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Abstract— Sampling-based motion planning algorithms pro-
vide a means to adapt the behaviors of autonomous robots
to changing or unknown a priori environmental conditions.
However, as the size of the space over which a sampling-based
approach needs to search is increased (perhaps due to consid-
ering robots with many degree of freedom) the computational
limits necessary for real-time operation are quickly exceeded.
To address this issue, this paper presents a novel sampling-
based approach to locomotion planning for highly-articulated
robots wherein the parameters associated with a class of
locomotive behaviors (e.g., inter-leg coordination, stride length,
etc.) are inferred in real-time using a sample-efficient algorithm.
More specifically, this work presents a data-based approach
wherein offline-learned optimal behaviors, represented using
central pattern generators (CPGs), are used to train a class of
probabilistic graphical models (PGMs). The trained PGMs are
then used to inform a sampling distribution of inferred walking
gaits for legged hexapod robots. Simulated as well as hardware
results are presented to demonstrate the successful application
of the online inference algorithm.

I. INTRODUCTION

Autonomous systems currently suffer from an inability
to safely control, or rather adapt, their behavior to achieve
high-level goals in unstructured environments. In light of
these limitations, one potential means to achieve the level of
adaptation necessary for autonomous systems to successfully
operate in unstructured environments is through sampling-
based planning techniques (this potential is well documented
in the motion planning literature). However, conventional
sampling-based approaches tend to be computationally in-
efficient when sampling in high dimensional spaces, e.g.,
sampling the optimal parameters, relative to some high-level
locomotive objective, for highly-articulated robots moving
through uneven terrains. This work thus presents a new
approach to sampling-based navigation planning for highly-
articulated robots wherein a class of probabilistic graphical
models is used to dramatically limit the effective size of
the search space. More specifically, we show how to encode
sets of features related to the kinematics, task objective, and
environmental context in a PGM that is used within an online
sampling-based inference algorithm to efficiently determine
optimal motion parameters for underactuated robots moving
through nontrivial terrains.
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Fig. 1. Hexapod robot on which the efficient sampling-based planning
framework developed in this work is demonstrated.

The hexapod robot shown in Fig. 1 provides an example
of the class of articulated robots considered in this work.
To determine an “optimal behavior” for such a robot using
a conventional sampling-based planning technique would
require exhaustively searching a very large dimensional space
(at minimum forty-eight dimensions). The resulting planning
algorithm is therefore extremely time consuming and thus not
applicable to online implementations. However, given some a
priori knowledge that determines regions of the search space
are “most relevant” to the hexapod achieving high-level goals
has the potential to dramatically reduce the effective size of
the search space and thus lead to a solution that does run in
real-time.

This work quantifies what regions of the search space for
a highly articulated robot are most relevant to the system
achieving high-level objectives using an offline framework
for generating a library of optimal locomotive behaviors.
The behaviors are represented in terms of parameterized
CPGs that implicitly define cyclic locomotive behaviors, i.e.,
locomotive gaits. For a given high-level objective, the CPG-
based behaviors are learned using a gradient-free, genetic
algorithm that determines the optimal set of CPG parameters
for a given robot in a specific environment.

The main contribution of this work uses the offline-
learned CPG-based behaviors to train a graphical model that
encodes features describing a system’s kinematics, a high-
level objective, and environmental description (this work
manually defines the obstacle dimensions and does not use
an onboard sensor). The trained PGM is then used to learn
how to efficiently sample from the underlying distribution of
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CPG parameters during online implementation. We present
experimental results that show the framework developed in
this work outperform traditional sampling-based techniques.

The remainder of this paper is organized as follows. In
Section II, we present related works with an emphasis on
managing the behaviors of highly-articulated, underactuated
systems. In Section III, we present a high-level overview
of the automated framework for online sampling based in-
ference and the probabilistic inference framework developed
for this approach. Section IV describes the methods applied
for evaluating the performance of the proposed framework.
Section V presents results that show how our framework
compares to traditional sample based techniques for inferring
the motion parameters of articulated robots moving through
semi-complex terrains. Finally, in Section VI, we conclude
with a discussion of the limitations and future scope of the
work presented in this paper.

