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INTRODUCTION

As technology becomes increasingly interconnected through the advent of advanced telecommunications systems such
as bG networking, the necessity for seamless solutions in location-based services becomes increasingly relevant. In
response to this demand, there has been a steady increase in academic and commercial interest in indoor real-time
locating systems (RTLSs) and in indoor tracking and positioning. With respect to the broader research domain of
Positioning, Navigation and Timing (PNT), indoor positioning and tracking offers a number of difficult challenges.
Use of the widely diffused Global Navigation Satellite System (GNSS) technology, one of the most accurate sources of
position information when it is available, is often infeasible in indoor or obstructed environments [4]. Instead, alter-
native systems have to be adopted. One approach to positioning and tracking in such environments is fingerprinting,
also referred to as mapping or scene analysis.

The basic idea of fingerprinting is to build a database containing a collection of measured features at designated
reference locations within the environment, and to then perform positioning by applying regression techniques to
match new measurements to one or more of those in the database. The position in feature space associated through
the database with a particular physical reference location is referred to as the “fingerprint” of the environment at that



location, and the assumption that these feature vectors are relatively unique forms the basis for the fingerprinting
technique. The fingerprinting procedure typically operates in two stages: an offline stage in which the environment
is surveyed at known locations and the results are recorded into a database, and an online stage in which navigation
is performed by matching new measurements with the content of the database. Once a match is made, position may
be inferred based on the reference positions associated with those database measurements.

Fingerprinting offers several important advantages as an indoor positioning technology. One important advantage
is that they do not require a specific measurement model: since indoor environments are often segmented and highly
non homogeneous in composition, useful observables such as sound and electromagnetic radiation often exhibit highly
nonuniform or nonlinear diffuse behaviors which can not be easily or accurately modeled even without advanced and
thorough knowledge of the contents of the environment. Fingerprinting replaces the need for an accurate measurement
model with a need for an offline training stage, a requirement which may be more realistic in certain contexts. Other
advantages are that they are strictly passive and can often make use of existing features of the environment such as
installed WiFi networking. For this reason among others, WiFi received signal strength (RSS) fingerprinting is now
widely used in indoor positioning and navigation problems [13, 18]. Another remarkable feature of fingerprinting
methods is that they do not require any knowledge regarding the location of the transmitting nodes, which is
particularly relevant in other schemes such as those which are geometric-based [4].

This contribution presents a novel methodology for performing tracking using RSS fingerprinting. There are
two main components in the proposed methodology: i) a filtering technique for tracking the receiver given RSS
measurements, which is achieved through a Kalman filter algorithm; and i) a neural network based data-driven
approach for learn the spatial model for the RSS of the field, which is required in the tracking part if a physics-based
model is not used. In this paper we particularly focus on the issues related to RSS field changes, that is when
the RSS model is learnt by the neural network and used for tracking the receiver but it changes after some time
(e.g. due to people walking in the area, obstacles or walls being added, or other situations causing a change in the
RSS. To that aim we compare offline training of the neural network (i.e., where a potentially large training data
set is recorded and used for training the model) with online training (i.e., where new data is measured at known
locations but is more scarce or not available at the same time so it needs to be processed on a sample-per-sample
basis) schemes. In this context, we compare a classical neural network training method (i.e., Adam) and a method
based on Kalman filtering, which is suited for sequential inference. To validate the proposed RSS field estimation
approaches we simulated an indoor environment using the standard path-loss model and trained offline the model,
then generated several disturbances in the model and adapt the neural network to incorporate the new data. Results
are provided in terms of training error, tracking error, and tracking convergence rate.

POSITIONING AND TRACKING USING RSS OBSERVATIONS

Fingerprinting is typically conceived as a snapshot approach in which observed features are compared against a
pre-built database in order to compute a state estimate. Unlike other state estimation techniques, in fingerprinting
methodology the time correlation of the observations due to a time evolution of the state is seldom used. In certain
solutions, there is also a filtering or smoothing of those independent snapshot estimates. For applications where
the state is time-varying, the task is often best formulated as a tracking problem which, given an accurate model,
can be solved through a variety of approaches which leverage both linear and nonlinear algorithms. One important
application of both fingerprinting and tracking is in positioning, where the unknown location of a user or object is
estimated from direct or indirect observations. When radio frequency (RF) measurements are available, RSS may be
used for this observable. Our goal in this contribution is to develop a spatial positioning methodology based on RSS
observables which leverages both fingerprinting and tracking techniques, and consequently overcomes the individual
limitations of each approach. Namely, that fingerprinting is generally used in static estimation and that tracking
algorithms rely on a well defined analytic model.

