ)R|B0|+ γ(

2

k
− η)(1 + (1− γ) + · · ·+ (1− γ)R−1) Z1

≥ (
2

k
− η)(1− (1− γ)R) K(A) ≥

2

k
(1−

ηk

2
)(1− e−γR). K(A)

We complete the claim by noting that

2

k
(1−

ηk

2
)(1− e−γR) ≥

2

k
(1−

ǫ

2
)(1−

ǫ

2
) ≥ (1− ǫ)

2

k
,

where the penultimate inequality comes from the fact that η = ǫ/k and

R =
( 2k − η) k sη,k

psη,k
log(

2

ǫ
) =

1

γ
log(

2

ǫ
).

Therefore, the cardinality of BR in expectation is at least a (1− ǫ) 2kK(A).
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B.2. Non-Adaptive Algorithm for k-Set Packing

To prove Theorem 6.4, we analyze the non-adaptive Algorithm 5 from the main paper. Before prov-
ing Theorem 6.4, we present a technical claim.

CLAIM B.2. Let A1 ⊆ A and A2 = A \A1. Then K(A) ≤ K(A1) +K(A2).

PROOF. Let A′ be any subset of A, A′
1 = A1∩A

′, and A′
2 = A2∩A

′. Since the k-set packing of
A′ restricted to A′

1 and A′
2 are valid k-set packings for these subsets, hence |K(A′)| ≤ |K(A′

1))|+
|K(A′

2)|. For every A′ ⊆ A, the above inequality holds. Expectation is a linear combination of

the values of the outcomes, and so this inequality also holds in expectation. That is, K(A) ≤
K(A1) +K(A2).

PROOF OF THEOREM 6.4. We claim that the expected cardinality of the k-set solution output by

Algorithm 5 is at least (1− ǫ
2 )

( 2
k−η)2

1+ 2
k−η

K(A). The claimed approximation will follow since η = ǫ
2k .

For ease of exposition, let α =
2
k−η

1+ 2
k−η

, and now note that
( 2
k−η)2

1+ 2
k−η

= α( 2k−η) = (1−α)( 2k−η)
2.

Assume that K(BR) ≤ α ·K(A) (else it will be immediately follow that the expected cardinality

of the k-set solution output by the algorithm is at least ( 2k − η)αK(A) and this will complete the
claim).

First, we make an observation. For each round r ∈ [R], we have K(Br) ≤ K(BR) ≤ αK(A). If
we denote Ar = A \Br−1, then it follows that

|Or| ≥ (
2

k
−η)|K(Ar)| ≥ (

2

k
−η)K(Ar) ≥ (

2

k
−η)(K(A)−K(Br−1)) ≥ (

2

k
−η)(1−α)K(A) ,

where the first inequality follows from the fact that Or is ( 2k − η)-approximation to Ar, and the
second inequality follows from Claim B.2.

We analyze the expected cardinality of the output solution QR by analyzing the R stages that
the algorithm adopts at Steps 3 and 4 to create solution QR. For this analysis, we use the following
notation: For a given r, we use the notation EOr [X] to denote the expected value of X where the
expectation is taken over only the outcome of query Or, and fixing the outcomes on the results of

queries
⋃r−1

i=1 Oi. Moreover, for a given r, we use EOr,...,OR
[X] to denote the expected value of

X with the expectation taken over the outcomes of queries
⋃R

i=r Oi, and fixing an outcome on the

results of queries
⋃r−1

i=1 Oi.
In the first stage, Q1 is assigned to the collection of k-sets that are found to exist in O1. In the

second stage, we try to augment Q1 by finding augmenting structures from O2 and querying them.

By Lemma 6.2, it finds at least 1
ksη,k

(

|O2| −
|Q1|
2
k−η

)

disjoint augmenting structures from O2 that

have size at most sη,k and augment Q1. Since each augmenting structure exists independently with
probability at least psη,k , in expectation over the outcomes of queries to O2, the size of Q2, EO2

[Q2],
is at least

|Q1|+ psη,k

(

1

ksη,k

(

|O2| −
|Q1|
2
k − η

)

)

=
psη,k

ksη,k
|O2|+ (1−

psη,k

ksη,k(
2
k − η)

)|Q1|

≥
psη,k

ksη,k
(
2

k
− η)(1− α)K(A) + (1−

psη,k

ksη,k(
2
k − η)

) |Q1|,

and hence the expected size of Q2 is at least β K(A)+(1−γ)|Q1|, where β = psη,k

ksη,k
( 2k −η)(1−α)

and γ = psη,k

k sη,k ( 2
k−η)

.

For the third stage, a similar analysis shows that the expected size of Q3, EO3 [Q3], with ex-

pectation taken only over the outcomes of the queries to O3, is at least β K(A) + (1 − γ)|Q2|.
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If we now, in addition, take expectation over the outcomes of queries to O2, we get the ex-
pected size of Q3, EO2,O3

[Q3], is at least β K(A) + (1 − γ) (β K(A) + (1 − γ)|Q1|) =

β(1 + (1− γ)) K(A) + (1− γ)2 |Q1|.
Repeating the above steps, the procedure creates the k-set solution QR (from O1, · · · , OR) whose

expected size, with expectation taken over the outcomes of queries to O2 through OR, is at least

β(1 + (1− γ) + · · ·+ (1− γ)R−2)K(A) + (1− γ)R−1|Q1| .