II. BACKGROUND AND RELATED WORKS

A brief background on the different components that form
the foundation of this work are incorporated to provide
context.

A. Central Pattern Generator

Central Pattern Generators (CPGs) are a tool for control-
ling the motion in highly-articulated systems [2]. CPGs are
defined as a set of coupled ordinary differential equations
that model the interconnected relationship between different
degrees of freedom in such systems. For example, for an n-
legged articulated robot with two rotary shoulder joints per
leg ( as the motions of subsequent joints can be calculated
using forward kinematics), let x(t) = [x1(t), ..., xn(t)] rep-
resent the joint angles of the shoulder joints of each leg in the
axial plane (proximal), and y(t) = [y1(t), ..., yn(t)] represent
the joint angles of the shoulder joints in the sagittal plane
(middle joint). Given these assumptions, the CPG model used
in this work (as presented in [5]) is defined by

ẋi(t) = −ω ∂Hyi + γ(1−H(xi(t), yi(t))) ∂Hxi (1)
ẏi(t) = ω ∂Hxi + γ(1−H(xi(t), yi(t))) ∂Hyi (2)

+ (λΣjKijyj(t))

where ω is the speed of each oscillator’s phase, γ represents
the “forcing” to the CPG cycle, λ represents the strength of
inter-oscillator coupling, and K defines the coupling matrix
that is used to determine the phase relationship between
oscillators. The parameter H here defines a super-elliptical
shape of the oscillator wherein

Hc(x, y) =

∣∣∣∣x− cxa

∣∣∣∣n +

∣∣∣∣y − cyb

∣∣∣∣n (3)

and ∂Hθ = ∂H
∂θ (xi(t), yi(t)) where θ ∈ xi, yi in Equation

1. Note that, a and b represent the semi-minor and semi-
major axes of the elliptical cycle respectively and n governs
the overall shape of the oscillator trajectory (e.g., n = 2
results in a round elliptical shape and n = 4 a rectangular
shape). An elliptical shape is chosen as this family of limit

Fig. 2. The figure shows three different kinematic configurations of the
simulated hexapod used for learning CPG parameters. The top picture shows
the normal configuration of the hexapod. The middle picture shows an
symmetric hexapod with four long legs and two short legs. The bottom
picture shows the tall configuration of the hexapod.

cycles gives us independent control over step height, step
length and the shape of the cycle by varying the constants in
Equation 3. Lastly, cx and cy are constant offset parameters
that determine the nominal posture of the system for stable
locomotion (As shown in Fig. 1, the front and back legs are
spaced away from the centre of the robot to give it a stable
grip).

Variations of such models are used in the bio-inspired [3]
control of multi-legged robots [4], such as quadrapeds [9],
swimming lamprey [6] and amphibious snake robots [7][8].
Works presented by Sartoretti et. al[5] and Righetti et.al[10]
incorporate the use of sensory and intertial feedbacks for
stabilizing locomotion on legged systems. Though previous
work in the CPG literature does consider augmenting CPG
models to adapt the underlying behavior of a given system,
these prior works have attempted to hand craft methods that
incorporate feedback into CPG models and do not account
for adapting the motion parameters in real time based on
uncertainty. In this work, we develop a novel means to adapt
CPG-based locomotion models through efficient sampling-
based methods made available by leveraging novel PGMs.

B. Probabilistic Graphical Models

For robots to reliably perform difficult tasks in unstruc-
tured environments they need to be able to reason about many
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different forms of uncertainty. PGMs permeate nearly all
aspects of robotic intelligence and serve as one of the primary
means to make autonomous decisions under uncertainty.
For example, in various motion planning algorithms PGMs
span sampling-based techniques for representing the state-
action space [14], to those that explicitly reason about the
uncertainty of transitions [15] and observations [16] for
localization [17] and mapping[18] [19] tasks.

