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Abstract

Recent milestones in equilibrium computation, such as the
success of Libratus, show that it is possible to compute strong
solutions to two-player zero-sum games in theory and prac-
tice. This is not the case for games with more than two play-
ers, which remain one of the main open challenges in compu-
tational game theory. This paper focuses on zero-sum games
where a team of players faces an opponent, as is the case,
for example, in Bridge, collusion in poker, and many non-
recreational applications such as war, where the colluders do
not have time or means of communicating during battle, col-
lusion in bidding, where communication during the auction is
illegal, and coordinated swindling in public. The possibility
for the team members to communicate before game play—
that is, coordinate their strategies ex ante—makes the use of
behavioral strategies unsatisfactory. The reasons for this are
closely related to the fact that the team can be represented
as a single player with imperfect recall. We propose a new
game representation, the realization form, that generalizes
the sequence form but can also be applied to imperfect-recall
games. Then, we use it to derive an auxiliary game that is
equivalent to the original one. It provides a sound way to map
the problem of finding an optimal ex-ante-coordinated strat-
egy for the team to the well-understood Nash equilibrium-
finding problem in a (larger) two-player zero-sum perfect-
recall game. By reasoning over the auxiliary game, we devise
an anytime algorithm, fictitious team-play, that is guaranteed
to converge to an optimal coordinated strategy for the team
against an optimal opponent, and that is dramatically faster
than the prior state-of-the-art algorithm for this problem.

Introduction

In recent years, computational studies on imperfect-
information games have largely focused on two-player zero-
sum games. In that setting, Al techniques have achieved re-
markable results, such as defeating top human specialist pro-
fessionals in heads-up no-limit Texas hold’em poker (Brown
and Sandholm, 2017a,b).

Fewer results are known for settings with more than two
players. Yet, many strategic interactions provide players
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with incentives to team up. In some cases, players may have
a similar goal and may be willing to coordinate and share
their final reward. Consider, as an illustration, the case of
a poker game with three or more players, where all but one
of them collude against an identified target player and will
share the winnings after the game. In other settings, players
might be forced to cooperate by the nature of the interaction
itself. This is the case, for instance, in the card-playing phase
of Bridge, where a team of two players, called the “defend-
ers”, plays against a third player, the “declarer”. Situations
of a team ganging up on a player are, of course, ubiquitous
in many non-recreational applications as well, such as war
where the colluders do not have time or means of commu-
nicating during battle, collusion in bidding where communi-
cation during the auction is illegal, coordinated swindling in
public, and so on.

The benefits from coordination/collusion depend on the
communication possibilities among team members. In this
paper, we are interested in ex ante coordination, where the
team members have an opportunity to discuss and agree on
tactics before the game starts, but will be unable to com-
municate during the game, except through their publicly-
observed actions.! The team faces an opponent in a zero-
sum game (as in, for example, multi-player poker with col-
lusion and Bridge).

Even without communication during the game, the plan-
ning phase gives the team members an advantage: for in-
stance, the team members could skew their strategies to use
certain actions to signal about their state (for example, that
they have particular cards). In other words, by having agreed
on each member’s planned reaction under any possible cir-
cumstance of the game, information can be silently propa-
gated in the clear, by simply observing public information.

Ex ante coordination can enable the team members to

"This kind of coordination has sometimes been referred to as
ex ante correlation among team members (Celli and Gatti, 2018).
However, we will not use that term because this setting is quite dif-
ferent than the usual notion of correlation in game theory. In the
usual correlation setting, the individual players have to be incen-
tivized to follow the recommendations of the correlation device.
In contrast, here there is no need for such incentives because the
members of the team can share the benefits from coordination.



obtain significantly higher utility (up to a factor linear in
the number of the game-tree leaves) than the utility they
would obtain by abstaining from coordination (Basilico et
al., 2017; Celli and Gatti, 2018; von Stengel and Koller,
1997). Finding an equilibrium with ex ante coordination
is NP-hard and inapproximable (Basilico et al., 2017; Celli
and Gatti, 2018). The only known algorithm is based on
a hybrid representation of the game, where team members
play joint normal-form actions while the adversary employs
sequence-form strategies (Celli and Gatti, 2018). We will
develop dramatically faster algorithms in this paper.

