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Abstract (optional):

Whether supernovae are a significant source of dust has been a long-standing debate. The large
quantities of dust observed in high-redshift galaxies raise a fundamental question as to the origin
of dust in the Universe since stars cannot have evolved to the AGB dust-producing phase in
high-redshift galaxies. In contrast, supernovae occur within several millions of years after the
onset of star formation. This white paper will focus on dust formation in SN ejecta with US-
Extremely Large Telescope (ELT) perspective during the era of JWST and LSST.



l. Introduction

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. / Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

Fig. 1. (a: left) ALMA Band 7 continuum detection for the galaxy A2744_YD4 at z=8.34 [11]. (middle) HST F160W
image with combined ALMA image contours overplotted [5]. (b: right) Diagram of the evolution of the early Universe
(credit: WMAP). Are supernovae the dust producer in the early Universe after reionization occurs?

Whether or not supernovae (SNe) are a major source of dust has been a long-standing debate [2,
4, 6]. Deep submillimeter (submm) observations indicate that galaxies and QSOs have very large
dust masses (>10° M o) even at high redshifts of z> 5 [1, 11]. While we believe that most dust
formation in current galaxies occurs in the stellar winds of asymptotic giant-branch (AGB) stars,
it is difficult to explain the formation of such large amounts of dust in the early Universe (see
Fig. 1b), since the timescales for stars to reach the AGB phase is longer than the age of the
Universe being observed at these high redshifts [16, 23]. An ALMA detection of a
gravitationally lensed galaxy at z~8 is shown in Fig. la.

Core-collapse supernova (ccSN) events, e.g. Type II, Ib and Ic, could explain the presence of
dust in high-z galaxies, since their progenitors, stars much more massive than the sun, evolve on
much shorter timescales (millions to a few tens of millions of years) and eject large amounts of
heavy elements into the ISM. If a typical Type II SN were able to condense only 10% of its
heavy elements into dust grains, it could eject around half a solar mass of dust into the ISM. The
predicted dust mass formed in SNe depends on the progenitor mass; for a progenitor mass of 15
to 30 M, the predicted dust mass is from 0.1 to 1.0 M [17, 23]. For a star formation rate 100
times that of the Milky Way this would lead to a dust mass of order 108M ,if SNe and their
remnants are not efficient dust destroyers [15, 17].

The temporal study of SNe is vital to understand the gap between the total starlight and the AGB
starlight where ccSNe could dominate dust production in the Universe. The amount of dust
generated by Population Il stars, which are thought to cause reionization, would significantly
alter the star-formation process in early galaxies and stars.

A number of studies of nearby SNe have been undertaken in order to estimate the mass of newly
formed dust in the ejecta of ccSNe. Typical values derived for very young SNe (within ~ few
years after the explosion) are only 10* — 10°M o ©Of ejecta dust per SN event [10]. In contrast,
infrared mapping of the young supernova remnant Cas A using Herschel and Spitzer confirmed



that molecules and dust can form in ccSNe ejecta. Four young supernova remnants (SNRs),
including SN 1987A, Cas A, the Crab Nebula and the SNR G54.1+0.3 [see Fig. 2a; 13,3, 10, 8,
20] have dust masses of 0.1-0.9 M, in agreement with models. These results suggest SNe could
be major dust factories at high-z galaxies.
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Fig. 2. (a: left) Mosaicked three-color image of young supernova remnant Cas A: Spitzer (red), Hubble (orange) and
Chandra (blue). Infrared emission of Cas A is a representative case of dust formation [3]. (b: right) Gemini GNIRS
near-IR 0.81 - 2.52 ym spectra (R~1700, dereddened) of SN 2017eaw obtained during 2017, in time order (top to
bottom), offset and scaled differently for easier viewing. Wavelength interval with overtone CO emission is shaded

[18].

The study of the role of ccSNe as major contributors to dust production in the Universe has
grown dramatically over the last few years. However, a number of comprehensive studies of
nearby SNe still find 1- 2 orders of magnitude smaller dust masses compared to the models and
those found in YSNRs. While the evolution of CO at early times is remarkably consistent with
chemically controlled dust models of Sarangi & Cherchneff [21], their dust model predicts an
order of magnitude smaller amount of dust than previous models [17, 23, 24].

* What are the temporal evolutions of dust and CO formation and mass in ccSNe and how do
they depend on SN progenitor type?