Since PGMs can be used to efficiently perform infer-
ence by naturally exploiting conditional independence to
limit underlying complexity, this basic concept has divers
application in the context of Natural Language Process-
ing (NLP). Methods such as Generalized Grounding Graph
[13], Distributed Correspondence Graph [1], Hierarchical
Distributed Correspondence Graph [11] and Adaptive Dis-
tributed Correspondence Graph [12] build graphical models
that independently infer distributions of symbols that rep-
resent objects, spatial relationships, constraints, trajectories,
etc. for individual phrases forming the natural language
statement. The distributed corresponding graph assumes con-
ditional independence across constituents of the symbolic
representation to efficiently infer distributions of symbols. In
this work, we draw inspiration from [1], [11] in recognizing
that the mathematical framework for efficiently inferring
distributions of symbols for natural language understanding
can be applied to the problem of inferring CPG parameters
for locomotive behaviors of highly articulated robots moving
through complex terrains.

A type of graphical model that is closely related to this
work is Partially Observable Markov Decision Processes
(POMDPs) serve as a useful framework for decision-making
tasks under uncertainity. However, they tend to be computa-
tionally infeasible to solve directly. Joelle Pineau et. al [25],
Sreenath et.al[28] and Simbro et. al [27] present POMDP
based approaches to large-scale problems, but restrict its
useage as a high level planner due to its computational
cost, requiring a low level non probabilistic planner for
robot control. Fuko et.al, [26] presents a novel hierarchical
POMDP algorithm for autonomous robot nagivation in real
time. However, the authors do not discuss how these methods
generalize across systems with different configurations, one
of the problems that is directly addressed in this work.

III. TECHNICAL APPROACH

Figure 3 highlights the different components of the frame-
work for inferring locomotive behaviors for articulated robots
developed in this work. First, an offline data set consisting of
CPG-based behaviors training collected across robots with
varying kinematics in different environments. Specifically,
we learn in an offline framework the constant values a (the
step height), b (the sweep) and coupling matrix K for each
of the legs of the platform considered using a state genetic
learning algorithm [22]. To evaluate an individual in the
population, the CPG parameters (a,b,K) were simulated for
a short time, with the reward being calculated as

Reward(xdist, ydist) = ydist − 0.5
√
|xdist| (4)

where xdist and ydist are the distance travelled in the X
and Y directions in the world frame. This reward function
rewards forward progress whilst penalizing weaning off
course. However, It should be noted that the magnitude of
reward is greater than the penalty. The collection of training
data forms the offline behavior library. This data is then used
to train the graphical model used to reduce the complexity of
online, sampling-based inference. The PGM training process
involves encoding sets of features containing the behavior
parameters for the different kinematic configurations of the
hexapod robot, the environment and the end goal into a factor
graph. These encoded feature sets allow the graphical model
to learn how to sample from the otherwise high dimensional
search space during run-time.

Leveraging recent work in probabilistic graphical models
for natural language understanding of robot instructions [24],
[23], we propose a factor graph to infer a set of CPG param-
eters (P) from a space of CPG parameters P conditioned on
random variables that represent behavior (B), environment
(E), and model (M). The distribution over behaviors repre-
sents uncertainty in what activity should be performed from a
task planning framework. The distribution over environments
models the sensor noise and state estimation inaccuracy. The
distribution over models represents the uncertainty in internal
parameters or structure of the robot model (e.g., range of
motion of joints, motor performance), i.e.,

P∗ = arg max
P∈P

p (P|B, E ,M) (5)

We model this distribution as a factor graph with known
binary correspondence (φ), behavior, environment, and task
variables and unknown parameter variables. As described
[24], a binary correspondence variable with a “true” logic
value models the probability of a symbol in the context of
the other random variables. We reformulate the expression
described in Equation 5 as a factor graph with known binary
correspondence variables, i.e.,