A team that ex ante coordinates can be modeled as a
single meta-player. This meta-player typically has imper-
fect recall, given that the team members observe differ-
ence aspects of the play (opponent’s moves, each others’
moves, and chance’s moves) and cannot communicate dur-
ing the game. Then, solving the game amounts to comput-
ing a Nash equilibrium (NE) in normal-form strategies in a
two-player zero-sum imperfect-recall game. The focus on
normal-form strategies is crucial. Indeed, it is known that
behavioral strategies, that provide a compact representation
of the players’ strategies, cannot be employed in imperfect-
recall games without incurring a loss of expressiveness (Pic-
cione and Rubinstein, 1997). Some imperfect-recall games
do not even have any NE in behavioral strategies (Wichardt,
2008). Even when a NE in behavioral strategies exists, its
value can be up to a linear factor (in the number of the
game-tree leaves) worse than that of a NE in normal-form
strategies. For these reasons, recent efficient techniques
for approximating maxmin behavioral strategy profiles in
imperfect-recall games (éermék, Bosansky, and Péchoucek,
2017; Cermak et al., 2018) are not applicable to our domain.

Main contributions of this paper. Our first contribution
is a new game representation, which we call the realization
form. In perfect-recall games it essentially coincides with
the sequence form, but, unlike the sequence form, it can
also be used in imperfect-recall games. By exploiting the
realization form, we produce a two-player auxiliary game
that has perfect recall, and is equivalent to the normal form
of the original game, but significantly more concise. Fur-
thermore, we propose an anytime algorithm, fictitious team-
play, which is a variation of fictitious play (Brown, 1951).
It is guaranteed to converge to an optimal solution in the
setting where the team members coordinate ex ante. Ex-
periments show that it is dramatically faster than the prior
state-of-the-art algorithm for this problem.

Preliminaries

In this section we provide a brief overview of extensive-form
games (see also the textbook by Shoham and Leyton-Brown
(2008)). An extensive-form game I' has a finite set P of
players and a finite set of actions A. H is the set of all pos-
sible nodes, described as sequences of actions (histories).
A(h) is the set of actions available at node h. If a € A(h)
leads to A/, we write ha = h’. P(h) € P U{c} is the player
who acts at h, where ¢ denotes chance. H; is the set of de-
cision nodes where player ¢ acts. Z is the set of terminal
nodes. For each player ¢ € P, there is a payoff function

w; : Z — R. An extensive-form game with imperfect in-
formation has a set Z of information sets. Decision nodes
within the same information set are not distinguishable for
the player whose turn it is to move. By definition, for any
I €Z, A(I) = A(h), for all h € I. Z,; is the information
partition of H;.

A pure normal-form plan for player i is a tuple o € X; =
X ez, A(I) that specifies an action for each information set
of that player. o(I) denotes the action selected in ¢ at infor-
mation set 1. A normal-form strategy x; for player i is de-
fined as z; : &; — Al®il. We denote by X; the normal-form
strategy space of player . A behavioral strategy m; € 1I;
associates each I € Z; with a probability vector over A(I).
7;(I,a) denotes the probability with which ¢ chooses ac-
tion a at I. 7, is the strategy of a virtual player, “chance”,
who plays non-strategically and is used to represent exoge-
nous stochasticity. The expected payoff of player 7, when
she plays x; and the opponents play = _;, is denoted, with an
overload of notation, by u;(x;, z_;).

Denote by p;*(z) the probability with which player ¢
plays to reach z when following strategy x; (p;°(z) is de-
fined analogously). Then, p®(2) = [L;cpuqey i (2) is the
probability of reaching z when players follow behavioral
strategy profile x. We say that x;, =} are realization equiv-
alent if, for any z_; and for any z € Z, p*(z) = p* (),
where x = (z4,2_;), ' = (x},2_;). The same definition
holds for strategies in different representations (e.g., behav-
ioral and sequence form). Similarly, two strategies x;,
are payoff equivalent if, Vj € P and Va_;, u;(x;, ;) =
u]‘(.%‘;,.%‘,i).

A player has perfect recall if she has perfect memory of
her past actions and observations. Formally, Vx;, VI € Z,,
Vh, B € I, pi*(h) = pi*(R'). T has perfect recall if every
player has perfect recall.

BR(z_;) denotes the best response of player i against a
strategy profile z_;. A best response is a strategy such that
w;(BR(z_;),x_;) = maxy,cx, ui(z;,x_;). A NE (Nash,
1950) is a strategy profile in which no player can improve
her utility by unilaterally deviating from her strategy. There-
fore, for each player i, a NE z* = (zF,a*,) satisfies
ui(a}, ;) = ui(BR(zZ;),27;).