Following the traditional approach for solving tracking problems, we formulate the underlying system in terms of
a state space model. Depending on the specific positioning task being performed, this may include velocity or other
parameters of interest in addition to the spatial location of the object being tracked. For the purposes of this paper
we will consider an object moving through an RSS field according to a 2-dimensional 24 order kinematic model.
The state is defined as

Xt = [p;[ct}vpg]apg]vpg[f]]—r )

with p[g] being the position at time ¢ in the (-axis and pg] its derivative with respect to time. In tracking, one is



interested in learning the posterior distribution of that state given all available information, p(x¢|y1.:) where y; are

the measured RSS in decibels at time ¢ for a set of L reference nodes y; = [ygt], e 7y[Lt]]T. Applying these definitions
for the state and observations, the state space model is formulated as
x; = f(xi—1) + € (1)
yt = h(xy;;we) + 1 (2)

where the known or estimated state evolution and measurement functions are denoted f(-) and h(-) respectively. In
the RSS positioning application h(-) is an injective function modelling the relationship between the average RSS
measured and a given location. Since in general this function will not be known for a given RSS field, our approach
will be to consider the use of a neural network to estimate that relationship. This results in a model which is
parameterized by the weights of a neural network, wy, so the function h is the forward propagation of the neural
network. This function will be substantially nonlinear, and as a consequence, only suboptimal tracking methods
can be considered when inferring p(x;|y1.¢). Regarding the state evolution function, for the sake of simplicity, it is
considered as a linear mapping (i.e., f(x) = Fx) in this paper [4]

F:<(I) ATI'I), (3)

where AT is the time between consecutive time instants. In this contribution we consider a standard Extended
Kalman filtering (EKF) to estimate the posterior distribution of interest, which basically involves linearizing the
measurement function h. Finally, we approximate the additive process and measurement noise €/ and 7; as being
Gaussian random variables with zero mean and known or estimated covariance.

The recursion for computing the predicted distribution p(x¢|y1.t—1) and the filtering distribution p(x;|y1.;) at the
time step ¢ is given by the Bayesian filtering equations [15]. In particular, given an initialization or prior distribution
of the states p(xg), the posterior distribution can be conceptually obtained in two steps: prediction and update. In
the first of these two steps, the predictive distribution is computed using the Chapman—-Kolmogorov equation for the
step ¢,

P(Xe|y1:—1) = /p(Xt|xt71)p(Xt71‘y1:t71)dxt71~ (4)

and updates it with the latest measurement y; to compute the posterior distribution using Bayes’ rule

p(xelye) = Zitp<yt|xt>p<xt|yl:t_1> (5)

where the normalization constant z; is given as

2t = /P(Yt|Xt)p(Xt|Y1:t71)dXt . (6)

The main challenge in performing this recursion is solving the two integrals in (4) and (6), for which closed-form
solutions only exist in limited cases (e.g. when the state-space model is linear and Gaussian). In instances where the
nonlinearity is constrained to a given order, it is possible to leverage established techniques for performing tracking a
nonlinear model. Whereas the EKF relies on linearizing the model by analytically or numerically computing matrix
derivatives of f and h with respect to the state variable x;, the Cubature Kalman filtering (CKF) leverages spherical-
radial cubature rules to compute an approximation of the propagation of a Gaussian random variable (i.e. the state)
through these nonlinear functions [1].