P∗ = arg max
P∈P

p (φ = true|P,B, E ,M) (6)

The primary issue with this formulation is that we are
sampling parameters from a distribution IRn, where n is the
number of free parameters in the CPGs that describe the
motion of the underactuated system. Using the insight made
available by Distributed Correspondence Graphs [23] for
approximating models with large symbolic representations,
we assume conditional independence across constituents of
the symbolic representation to make inference tractable, i.e.,

P∗ = arg max
p1...pn∈P

|N|∏
i=1

p (φi = true|pi,B, E ,M) (7)

As in [24], [23] we model the expressions for conditional
probability distributions using log-linear models that learn
features weights from a set of annotated examples (envi-
ronment, behavior, model, and learned parameters) obtained
from the genetic algorithm. A graphical representation of the
factor graph is illustrated in Figure 4. We approximate the
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Fig. 3. The automated framework showing the offline (red box) and the online inference (blue box) modules. The genetic algorithm-based training of
CPG parameters learns an optimal set of CPG parameters for every sampled behavior, environment, and kinematic model. Those examples are collected
to train feature weights for log-linear models in factor graph-based probabilistic graphical models. At inference time, a factor graph infers a distribution
of most likely CPG parameters given the current behavior, environment, and task.
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Fig. 4. A representation of the factor graph used for probabilistic
inference of CPG parameters. The model exploits conditional independence
across constituents of the parameterization to infer a distribution of CPG
parameters (P) using random variables that represent environment (E),
behavior (B), and model (M).

inferred distribution of CPG parameters from this model at
run-time using beam search and use the most likely param-
eters to inform our sampling of candidate CPG parameters
for performing the given task. This is done by modeling the
conditional probability in Equation 7 as a learned function,
i.e.,

P∗ = arg max
p1...pn∈P

|N|∏
i=1

f (φi = true, pi,B, E ,M) (8)

IV. EXPERIMENTAL DESIGN

To evaluate the performance of the proposed model for
inferring CPG parameters, we follow the procedure outlined
in Figure 3 and vary parameters of the kinematic model and
environment. The genetic algorithm-based training procedure
varied the obstacle step height from 0m to 0.05m in incre-
ments of 0.01m. The procedure also varied the kinematic
parameters 0.05m < Lx1 < 0.1m, 0.0191m < Lx2 <
0.03m, and 0.1206m < Lx3 < 0.24m, where Lxi represents
the ith joint of the xth leg. The training procedure produced
twenty-seven learned sets of CPG parameters. Among these

sets thirteen examples were symmetric and had Lx1, Lx2, and
Lx3 values of 0.05m, 0.0191m, and 0.1206m respectively.
We will refer to this model as the “normal” model which is il-
lustrated in Figure 1 . Seven of the examples had models that
were symmetric and had longer Lx1, Lx2, and Lx3 values of
0.1m, 0.03m, and 0.24m respectively. We will refer to this
model as the “tall” model. Five more of these models were
based on the longer configuration but had shorter middle
legs with Lx1, Lx2, and Lx3 values of 0.05m, 0.0191m,
and 0.1206m respectively. The final two configurations were
based on the first (symmetric) configuration with long middle
legs with Lx1, Lx2, and Lx3 values of 0.1m, 0.03m, and
0.24m and an asymmetric configuration with three normal
length legs of Lx1, Lx2, and Lx3 values of 0.05m, 0.0191m,
and 0.1206m and three long length legs of 0.1m, 0.03m,
and 0.24m. A behavior describing a locomotion tasks was
assumed for all examples. The genetic algorithm training
assumed population sizes that ranged from 50 to 100 and
trained of 10 to 40 generations.