The sequence form (Koller, Megiddo, and Von Stengel,
1996; Von Stengel, 1996) of a game is a compact repre-
sentation applicable only to games with perfect recall. It
decomposes strategies into sequences of actions and their
realization probabilities. A sequence ¢; € (; for player
i, defined by a node h, is a tuple specifying player ’s ac-
tions on the path from the root to h. A sequence is said
terminal if, together with some sequences of the other play-
ers, leads to a terminal node. ¢y denotes the fictitious se-
quence leading to the root node and qa is the extended se-
quence obtained by appending action a to q. A sequence-
form strategy for player i is a function 7; : Q; — [0, 1], s.t.
ri(gp) = 1 and, for each I € Z; and sequence q leading to

I, —ri(q) + ZaeA(I) ri(ga) = 0.



Team-maxmin equilibrium with coordination
device (TMECor)

In the setting of ex ante coordination, team members have
the opportunity to discuss tactics before the game begins,
but are otherwise unable to communicate during the game,
except via publicly-observed actions. A powerful, game-
theoretic way to think about ex ante coordination is through
a coordination device. In the planning phase before the
game starts, the team members identify a set of joint pure
normal-form plans. Then, just before the play, the coordi-
nation device will randomly draw one of the normal-form
plans from a given probability distribution, and the team
members will all act as specified in the selected plan. A NE
where team members play ex ante coordinated normal-form
strategies is called a team-maxmin equilibrium with coor-
dination device (TMECor) (Celli and Gatti, 2018).> In an
approximate version, e-TMECor, neither the team nor the
opponent can gain more than e by deviating from their strat-
egy, assuming that the other does not deviate.

By sampling a recommendation from a joint probabil-
ity distribution over X1, Yo, the coordination device intro-
duces a correlation between the strategies of the team mem-
bers that is otherwise impossible to capture using behav-
ioral strategies. In other words, in general there exists no
behavioral strategy for the team player that is realization-
equivalent to the normal-form strategy induced by the coor-
dination device, as the following example further illustrates.

Example 1. Consider the zero-sum game in Figure 1. Two
team members (Players 1 and 2) play against an adversary
A. The team obtains a cumulative payoff of 2 when the game
ends at D) or (8), and a payoff of 0 otherwise. A valid ex ante
coordination device is as follows: the team members toss an
unbiased coin; if heads comes up, Player 1 will play action
A and Player 2 will play action C; otherwise, Player 1 will
play action B and Player 2 will play action D. The realiza-
tion induced on the leaves is such that p((D) = p((&) = 1/2
and p(®) = 0 fori & {1,8}. No behavioral strategy for the
team members is able to induce the same realization. This
coordination device is enough to overcome the imperfect in-
formation of Player 2 about Player 1’s move, as Player 2
knows what action will be played by Player 1 even though
Player 2 will not observe it during the game.

One might wonder whether there is value in forcing the
coordination device to only induce normal-form strategies
for which a realization-equivalent tuple of behavioral strate-
gies (one for each team member) exists. Indeed, under such
a restriction, the problem of constructing an optimal coordi-
nation device would amount to finding the optimal tuple of
behavioral strategies (one for each team member) that max-
imizes the team’s utility. This solution concept is known as
team-maxmin equilibrium (TME) (von Stengel and Koller,
1997). TME offers conceptual simplicity that unfortunately
comes at a high cost. First, finding the best tuple of be-
havioral strategies is a non-linear, non-convex optimization

>They actually called it correlation, not coordination. As ex-
plained in the introduction, we will use the term coordination.
However, we will keep their acronym TMECor instead of switch-
ing to the acronym TMECoor.

problem. Moreover, restricting to TMEs is also undesirable
in terms of final utility for the team, since it may incur in
an arbitrarily large loss compared to a TMECor (Celli and
Gatti, 2018).

Interestingly, as we will prove in Section , there is a strong
connection between TME and TMECor. The latter solution
concept can be seen as the natural “convexification” of the
former, in a sense that we will make precise in Theorem 2.