DATA-DRIVEN RSS FIELD LEARNING

Along with other techniques, the use of neural networks has been widely considered for indoor positioning problems
in fingerprinting scenarios. The literature presents a plethora of neural network-based algorithms which include con-
volutional neural networks (CNN) for classification of RSS measurements [7, 16], deep neural networks [5, 9, 16], RBF
networks [11], standard multi-layer perceptrons (MLPs) [2], and general regression neural networks (GRNN) [8]. The
vast majority of neural network-fingerprinting-based methods aim at learning functions that directly map measured
RSS values to their respective target locations. Although accurate position estimates are provided by considering



such approaches in a static scenario, the inability of traditional fingerprinting methods to adapt to a dynamical
environment is a major drawback when considering real world applications. Therefore, the demand for adaptive
strategies, capable of matching the dynamical behavior of different scenarios, arises naturally in this context and
remains still an open problem [4].

The literature contains several works which combine an offline stage using fingerprinting with some kind of adapted
tracking strategy. Some of these present strategies which include Viterbi-like algorithms [4], although concerning
the use of neural networks in this context a small number of works can be found combining those with tracking
schemes. Recently, the authors in [8] applied a GRneural network to learn the fingerprinting map (RSS to position)
and used a Kalman filter to improve the GRneural network position estimates providing smoother results without
discontinuities obtained when the GRneural network are directly used to predict positions over time (tracking). It
is worth noticing that our goal is to present a methodology where both fingerprinting and tracking components of
the RTLS are intertwined such that the overall performance is enhanced.

Our approach aims at providing such interrelated system where fingerprinting and tracking methodologies are
tight together through the use of neural networks and variants of the Kalman filter. For this, we invert the usual
fingerprinting formulation by learning the RSS fields from position inputs. This allows one to formulate the training
and tracking problems as a state space model which can be solved sequentially. To achieve this goal, we start by
considering two different possible strategies using fingerprinting. In the first strategy, the network is trained using
standard gradient-based procedures in the offline and online stage while tracking is performed using KFs. This
strategy results in two disjoint steps to solve the tracking problem. In a second scenario, we propose to train the
neural networks using a KF formulation [6]. This, potentially, unifies the learning and tracking methodology which
are both, now, formulated in the context of (nonlinear) Kalman filters. This formulation allows us to easily scale the
resulting algorithm to the availability of new fingerprinting data, thus, allowing the system to adapt to changes in
the environment and the availability of new training data.

For the RSS field learning task we consider traditional multilayer perceptron (MLP) neural networks [2]. In our
solution the neural network structure is envisioned to accept position vectors as inputs and present estimated RSS
vectors as outputs.

Neural network training

In both settings (single and multiple neural networks) we consider both gradient-descent-based and Kalman filter
strategies to adjust the neural networks coefficients. In the gradient-based methods we consider two well known
strategies: stochastic gradient-descent (SGD) and Adaptive Moment Estimation (Adam) [10]. SGD is by far the
most popular optimization strategy used in neural network training. The algorithm is very efficient, although it has
the potential to become stuck in local minima [12]. The weight adaptation is provided by an update in the direction
that minimizes the prediction error, driven by the gradient of the error,

Wy = W1 — YV @ (7)

where it becomes clear that w; is update from w;_; in the direction that minimizes the gradient. The v is the
learning rate, determined the step size of gradient descent. Vi, @ is the derivative of quadratic error function over the
current weights. On the other hand, Adam is a method for efficient stochastic optimization that, differently to many
of its counterparts, only requires first-order gradients. The optimization procedure computes individual adaptive
learning rates for different parameters from estimates of first and second moments of the gradient, thus, promoting
some kind of step size annealing [10]. Excellent results have been shown in the literature when modeling stochastic
systems what makes Adam a suitable strategy for learning RSS fields in the context of the present problem.
Alternatively, KF training of neural networks was introduced as a second-order neural network training method
that is a practical and effective alternative to the batch-oriented, second-order methods such as quasi-Newton,
Levenburg-Marquardt, and conjugate gradient strategies [6]. EKF [15], and its more flexible variants such as
Unscented KF (UKF) and CKF [15] have been considered to neural network training over the years in different
fields [6, 17]. In this work, we consider EKF as the training strategy for neural networks, thus, proposing a unified
Kalman-based strategy for the online and offline stages of the fingerprinting methodology. When using Kalman filter
to train a neural network, the training strategy is interpreted as a state estimation problem where the weights of the
neural network are treated as a random process which is partially observed from labeled input/output training data,
Dr = {p:,y+};. Each time a new training pair is processed, the weight vector will be updated. The state space