Finally, taking expectation over outcomes of queries to O1, since the expected size of |Q1| is at

least p|O1| ≥ p ( 2k − η)K(A) ≥ β K(A), we have that the expected size of QR is at least

β (1 + (1− γ) + · · ·+ (1− γ)R−1)K(A)

=
β

γ
(1− (1− γ)R)K(A) ≥

β

γ
(1− e−γR)K(A) ≥ (1−

ǫ

2
)
( 2k − η)2

2
k − η + 1

K(A)

C. MATCHING UNDER CORRELATED EDGE PROBABILITIES

In this section, we extend our framework to a more general setting. Here, the existence probability of
an edge depends on parameters that are associated with the endpoints of the edge. Specifically, every
vertex vi ∈ V is associated with parameter pi, and an edge eij = (vi, vj) exists with probability
pipj .

Importantly, this model is a generalization of the model studied above: we can still think of each
edge e ∈ E as existing with a given probability, and these events are independent. However, using
vertex parameters gives us a formal framework for correlating the probabilities of edges incident to
any particular vertex. The motivation for this comes from kidney exchange: Some highly sensitized
patients are less likely than other patients to be compatible with potential donors. Such patients
correspond to a small pi parameter.

We consider two settings: adversarial and stochastic. In the adversarial setting, the vertex param-
eters pi are selected by an adversary, whereas in the stochastic model, the parameters are drawn
from a distribution. In the former setting, for δ > 0, define fδ to be the number of vertices that have
pi < δ. In the latter setting, for a distribution D and δ > 0, let gδ indicate the probability that a
vertex has its parameter less than δ, i.e., gδ = Prpi∼D[pi < δ]. We formulate our results in terms
of δ, fδ , and gδ , and the desired value of δ can depend on the application. For example, in kidney
exchange, δ would be the probability that a highly-sensitized patient is compatible with a random
donor (a patient is typically considered to be highly sensitized when this probability is 0.2), and fδ
would be the number of highly-sensitized patients in the kidney exchange pool.

C.1. Adaptive Algorithm in Adversarial Setting

In this section, we consider the case where an adversary chooses the values of vertex parameters.
We give guarantees on the performance of Algorithm 1 in this setting.

THEOREM C.1. For any graph (V,E), any ǫ > 0, and δ > 0, Algorithm 1 returns a matching

with expected size of (1− ǫ)(M(E)− fδ) in R = log(2/ǫ)
δ4/ǫ

iterations.

The proof of this theorem and the subsequent lemmas are similar to the proofs of Section 4,
and are included here for completeness. In the next lemma, EQr

[|Mr|] indicates the expected size
of Mr, where the expectation is over the query outcome of Qr. More formally, EQr

[|Mr|] =

M(
⋃r

j=1 Qj |
⋃r−1

j=1 Qj). We use Zr to denote the expected size of the maximum matching in graph

(V,E) given the results of the queries
⋃r−1

j=1 Qj . More formally, Zr = M(E|
⋃r−1

j=1 Qi). Note that

Z1 = M(E).
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LEMMA C.2. For all r ∈ [R] and odd L, EQr [|Mr|] ≥ (1 − γ)|Mr−1| + α(Zr − fδ), where

γ = δL+1(1 + 2
L+1 ) and α = δL+1.

PROOF. By Lemma 4.2, there exists |Or| − (1 + 2
L+1 )|Mr−1| many augmenting paths in

Or∆Mr−1 that augment Mr−1 and have length at most L. These augmenting paths are disjoint,
so at most fδ of them include a vertex vi, with pi ≤ δ. We will ignore these paths. Among the re-
maining augmenting paths, each path of length L, has at most L+1

2 edges that have not been queried
yet. These edges do not share a vertex, so each one exists, independently of others, with probability
at least δ2. Therefore, the expected increase in the size of the matching from these augmenting paths
is:

EQr [|Mr|]− |Mr−1| ≥ δL+1

(

|Or| − (1 +
2

L+ 1
)|Mr−1| − fδ

)

≥ α(Zr − fδ)− γ|Mr−1|.

where the last inequality holds by the fact that Zr, which is the expected size of the optimal matching
with expectation taken over the non-queried edges, cannot be larger than Or, which is the maximum
matching assuming that every non-queried edge exists.

PROOF SKETCH OF THEOREM C.1. Let L = 4
ǫ − 1. First note that for all r, it is true that

EQr−1
[Zr − fδ] = EQr−1

[Zr]− fδ = EQr−1

[

M(E|
r−1
⋃

i=1

Qi)

]

− fδ

= M(E|
r−2
⋃

i=1

Qi)− fδ = Zr−1 − fδ.