Realization form: a universal, low-dimensional
game representation

In this section, we introduce the realization form of a game,
which enables one to represent the strategy space of a player
by a number of variables that is linear in the game size
(as opposed to exponential as in the normal form), even in
games with imperfect recall. For each player 4, a realization-
form strategy is a vector that specifies the probability with
which ¢ plays to reach the different terminal nodes.The
mapping from normal-form strategies to realization-form
strategies allows us to compress the action space from &,
which has as many coordinates as the number of normal-
form plans—usually exponential in the size of the tree—to
a space that has one coordinate for each terminal node. This
mapping is many-to-one because of the redundancies in the
normal-form representation. Given a realization-form strat-
egy, all the normal-form strategies that induce it are payoff
equivalent.

The construction of the realization form relies on the fol-
lowing observation.

Observation 1. Let I' be a game and z € Z be a ter-
minal node. Given a normal-form strategy profile x =
(z1,...,2n) € X1 X - -+ X X,,, the probability of reaching z
can be uniquely decomposed as the product of the contribu-
tions of each individual player, plus chance’s contribution.
Formally, p* () = p2* [L,ep o1 (2).

Definition 1 (Realization function). Let I' be a game. The
realization function of player i € P is the function f} :
X; — [0,1]121 that maps every normal-form strategy for
player i to the corresponding vector of realizations for each
terminal node: f} : X; > x — (p¥(z1),...,p¥(2z))).

We are interested in the range of f}, called the realization
polytope of player i.

Definition 2 (Realization polytope and strategies). Player
i’s realization polytope Q) in game T is the range of fF,
that is the set of all possible realization vectors for player i:
OF .= fI(X;). We call an element w; € Q) a realization-
form strategy (or, simply, realization) of player 1.

The function that maps a tuple of realization-form strate-
gies, one for each player, to the payoff of each player, is
multilinear. This is by construction and follows from Ob-
servation 1. Moreover, the realization function has the fol-
lowing strong property (all proofs are provided in the full
paper (Farina et al., 2018)).

Lemma 1. fF is a linear function and QF is a convex poly-
tope.
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Figure 1: Example of extensive-form game with a team. The upper-
case letters denote the action names. The circled numbers uniquely
identify the terminal nodes.

For players with perfect recall, the realization form is
the projection of the sequence form, where variables re-
lated to non-terminal sequences are dropped. In other words,
when the perfect-recall property is satisfied, it is possible to
move between the sequence-form and the realization-form
representations by means of a simple linear transformation.
Therefore, the realization polytope of perfect-recall games
can be described with a linear number (in the game size)
of linear constraints. Conversely, in games with imperfect
recall the number of constraints required to describe the re-
alization polytope may be exponential®. A key feature of
the realization form is that it can be applied to both settings
without any modification. For example, an optimal NE in
a two-player zero-sum game, with or without perfect recall
and/or information, can be computed through the bilinear
saddle-point problem max,,, cor min,,, cor w{ Uws, where
U is a (diagonal) | Z| x |Z| payoff matrix.

Finally, the realization form of a game is formally defined
as follows.

Definition 3 (Realization form). Given an extensive-form
game T, its realization form is a tuple (P, Z,U,Q'), where
QOF specifies a realization polytope for each i € P.

Two examples of realization polytopes

To illustrate the realization-form construction, we consider
two three-player zero-sum extensive-form games with per-
fect recall, where a team composed of two players playing
against the third player. As already observed, since the team
member have the same incentives, the team as a whole be-
haves as a single meta-player with (potentially) imperfect
recall. As we show in Example 2, ex-ante coordination al-
lows team members to behave as a single player with perfect
recall. In contrast, in Example 3, the signaling power of ex
ante coordinated strategies is not enough to fully reveal pri-
vate team members’ information.

Example 2. Consider the game depicted in Figure 1. Xt
is the 4-dimensional simplex corresponding to the space of
probability distributions over the set of pure normal-form
plans ¥ = {AC,AD,BC,BD}. Given x € Xr, the
probability with which T plays to reach a certain outcome
is the sum of every x(o) such that plan o € X is consistent
with the outcome (i.e., the outcome is reachable if T plays

3Understanding in which subclasses of imperfect-recall games
the number of constraints remains polynomial is an interesting
open problem.
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Figure 2: A game where coordinated strategies have a weak sig-
naling power. The uppercase letters denote the action names. The
circled numbers uniquely identify the terminal nodes.

o). In the example, we have:

fT(x) = ('r(A7C)7 l‘(A, D)’ JE(B,C), JZ(B,D),
z(A,C), x(A, D), x(B,C), (B, D)),

where outcomes are ordered from left to right in the tree.
Then, the realization polytope is described by Polytope 1.
These constraints show that Player T has perfect recall
when employing coordinated strategies. Indeed, the con-
straints coincides with the sequence-form constraints ob-
tained when splitting Player 2’s information set into two in-
Sormation sets, one for each action { A, B}.