From these learned parameter values we define a search
space of twenty-one uniformly sampled values of forty-eight
CPG parameters (one a, one b, and six k parameters for each
of the six legs, as defined in Equations 1 and 3) across the
ranges 0.0 ≤ ai ≤ 4.5, 0.0 ≤ bi ≤ 2.5, and −3.5 ≤ kij ≤
3.5. For each example we label the sampled CPG parameter
with the value that is closest to the trained model as a “true”
correspondence and all others as a “false” correspondence.
From these twenty-seven trained CPG parameter values we
accrue 27,216 training examples that we use to train a log-
linear model with 2,280,960 weighted features. As in [24],
[23], the feature vector is generated by a Cartesian product
of 362 binary features divided into four groups composed
of two correspondence features, 180 CPG parameter value
features, 48 CPG parameter property features, and 132 model
and environment property features.

To analyze the performance of the graphical model, the
CPG parameters were inferred for two simulated variations
of the hexapod kinematic chain. In these experiments the
“normal” and “tall” configurations were evaluated. The CPGs
were inferred by searching the factor graph using beam
search with a beam width of 8, resulting in the 8 samples
with the highest approximated log-likelihood. For each of
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Fig. 5. Performance of nominal hexapod locomotion using the three
baseline approaches and graphical model to select CPG parameters. The
error bars represent 95% confidence intervals around the median. Both
factors (CPG generation method, obstacle height) and their interaction were
found to be statistically significant (p < 0.01) using an N-way Analysis of
Variances (ANOVA).

the 8 beam samples, 8 simulations were conducted and the
reward function from Equation 4 was evaluated. The median
of the 8 resulting reward values for each beam sample was
calculated and the beam sample with the highest median was
chosen as the best inferred solution for that combination of
kinematic chain and obstacle height.

Three baseline CPG approaches were used for comparison
with the graphical model. The first baseline is the set of
CPG parameters obtained by the genetic algorithm for each
combination of kinematic chain and obstacle height, which
is essentially the training data used to learn the graphical
model. The second baseline is set of CPG parameters ob-
tained by the genetic algorithm for the appropriate kinematic
chain, but trained in an obstacle free environment. This
explores the effectiveness of CPGs learned in free space
when they are applied to a world with obstacles. The third
baseline is a randomly generated set of CPG parameters
sampled from a multivariate uniform distribution with ranges
that span the values obtained by the genetic algorithm for
each parameter. This baseline illustrates the difficulty of
the sampling space and represents an uninformed sampling
method applied to the CPG parameter distribution. During
the random sampling procedure, the coupling matrix was
constrained to be symmetric with all diagonal elements equal
to 0. Obstacles heights were varied using the set of val-
ues 0.0m, 0.005m, 0.01m, 0.02m, 0.03m, 0.04m, 0.05m and
both the normal and tall kinematic chains were used. For
each baseline, 8 simulations were performed for each com-
bination of obstacle height and kinematic chain. To analyze
the randomly generated CPGs consistently with the graphical
model, 8 random CPGs were generated and 8 simulations
were performed. The random CPG set with the highest
median reward was chosen as the best randomly generated
solution.

Fig. 6. Performance of the “tall hexapod” locomotion using the three
baseline approaches and graphical model to select CPG parameters. The
error bars represent 95% confidence intervals around the median. Both
factors (CPG generation method, obstacle height) and their interaction were
found to be statistically significant (p < 0.01) using an N-way Analysis of
Variances (ANOVA).

V. EXPERIMENTAL RESULTS

This section presents the experimental results of this work.
Figure 5 presents our initial results where the red line shows
the locomotion of the hexapod using the CPG parameters
trained on flat ground tested on different obstacle heights,
and the blue line corresponds to the hexapod’s locomotion
using the CPG parameters trained on the appropriate obstacle
height. These results indicate that factors corresponding to
choosing the appropriate CPG parameters and the obstacle
height are statistically significant.