model is

Wi =Wi_1 + € (8)
yi = h(wy;pe) + 1 9)

where the measurement function h(-) is the same as in (2). The main difference in (9) is that p; are known inputs
and wy is the independent variable, whereas in (2) it is the other way around and the weights are considered known
inputs defining the model. Regarding the evolution of the weights, we assume a static dynamic affected by a random
defined as €;” and statistically characterized by a normal distribution whose variance models the amount of variability
we allow in the weights on every time step.

Regarding some implementation details, we highlight the computation of the Jacobian matrix over the MLP
weights and the setting of the EKF parameters. The Jacobian matrix, which is needed by both gradient-based and
EKF strategies, is computed using Automatic Differentiation by creating Computational Graphs [3], while the EKF
state and modeling errors covariance matrices were initialized as diagonal matrices such as (I where ( is a small
positive constant.

Offline vs Online learning of RSS fields

One scenario that we are particularly interested in addressing is that of time-varying RSS fields. In a real-world
scenario, it is very likely that the environment will change. For example, furniture might be added in the surveyed
area, the number of persons interacting with the environment at any given time might change, or other situations
might occur which can change the learned RSS spatial field either partially or in its totality. In other words, any
change in the environment will likely have an impact on the received signal and its characteristics. If we insist in
using the (neural network-based) model that was trained before the changes in the environment, the results might
be erroneous or biased. Therefore, it seems reasonable to allow the model to update as new data is available.

In this work, we split the training process into two phases: an offline phase, where data initially collected under
an static environment is used to learn the RSS fields; and online phase, where we assume the environment to be
time-varying over space. Thus, the model initially learned in the offline setting must be adapted to cope with changes
in the environment. Since the field may have changed along with changes to the environment, the initial data set
no longer provides an appropriate characterization of the field and, in the online phase, only new acquired samples
must be used. Furthermore, the possibility that the field may be continuously changing makes the batch training
used in conventional MLP training not suitable.

The transition between the offline and online phases is transparent for the KF-based strategy due to the sequential
nature of Bayesian filtering methods. For the Adam, however, the training in the offline and online phases may differ
due the possibility of using data batches and many epochs in the first scenario and not in the later. Thus, in this
work, we train the MLP using Adam in different ways during the online and offline phases. During the offline phase
we consider N°fin® >~ 1 epochs with batch size of Nl?fﬂi“e >> 1 samples. During the online phase, however, we
perform just one iteration of Adam for each new sample, that is Nomline = N,f“““e = 1. By doing so, we avoid the
risk of mixing samples that characterize different environment states.

EXPERIMENTAL VALIDATION

In this section we use synthetic data to test the discussed strategies. Following a standard fingerprinting-based
procedure [4], we assume that an initial data set Dy = {p;,y;}\; of locations p; € R? and a vector of RSS values
y; € R, with L being the number of access points, are available. To simulate the RSS field, initially, we use the
standard path loss model [14], which we assume static during the data collection. To observe the behavior of the
discussed learning methodologies under an online learning environment we simulate a field change after the initial
training phase and observe the performance of the algorithms as new measurements are collected.

As a performance metric, used for both field estimation and indoor tracking, we compute root mean-square error
(RMSE). For the RSS field estimation the RMSE is given by

N
1 N
RMSE, = | 577 > Ii =5l (10)
=1



with y and y; being the true and estimated RSS value at location p;, respectively. For the tracking performance
analysis we use the RMSE, between the generated trajectory position p; and the estimated positions p;. The
appropriate RMSE,, expression can be obtained by replacing y’s by p’s in (10), and N and L by appropriate values.
Since the tracking algorithm may diverge, specially if the field estimation is poor, the RMSE, is computed only for
the non-divergent trajectories.

Monte Carlo runs were performed to access the mean-behavior of the field learning and tracking procedures. In
such cases, the proportion of non-divergent tracking evaluations is also presented.