* Do molecules play a key role in dust formation in ccSNe ejecta? How does the physical state of
the gas containing the CO change over time and how does it vary with progenitor mass?

* What types of grains (size, composition, etc.) form in SNe, and how do the dust mass and type
evolve after the SN explosion? How are they related to the nucleosynthetic ejecta composition
and progenitor mass?

* What fraction of the dust is destroyed from the passage of the reverse shock and how does that
depend on the grain size? What are the implications to the ISM cycle in galaxies? Can SN knots
of dense ejecta protect dust from the reverse shock with CO re-formation?

* Are SNe the source of dust in the early Universe? What is the efficiency of dust formation from



the ejecta mass? What implications are there for ccSN explosion models and nucleosynthesis
from observations?

Supernovae (SNe) produce heavy metals, nuclear decay products, molecules and dust, which are
the building blocks of planets and life. Meteoritic studies have shown that most presolar cosmic
grains have condensed in the dense, warm stellar winds of evolved stars and in supernova
explosions [14]. Dust that condensed deep within expanding supernova ejecta is believed to be
responsible for some isotopic anomalies of heavy elements in meteorites. The study of
supernovae to characterize dust composition and mass in terms of nucleosynthetic products will
be an important guideline for searching for and characterizing high-z galaxies near the
reionization of the Universe.

2. Near-IR studies of CO and dust formation in SNe

Carbon monoxide (CO) is one of the most powerful coolants in the ejecta of ccSNe and is
believed to be responsible in large part for cooling the ejecta to temperatures at which dust can
form. Dust production and type depends significantly on the C/O ratio in the gas, as well as the
rate of destruction of CO, so measurements of CO are important tests of dust formation models.
CO detection from SN1987A [12] in the near-infrared inferred onset of dust formation together
with a drop in line intensities of refractory elements and the appearance of blue-shifted lines.

The easiest way to detect the onset of CO formation in SNe from the ground is via its first
overtone at 2.3-2.4 um. Detecting the fundamental band (4.5-5.0 um) from the ground is more
challenging, although that band is intrinsically considerably stronger. To date there are only
about a dozen detections of CO (including Spitzer 4.5um observations) in ccSNe [22]. Models of
the evolution of CO and dust production exist [10, 21], but until last year the evolution of the CO
and dust emission in ccSNe had only been followed in detail for SN1987A [12] 30 years ago!
The evolution of the near-IR spectrum of the Type II-P SN 2017eaw in the nearby galaxy, NGC
6946 has been followed from Gemini N, obtaining eleven near-infrared (0.8 — 2.5 um) spectra of
the SN 2017eaw, spanning the time interval 22 — 494 days after discovery [see Fig. 2b; 18]. The
first nine of these spectra (Fig. 2b) show the onset of CO formation at 2.3-2.4 um and continuum
emission at wavelengths greater than 2.1 um from newly-formed hot dust. The observed CO
masses are typically 10* — 10° M o during days 124 —205. The timing of the appearance of CO
and evolution of CO mass is remarkably consistent with chemically controlled dust models of
Sarangi & Cherchneff. The near-infrared thermal emission of SN2010jl (see Fig. 3a) at later
times (500 to 900 days) shows an accelerated growth in dust mass in the SN ejecta. The rapid
growth of dust continuum in Fig. 3a demonstrates the powerful capability of studying dust
formation in near-IR [7]. The wavelength-dependent extinction of the dust reveals the presence
of very large (>1um) grains, which resist destruction.

3. First Stars and Dust and CO Temporal Evolution of SNe with TMT+GMT

Future 30m class ELTs (such as TMT+GMT) will open to systematic investigation the currently
uncharted territory of stellar explosions and dust formation in the ejecta in the early Universe
potentially enabling the characterization of the explosions including the first stars. The
sensitivity of the ELT program is shown in Figure 3b. The Pop III stars are believed to be
massive (>100 M) [9]. The US ELTs is crucial for identifying the candidates of the first stars



which can be followed-up at longer wavelength with JWST, while the JWST instruments a high
sensitivity and high spatial resolution are available. A combination of US-ELT program and
JWST will allow astronomy community to answer if SNe are the dust producer at the early
Universe.
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Fig. 3. (a: left) Near-IR spectra of SN2010jl demonstrate onset of dust formation can be detected in near-IR [7] (b:
right) Optical-to-NIR SED of super luminous SNe and Type-la SNe at different distances. This KSP will open to
systematic investigation the currently uncharted territory of stellar explosions in the early Universe potentially
enabling the characterization of the explosions of the first stars (which might explode as super luminous (SL) SNe,
black lines), or reveal the redshift evolution of our cosmic distance ladders (i.e. Type-la SNe, grey lines). Blue dotted
lines: typical magnitude limits for a 10m aperture telescope for photometry (lower line) and spectroscopy (upper line).
Red lines: same for the ELTs.