Example 3. In the game in Figure 2, the team Player T has
imperfect recall even when coordination is allowed. In this
case, the signaling power of ex ante coordinated strategies
is not enough for Player 1 to propagate the information ob-
served (that is, A’s move) to Player 2. It can be verified
that the realization polytope Qg— is characterized by the set
of constraints in Polytope 2 (see (Farina et al., 2018) for
more details). As one might expect, this polytope contains
Polytope 1.

Relationship with team max-min equilibrium

In this subsection we study the relationship with team max-
min equilibrium, and prove a fact of potential independent
interest. This subsection is not needed for understanding the
rest of the paper.

We prove that the realization polytope of a non-absent-

minded player is the convex hull of the set of realizations
that are reachable starting from behavioral strategies. This
gives a precise meaning to our claim that the TMECor con-
cept is the convexification of the TME concept.
Definition 4. Let ' be a game. The behavioral-realization
function of player i is the function f} I, > 7 —
(pF(z1),-..,pF(212))) € [0,1]2l. Accordingly, the
behavioral-realization set of player i is the range of f}, that
is QO := fF(I0;). This set is generally non-convex.

Denoting by co(+) the convex hull of a set, we have the
following:

Theorem 2. Consider a game I. If player i is not absent-
minded, then 2} = co (€2} ).

Auxiliary game: an equivalent game that
enables the use of behavioral strategies

In the rest of this paper, we focus on three-player zero-sum
extensive-form games with perfect recall, and we will model
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i€{1,2,3,4,5,6,7,8}.

Polytope 1: Description of the realization polytope for the game of
Figure 1.

the interaction of a team composed of two players playing

against the third player. The theory developed also applies

to settings with teams with an arbitrary number of players.
We prove that it is possible to construct an auxiliary game

with the following properties:

e it is a two-player perfect-recall game between the adver-
sary A and a team-player T

e for both players, the set of behavioral strategies is as “ex-
pressive” as the set of the normal-form strategies in the
original game (i.e., in the case of the team, the set of
strategies that team members can achieve through ex ante

coordination).
To accomplish this, we introduce a root node ¢, whose

branches correspond to the normal-form strategies of the
first player of the team. This representation enables the
team to express any probability distribution over the ensu-
ing subtrees, and leads to an equivalence between the be-
havioral strategies in this new perfect-recall game (the aux-
iliary game) and the normal-form strategies of the original
two-player imperfect-recall game between the team and the
opponent. The auxiliary game is a perfect-recall representa-
tion of the original imperfect-recall game such that the ex-
pressiveness of behavioral (and sequence-form) strategies is
increased to match the expressiveness of normal-form strate-
gies in the original game.

Consider a generic I" with P = {1,2, A}, where 1 and 2
are team members. We will refer to Player 1 as the pivot
player. For any o7 € 3, we define I';, as the two-
player game with P = {2, A} that we obtain from I' by
fixing the choices of Player 1 as follows: VI &€ 7Z; and
VYa € A(I), if a = o1(I), then m 4, (I,a) = 1; other-
wise, 1,0, ({,a) = 0. Once 7 », has been fixed in I',,,
decision nodes belonging to Player 1 can be considered as if
they were chance nodes. The auxiliary game of I', denoted
with I'*, is defined as follows.

Definition 5 (Auxiliary Game). The auxiliary game I'* is a
two-player game obtained from T in the following way:

o P={T,A};

e the root ¢ is a decision node of Player T with
A(¢) = {ad}UGEl ;

e cach a, is followed by a subtree I ;;

o A does not observe the action chosen by T at ¢.

Figure 3: Structure of the auxiliary game I'*.

(ii) Adversary. The reda

Polytope 2: Description of the realization polytope for the game of
Figure 2.

By construction, all the decision nodes of any information
set of team 7 are part of the same subtree I',. Intuitively,
this is because, in the original game, team members jointly
pick an action from their joint probability distribution and,
therefore, every team member knows what the other mem-
ber is going to play. The opponent has the same number of
information sets both in I" and I'*. This is because she does
not observe the choice at ¢ and, therefore, her information
sets span across all subtrees I',,. The basic structure of the
auxiliary game tree is depicted in Figure 3 (information sets
of A are omitted for clarity). Games with more than two
team members can be represented though a I'* which has
a number of subtrees equal to the Cartesian product of the
normal-form plans of all team members except one.