The remainder of the proof is similar to that of Theorem 4.1 with Zr − fδ replacing Zr. Following
similar analysis, we have

EQ1,...,QR
[|MR|] ≥ α

1− (1− γ)R

γ
(M(E)− fδ).

Since R = log(2/ǫ)
δ4/ǫ

, we have

α

γ

(

1− (1− γ)R
)

≥ (1−
2

L+ 1
)
(

1− (1− γ)R
)

≥ (1−
ǫ

2
)(1− e−γR) ≥ (1− ǫ). (5)

Therefore, Algorithm 1 returns a matching with expected size of (1− ǫ)(M(E)− fδ).

C.2. Adaptive Algorithm in Stochastic Setting

In this section, we consider the case where the vertex parameters are drawn independently from a
distribution.

COROLLARY C.3. Given any graph (V,E) with vertex parameters that are drawn from distri-

bution D and any ǫ, δ > 0, Algorithm 1 returns a matching with expected size of (1 − ǫ)(M(E) −

ngδ) in R = log(2/ǫ)
δ4/ǫ

iterations.

PROOF. The result of Theorem C.1 holds for any value of fδ . Hence, on taking expectation over
the value of fδ , we have our result.

The next corollary shows the implication of Corollary C.3 for the uniform distribution.

COROLLARY C.4. For a given graph (V,E) with vertex parameters that are drawn from the
uniform distribution, and any ǫ > 0, Algorithm 1 returns a matching with expected size of (1 −

ǫ)(M(E)− ǫn) in R = log(2/ǫ)
ǫ4/ǫ

iterations.
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PROOF. This follows from Corollary C.3 by setting δ = ǫ and noting that gǫ = ǫ for the uniform
distribution.

C.3. Non-adaptive algorithm in Adversarial Setting

In this section, we consider the case where an adversary chooses the values of vertex parameters.
We prove performance guarantees for Algorithm 2 in this adversarial setting.

THEOREM C.5. Given a graph (V,E) with vertex parameters that are selected by an adversary,

and any ǫ, δ > 0, Algorithm 2 returns a matching with expected size of 1
2 (1 − ǫ)(M(E) − fδ) in

R = log(2/ǫ)
δ4/ǫ

iterations.

The proof of Theorem C.5 and the subsequent lemma are similar to Section 5, and are included here
for completeness.

LEMMA C.6. For any iteration r ∈ [R] of Algorithm 2 and odd L, if M(Wr−1) ≤ M(E)/2,

then M(Wr) ≥
α
2 (M(E)− fδ) + (1− γ)M(Wr−1), where α = δL+1 and γ = δL+1(1 + 2

L+1 ).

PROOF. Define U = E \Wr−1. Assume that M(Wr−1) ≤ M(E)/2. By Claim A.1, we know

that M(U) ≥ M(E) −M(Wr−1). Hence, |Or| = |M(U)| ≥ M(U) ≥ M(E) −M(Wr−1) ≥
M(E)/2.

Let W ′
r−1 represent one possible outcome of existing edges when edges are drawn from Wr−1.

By Lemma 4.2, there are at least |Or| − (1 + 2
L+1 )|M(W ′

r−1)| augmenting paths of length at most

L in Or∆M(W ′
r−1) that augment M(W ′

r−1). Among these paths, at most fδ have a vertex vi, with

pi < δ. We ignore these paths. Each remaining path succeeds with probability (δ2)(L+1)/2. Hence,
the expected increase in the size of |M(W ′

r−1)| using the remaining paths of length L is,

M(Or ∪W ′
r−1|W

′
r−1)− |M(W ′

r−1)| ≥ δL+1

(

|Or| − (1 +
2

L+ 1
)|M(W ′

r−1)| − fδ

)

≥ δL+1

(

1

2
M(E)− (1 +

2

L+ 1
)|M(W ′

r−1)| − fδ

)

.

Re-arranging the inequality, we get M(Or∪W
′
r−1|W

′
r−1) ≥

α
2 (M(E)−fδ)+(1−γ)|M(W ′

r−1)|.
Taking expectation over the coin tosses on Wr−1 that create outcome W ′

r−1, we have

M(Wr) ≥ EWr−1
[M(Or ∪W ′

r−1|W
′
r−1)] ≥

α

2
(M(E)− fδ) + (1− γ)M(Wr−1).

PROOF SKETCH OF THEOREM C.5. Let L = 4
ǫ − 1. The proof is similar to that of Theorem 5.1

with the value of M(E) being replaced by M(E)− fδ . Following a similar analysis, we get

M(WR) ≥
α

2

(1− (1− γ)R)

γ
(M(E)− fδ).

Now, α
γ (1 − (1 − γ)R) ≥ (1 − 2

L+1 )(1 − e−γR) ≥ (1 − ǫ) for R = log(2/ǫ)
δ4/ǫ

. Hence, Algorithm 2

returns a matching with expected size of 0.5(1− ǫ)(M(E)− fδ).

C.4. Non-adaptive algorithm in Stochastic Setting

We examine the performance of Algorithm 2 in the setting where the vertex parameters are chosen
independently from a distribution.
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