Data Generation

To generate the simulated scenario we considered a 50 x 20 m? room with L = 7 identical access points placed in
known arbitrary locations p,[f], £=1,...,L. The RSS field generated by each access point at an arbitrary location
P is given by

0 d(pi, py) [
v = Pr— Py~ 10Alogyg ——— +1, (11)
0

where, dy is a reference distance, Py is the attenuation at such distance in dB, d(p,p’) is the Euclidean distance

between positions p and p’, Pr is the transmitted signal power in dBm, and n; ~ N(0, U%) is an additive WGN. The
i-th vector of measured RSS is then obtained by stacking the L values as y; = [yl[l], e ,yZ[L]]T. A denotes the path
loss exponent. For all simulations we considered Pr = 1, Py = 20, A = 3, dy = 0.1, and a,[f] = 4. To construct the

initial data set, we sampled the space using a grid with resolution of 1 m, resulting in a total of N = 1071 samples.
Figure 1, left panel, shows the initial simulated RSS fields where the peaks of maximum RSS happen at the AP
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Figure 1: RSS fields for all access points in a 50 x 20 m? room. Initial noisy fields (left), and the field when using
the bump functions (right).

In order to evaluate the ability of the neural network to adapt to changes in the fields, we perturbed the field
in Fig.1 in the online training process. To simulate field changes we follow three different approaches which vary in
the amount of resulting field difference and complexity of the new field. The simplest and most mild field change
was performed by changing the A in the path loss model. Specifically, we considered A,ew = 5, implying a faster
attenuation over distance. The second approach consisted in changing the location of two access points, moving
the two access points on the edge further away from where they were. The third approach consisted in modeling
randomly positioned smooth field changes over space. To this end, we considered bump-shaped attenuation functions
to simulate RSS attenuation caused by large objects or walls in the room. The bump-shaped function is given by

o)~ LEo0 (Cmer) i el < 12)
0 , otherwise



where £ > 0 controls the maximum function amplitude, r is the radius of the bump, and c is the location were the
function is centered. For simplicity, we assumed that the attenuation caused by the bump function is the same for
all access points. Then, assuming N, randomly centered bump-functions, the RSS model becomes

9 d(p; po]) al 7]
yi' = Pp — Py — 10Alog, ———2 = g (pi) +71;" - (13)
do =

Clearly, this third approach adds more complexity to the resulting RSS field. In the simulations with the bump
function attenuation we considered £ = 10, N, = 20, » = 10. The RSS fields generated using (13) are presented in
the right panel of Figure 1.

To simulate an online scenario we assume that new RSS vectors y;°" are randomly sampled from the space. As
new samples arrives we update the MLPs using both EKF and Adam. To access the MLP training convergence in

both offline and online scenarios two test data set were created, one for each scenario, using 1000 samples randomly
from space.

Discussion

All simulations presented in this section are composed of an offline phase and an online phase. The offline phase uses
noisy data generated using the path loss model as discussed in the previous section. The beginning of the online phase
is marked by a field change after which algorithms which were trained offline need to re-adapt. While the offline and
online phases are essentially the same for KF strategies, for conventional gradient methods this situation presents a
challenge since samples are collected sequentially rather than in batch. During the offline phase we trained and tested
MLPs using Adam for data sets composed of 20, 100 200, 500, and 1071 (all) samples using 20 epochs. Due to the
recursive nature of Kalman filters we tested the EKF performance for all possible data subset sizes (N € [1,1071]).
In the online phase Adam is trained sequentially using one sample at a time.

Figures 2, 3 and 4 present the evolution of the RMSE,, in (dB) for both MLP training methods, Adam and EKF,
as the amount of available data grows and for offline and online scenarios. The field changes which occur at sample
1071 are clearly visible in all figures as an increase of the RMSE, and this transition delimits the beginning of the
online training phase. In all three scenarios, the results of the offline training phase are very similar. In each case, the
MLPs trained with the Kalman filter have faster initial convergence but as the amount of data available for training
increases, eventually Adam slightly outperforms the EKF strategy. Conversely, the performance of the online phase
differs in all three scenarios as the complexity of the field changes vary. In each case however, the EKF clearly
outperforms Adam in the online scenarios, presenting much faster convergence and better overall performance. This
result is expected due the natural recursive and optimal design of Bayesian filters, and the fact the Adam when used
for online training in this way is unable to iteratively improve over many epochs with randomized data batches.