We expect the 2020 decade to be a golden age of transient domain astronomy (TDA). The Large
Synoptic Survey Telescope (LSST) expects to discover 100,000 SNe per year which corresponds
to ~100 transient objects per night. It is essential to have both TMT and GMT for their
complementary instrument suites and ability to cover entire sky in the north and south as well as
to maximize the benefits of LSST. ELT follow-up observations of the selected ccSNe will be
crucial for revealing CO and dust formation and evolution of different types of SNe. The SNe
that detect CO and dust evolution with ELTs will be the best targets for longer wavelength
observation with JWST which will provide fine structure lines and continuum. Timing is the key
for TDA so that there is an urgent need for a US-ELT mission that reserves dedicated Target of
Opportunity (ToO) time for TDA.

ELTs enable to extend near-infrared observations of the formation and evolution of molecules
and dust in newly exploded ccSNe. Only a dozen of SNe show evidence of dust and CO
formation so far [6]. Bright, nearby (<10 Mpc) SNe have been observed in near-infrared to detect
dust and CO. TMT+GMT from the near-IR high-resolution spectroscopic limit of ~26
magnitudes in K band will enable us to increase the sample of ccSNe. US-ELT program will be



able to detect ccSNe up to the distance, 60 times further away from the current capability just for
a short (15 min.) integration. By combining dramatic increases of newly discovered SNe with
LSST, during the ELT era, we expect to be able to understand the onset of dust formation and its
evolution as a function of time for different types of ccSNe.

Near-infrared instruments are critical to detecting CO molecules and dust continuum, as well as
atomic lines, in particular, iron and cobalt lines at the later stage of SNe. IR spectrographs should
be a priority for the US-ELT program, and an instrument with the capability of both near-IR and
optical wavelengths is ideal for SN observations which help to understand nucleosynthesis and to
detect isotopes (e.g. °C and "°C) together with dust formation in SNe. Broad spectroscopic
observations follow-up generally require moderate resolutions (R~ 2000~4000) over the
broadest possible wavelength range (0.32 — 2.4 um). TMT/IRIS+NFIRAOS and GMT/GMTIFS
or NIMOS+GMACS is potentially the best combination. The near-IR spectrometer with
moderately high spectral resolution (R~ 2000-10,000) such as TMT/IRMOS and GMT/NIMOS
or Near-IR echellette will be able to resolve the features of first overtone CO and the forest of
nucleosynthetic element lines such as Fe, Co and Ni at nebular phase of SNe. We strongly
advocate ARISE that has recently been proposed with a simultaneous optical/IR
imager/spectrograph by the TMT Time Domain ISDT for the second generation suite of
instrumentation for TMT, which would directly enable achieving the science goals outlined in
this white paper. GMT/GMTIFS with a large field of view is ideal to observe ejecta knots in
young SNRs.

Currently, only rare, brightest SNe and ones in nearby galaxies can be studied. We need the
diversity of SN progenitor types, evolutionary stages and different environments such as
different abundance and of SNe at higher redshift, and this requires larger aperture telescopes
such as ELTs with IR spectrographs that can capture the CO bands and onset signatures of dust
formation as well as numerous lines from heavy elements.

Synergies with other missions: The most abundant presolar grains and the predicted grains by
dust models are SiC, amorphous silicates, forsterite (Mg,S10,), enstatite (MgSiO;), and
corundum (Al,O;). JWST will likely reveal many of the dust features from these grains, which
will help to identify dust composition. The uncertainty of dust composition is the highest
uncertainty in estimating dust mass formed in SN ejecta. The far-IR space mission of Origins
covers longer wavelengths and is important in determining accurate dust masses. The need for
the far-IR capability of studying dust formation in SNe is addressed by another white paper (PI:
Matsuura).
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