The next lemma is fundamental to understand the equiva-
lence between behavioral strategies of I'* and normal-form
strategies of I'. Intuitively, it justifies the introduction of the
root node ¢, whose branches correspond to the normal-form
strategies of the pivot player. This representation enables the
team 7 to express any convex combination of realizations in
the I', subtrees.

Lemma 3. ForanyT, Q) = co (UU621 QS_")

The following theorem follows from Lemma 3 and char-
acterizes the relationship between I' and I'*. It shows that
there is a strong connection between the strategies of Player
T in the auxiliary game and the ex ante coordinated strate-
gies for the team members in the original game I'.

Theorem 4. Games I" and I'* are realization-form equiva-

lent in the following sense:

(i) Team. Given any distribution over the actions at the
game tree root ¢ (ie., a choice ¥1 > o — A, > 0
such that )X, = 1) and any choice of realizations

{wes € ng’ toex,, we have that 20621 Aoy € Qg-
The converse is also true: given any w € Qg— there exists

a choice of {\, }res, and realizations {w, € Q5 },ex,

such that w =

AWy
l‘tv“zlation polytope of the adversary sat-
isfies QL = QE\
The following is then a direct consequence of Theorem 4

Corollary 1. The set of payoffs reachable in T coincides
with the set of payoffs reachable in T'*. Specifically, any
strategy {\s oy, {Wo oes, over T'* is payoff-equivalent
to the realization-form strategy w = 20621 Aowy in T

Remark 1. Since T, has perfect recall, every realization
we € QY can be induced by T via behavioral strategies.

The above shows that for every ex ante coordinated strat-
egy for the team in I, there exists a corresponding (payoff-
equivalent) behavioral strategy for 7 in I'*, and vice versa.



Algorithm 1 Fictitious team-play

1: function FICTITIOUSTEAMPLAY(I")

2: Initialize 4

3 A+ (0,...,0),t«1

4. wr,e < (0,...,0) VoeX;

5: while within computational budget do
6: gUt,w%—) — BRT(@A)

7 A (L= DA+ 11,

8 QT,(Y" «— (1 — %)G)T,(Tf’ + %w%—

9: wf4 — BRA()\, {DT,G;“,)
10: wa <+ (1= Dwa+ jwh
11: t—t+1

12: return (\, (07,6 )oex;)

Hence, due to realization-form equivalence between I' and
I'*, finding a TMECor in I" (employing ex ante coordinated
normal-form strategies), is equivalent to finding a NE in T'*
(with behavioral strategies).

Fictitious team-play: an anytime algorithm for
TMECor

This section introduces an anytime algorithm, fictitious
team-play, for finding a TMECor. It follows from the previ-
ous section that in order to find a TMECor in I', it suffices
to find a two-player NE in the auxiliary game I'* (and vice
versa, although we do not use this second direction). Fur-
thermore, since I'* is a two-player perfect-recall zero-sum
game, the fictitious play (FP) algorithm can be applied with
its theoretical guarantee of converging to a NE. Fictitious
play (Brown, 1951; Robinson, 1951) is an iterative algo-
rithm originally described for normal-form games. It keeps
track of average normal-form strategies Z;, which are output
in the end, and they converge to a NE. At iteration ¢, player ¢
computes the best response against the opponent’s empirical
distribution of play up to time ¢ — 1, that is, ¢ = BR(z"").
Then her average strategy is updated as z¢ = =227+ 1zt
Conceptually, our fictitious team-play algorithm coincides
with FP applied to the auxiliary game I'*. However, in order
to avoid the exponential size of I'*, our fictitious team-play
algorithm does not explicitly work on the auxiliary game.
Rather, it encodes the best-response problems by means of
mixed integer linear programs (MILPs) on I'.

The main algorithm. The pseudocode of the main algo-
rithm is given as Algorithm 1, where BR 4(:) and BR+(+)
are the subroutines for solving the best-response problems.

Our algorithm employs realization-form strategies. This
allows for a significantly more intuitive way of performing
averaging (Steps 7, 8, 10) than what is done in full-width
extensive-form fictitious play (Heinrich, Lanctot, and Silver,
2015), which employs behavioral strategies.