Figure 8 shows the hardware results of the hexapod trying
to cross obstacles of height 5cm using the CPG parameters
for navigating on flat ground. As expected, the robot fails
in achieving its task. Figure 9 shows the hardware results of
the hexapod trying to cross obstacles of height 5cm using the
learned CPG parameters corresponding to the object height.
Here we see that the hexapod is easily able to maneuver past
the obstacles in the same environment. Figure 5 and Figure
9 motivate learning CPG parameters for a world model.

Figure 7 show the hardware results of the hexapod try-
ing to locomote on flat ground using the CPG parameters
obtained from the graphical model inference described in
section III. The results show that the motion of the hexapod
is subpar compared to the learned CPG parameters for the
same task. However, the experimental results exhibits a new,
never before seen gait for locomotion on flat ground.

In the experiments we also explored the run-time perfor-
mance of beam search in the probabilistic graphical model
used to infer CPG parameters. Assuming a beam width of
eight and the trained features set and search space described
in IV, we observed an average run-time of 0.075 seconds for
probabilistic inference across the environments, kinematic
models, and behaviors explored in the twenty-seven train-
ing examples generated from the genetic algorithm training
procedure.

5771



Fig. 7. The figure shows the hexapod attempting to locomote on flat ground using the CPG parameters obtained from probabilistic inference.

Fig. 8. The figure shows the hexapod attempting to cross obstacles using the CPG parameters for flat ground locomotion. We see that the robot is unable
to make it past the first obstacle.

Fig. 9. The figure shows the hexapod attempting to cross obstacles using the CPG parameters learned for obstacle height 5cm to cross obstacles of height
5cm. We see that the robot easily makes past all the obstacles in front of it.

The results for the simulation experiments described in
Section IV for the hexapod robot with the normal kinematic
chain are shown in Figure 5. The results indicate that the
CPG parameters learned from the genetic algorithm with a
world model outperform the CPG parameters learned with
no obstacles in environments with higher obstacle height.
The results for the graphical model outperform the random
sampling in cases with small to no obstacles. The results
obtained by the genetic algorithm outperform both the in-
ference and the random sampling approaches. The results
for the simulation experiments described in Section IV for
the hexapod robot with the tall kinematic chain are shown in
Figure 6. The results indicate that, although in some cases the
models were able to successfully locomote, in most cases the
methods were unable to consistently learn across all obstacle
heights.

VI. CONCLUSIONS

This paper presents a new approach to sampling-based
inference techniques through the use of probabilistic graph-
ical models to adapt the search space for sampling-based
locomotion. We show how information acquired during the
offline training of a probabilistic graphical model can be
used to learn models for inferring CPG parameters from
behavior, environment, and kinematic model. The learned
graphical model that encodes parameters for all examples
of kinematic models, behaviors, and environments explored
during the offline training procedure and outperforms random
sampling at low obstacle heights for the most common

kinematic configuration and approaches the performance of
the training example that was tuned for a specific obstacle
height and kinematic configuration. In ongoing work, we
are diversifying and expanding the training examples to
more effectively sample from the space of kinematic models,
environments, and behaviors and introduce new features
and/or models for approximating the conditional probability
distributions encoded by factors in the graphical model.

This work opens up several interesting directions for
future work. A model that is able to infer parameterized
control primitives based solely on behavior, environment,
and kinematic structure allows the model to extend to other
applications and diverse robot platforms. We are particu-
larly interested in exploring whether training examples from
diverse platforms such as hexapods and humanoids can
be encoded into a single graphical model. We are also
interested in adapting this framework for reacting to changes
in robot performance, such as failure of actuators or limited
motion in joints. Enabling a robot to identify changes in
its motion model and infer corrections to parameterized
control primitives based on this information can improve the
robustness of autonomous systems operating in non-trivial
environments. Lastly, we seek to expand the complexity of
the graphical model used for inferring CPG parameters to
continuously estimate constituents of the random variables
that represent behavior, environment, and kinematic model
during the inference procedure.
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