Our algorithm maintains an average realization i 4 for the
adversary. Moreover, the |X;|-dimensional vector A keeps
the empirical frequencies of actions at node ¢ in auxiliary
game I'* (see Figure 3). Finally, Vo € ¥, w1, € Q;” is
the average realization of the team in the subtree [',,.

After ¢t iterations of the algorithm, only ¢ pairs of strate-
gies are generated. Hence, an optimized implementation of

the algorithm can employ a lazy data structure to keep track
of the changes to A and w7 ;.

Initially (Step 2), the average realization w4 of the ad-
versary is set to the realization-form strategy equivalent to
a uniform behavioral strategy profile. At each iteration the
algorithm first computes a team’s best-response against w 4.
We require that the chosen best response assign probabil-
ity 1 to one of the available actions (say, a.¢) at node ¢. (A
pure—that is, non-randomized—best response always exists
and, therefore, in particular there always exists at least one
best response selecting a single action at the root with prob-
ability one.) Then, the average frequencies and team’s real-
izations are updated on the basis of the observed (o*, w).
Finally, the adversary’s best response w’; against the up-
dated average strategy of the team is computed, and the em-
pirical distribution of play of the adversary is updated.

The ex ante coordinated strategy profile for the team is im-
plicitly represented by the pair (X, &7 ). In particular, that
pair encodes a coordination device that operates as follows:
e At the beginning of the game, a pure normal-form plan

0 € X is sampled according to the discrete probability

distribution encoded by A. Player 1 will play the game

according to the sampled plan.

e Player 2 will play according to any normal-form strategy
in f;'(@75), that is, any normal-form strategy whose
realization is W7 5.

The correctness of the algorithm then is a direct conse-
quence of realization-equivalence between I' and I'*, which
was shown in Theorem 4. In particular, the strategy of the
team converges to a profile that is part of a normal-form NE
in the original game I'.

Best-response subroutines. The problem of finding the
adversary’s best response to a pair of strategies of the team,
namely BRA(A, {&7.+}o), can be efficiently tackled by
working on I' (second point of Theorem 4). In contrast,
the problem of computing BR(@ 4) is NP-hard (von Sten-
gel and Forges, 2008), and inapproximable (Celli and Gatti,
2018). Celli and Gatti (2018) propose a MILP formulation to
solve the team best-response problem. In the full paper (Fa-
rina et al., 2018), we describe an alternative MILP formula-
tion in which the number of binary variables is polynomial
in I" and proportional to the number of sequences of the pivot
player.

In our algorithm, we employ a meta-oracle that uses si-
multaneously, as parallel processes, both subroutines, and
stops them as soon as one of the two has found a solution or,
in the case a time-limit is reached, it stops both subroutines
and it returns the best solution (in terms of team’s utility).
This circumvents the need to prove optimality in the MILP,
which often takes most of the MILP-solving time, and opens
the doors to heuristic MILP-solving techniques. One of the
key features of the meta-oracle is that its performances are
not impacted by the size of I'*, which is never explicitly em-
ployed in the best-responses computation.

Experiments

We conducted experiments on three-player Kuhn poker
games and three-player Leduc hold’em poker games. These



Tree size Fictitious team-play Team Utility
Game | 1 Seq. | 20| 10% 5% 2% 15% 1% 0.5% HCG Game | \4v1 Adv2 Adv3
K3 25 13 6 0Os 0s 0Os Is Is Is 0s K3 ]0.0000 0.0000 0.0003
K4 33 17 6 1s 1s 4s 4s 30s 1m 12s 9s K4 10.0405 0.0259 -0.0446
K5 41 21 6 1s 2s 443 1m 4m 15s  8m 57s 1m 58s K5 ]0.0434 0.0156 -0.0282
K6 49 25 6 Is 12s 43s  5m15s 8m30s 23m32s | 25m 26s K6 ]0.0514 0.0271 -0.0253
K7 57 29 6 4s 17s  2m 15s 5m46s 6m31s 23m49s 2h 50m K7 10.0592 0.0285 -0.0259
L3 457 229 | 21 15s Im 14m 05s 30m 40s 1h 34m 30s > 24h oom L3 ]0.2332 0.2089 0.1475
L4 801 401 | 21 Is Im31ls 11lm8s 5Im5s 6h5Ilm > 24h oom L4 0.1991 0.1419 -0.0223

Table 1: Comparison between the run times of fictitious team-play (for various levels of accuracy) and Table 2:

the hybrid column generation (HCG) algorithm.
(0oom: out of memory.)

are standard games in the computational game theory litera-
ture, and description of them can be found in the Appendix
of the full paper. Our instances are parametric in the number
of ranks in the deck. The instances adopted are listed in Ta-
bles 1 and 2, where Kr and L7 denote, respectively, a Kuhn
instance with r ranks and a Leduc instance with r ranks (i.e.,
3r total cards). Table 1 also displays the instances’ dimen-
sions in terms of the number of information sets per player
and the number of sequences (i.e., number of information
set—action pairs) per player, as well as the payoff dispersion
A, —that is, the difference between the maximum and min-
imum attainable team utility.

Fictitious team-play. We instantiated fictitious team-
play with the meta-oracle previously discussed, which re-
turns the best solution found by the MILP oracles within
the time limit. We let each best-response formulation run
on the Gurobi 8.0 MILP solver, with a time limit of 15
seconds and 5000 maximum iterations. Our algorithm is
an anytime algorithm, so it does not require a target ac-
curacy € for e-TMECor to be specified in advance. Ta-
ble 1 shows the anytime performance, that is, the time
it took to reach an a/A,-TMECor for different accuracies
a € {10%,5%, 2%, 1.5%,1%,0.5%}. Results in Table 1
assume that the team consists of the first and third mover
in the game; the opponent is the second mover. Table 2
shows the value of the average strategy computed by ficti-
tious team-play for different choices of the opponent player.
This value corresponds to the expected utility of the team
for the average strategy profile (A, w7 ) at iteration 1000.
In the Appendix of the full paper we show the minimum cu-
mulative utility that the team is guaranteed to achieve, that
is ~BRA(X, {070 }0)-

Hybrid column generation benchmark. We com-
pared against the hybrid column generation (HCG) algo-
rithm (Celli and Gatti, 2018), which is the only prior algo-
rithm for this problem. To make the comparison fair, we
instantiate HCG with the same meta-oracle discussed in the
previous section. We again use Gurobi 8.0 MILP solver to
solve the best response problem for the team. However, in
the case of HCG, no time limit can be set on Gurobi with-
out invalidating the theoretical convergence guarantee of the
algorithm. This is a drawback, as it prevents HCG from
running in an anytime fashion, despite column generation
otherwise being an anytime algorithm. In the Leduc poker

Values of the aver-
age strategy profile for different
choices of adversary.

instances, HCG exceeded the memory budget (40 GB).

Our experiments show that fictitious team-play scales to
significantly larger games than HCG. Interestingly, in al-
most all the games, the value of the team was non-negative:
by colluding, the team was able to achieve victory. More-
over, in the full paper, we show that a TMECor provides to
the team a substantial payoff increase over the setting where
team members play in behavioral strategies.

Conclusions and future research

The study of algorithms for multi-player games is chal-
lenging. In this paper, we proposed an algorithm for set-
tings in which a team of players faces an adversary and
the team members can exploit only ex anfe coordination,
discussing and agreeing on tactics before the game starts.
Our first contribution was the realization form, a novel
representation that allows us to represent the strategies of
the normal form more concisely. The realization form is
also applicable to imperfect-recall games. We used it to
derive a two-player perfect-recall auxiliary game that is
equivalent to the original game, and provides a theoreti-
cally sound way to map the problem of finding an opti-
mal ex-ante-coordinated strategy for the team to a classical
well-understood Nash equilibrium-finding problem in a two-
player zero-sum perfect-recall game. Our second contribu-
tion was the design of the fictitious team-play algorithm,
which employs a novel best-response meta-oracle. The any-
time algorithm is guaranteed to converge to an equilibrium.
Our experiments showed that fictitious team-play is dramat-
ically faster than the prior algorithms for this problem.

In the future, it would be interesting to adapt other popu-
lar equilibrium computation techniques from the two-player
setting (such as CFR) for our setting, by reasoning over the
auxiliary game.

The study of algorithms for team games could shed
further light on how to deal with imperfect-recall games,
that are receiving increasing attention in the commu-
nity due to the application of imperfect-recall abstractions
to the computation of strategies for large extensive-form
games (Waugh et al., 2009; Lanctot et al., 2012; Ganzfried
and Savndholm, 2014; Brown, Ganzfried, and Sandholm,
2015; Cermdk, Bosansky, and Lisy, 2017; Kroer and Sand-
holm, 2016).
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