=== Adam
EKF

RMSE(dB)
-

0 500 1000 1500 2000
Size of Data Sets

Figure 2: RMSE training error in offline and online phase (path loss exponent change from A = 3 to A = 5), trained
with Adam and EKF methods.
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Figure 3: RMSE training error in offline and online phase(Two access points are moved), trained with Adam and
EKF methods.
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Figure 4: RMSE training error in offline and online phase(bumps are added), trained with Adam and EKF methods.

To assess the performance of the training algorithm in an indoor tracking context, we used the KF-based tracking
strategy discussed in Section 2. We assume h(-) to be estimated using the MLPs trained with Adam and the EKF.
To provide a performance baseline we also considered the case where h(-) was taken as the true underlying path loss
model used to build the measurements. The results of this experiment presented in Figures 5 to 7 are consistent
with the results of the online phases of Figures 2 to 4 respectively. The tracking performance was evaluated as the
MLPs were learning the field changes. Specifically, we tested the tracking performance after 0 (the moment the field
changed), 20, 100, 200, and 1000 data samples of the online learning algorithms. For each combination of data set
size and field change, N, = 100 Monte Carlo runs were made with trajectories generated performing a Gaussian
random walk using the 2-D kinematic model detailed in (1) with AT = 0.25 seconds. The figures present the RMSE,
results as well as the percentage of non-divergent tracking evaluations.

For Figures 5 and 6, the changes to the field are accounted for in the path loss model as a change in parameters.
Consequently, the path loss model presents the best tracking performance, since it accurately represents the true
field. This is not the case in Figure 7 since the attenuation using the bump-functions can not be characterized by
the path loss model.

Concerning the MLP-based methods, it is clear that as the algorithms converge, the tracking performance improves
with respect to both RMSE, and the percentage of non-divergent tracking solutions. This is specially clear in
Figures 5 and 3 where the field changes were mild. In both cases superior performance was observed when using the
EKF-MLP, with an average precision of less than 2 meters after 1000 samples were observed, however, with only 100
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Figure 5: Online phase tracking error and percentage after retraining the neural network with0,20,100,200,1000 data
samples (A changes from 3 to 5)
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Figure 6: Online phase tracking error and percentage after retraining the neural network with 0,20,100,200,1000 data
samples (2 access points are moved)

samples similar performance was observed with both methods.

Figure 7, presents the biggest challenge for all methods since it corresponds the most dramatic change to the
field. In this scenario, all methods provided worse performance, with the Adam and EKF behaving similarly in terms
of RMSE, up to 100 data samples. For 200 and 1000 samples however, the EKF provides the best results. This
results is consistent with the results of the online phase of Figure 4, which shows both methods presenting a slow
convergence rate in this more complex scenario, ultimately showing a similar initial convergence that grows as the
number of observed samples increases.

CONCLUSION

This paper presents a methodology to use tracking solutions seamlessly in the context of RSS fingerprinting. We
reversed the traditional fingerprinting formulation which directly estimate position vectors from RSS measurements.
In contrast, we use a data-driven machine learning method to learn the RSS field at any location. The reverse
formulation allows us to implement a solution, based on the KF machinery, to track the location of a receiver based
on RSS measurements and the reconstructed RSS field model. The overall methodology results in a unified KF-based
strategy for both stages of fingerprinting indoor tracking problem, which is seen to be highly beneficial in terms of
online learning as the conditions of the scenario change.
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Figure 7: Online phase tracking error and percentage after retraining the neural network with 0,20,100,200,1000 data
samples (bumps are added)

Simulations with synthetic data were used to demonstrate the performance of the KF-based MLP learning strategy
under offline and online scenarios in contrast to gradient-based algorithms such as Adam. Although the EKF training
method resulted in faster convergence and improved tracking capability in all scenarios, the simulations shows that
Adam can still outperform the EKF in a batch setting if the data set is large enough. This, however, is rarely the
case, specially in dynamical environments where small amount of data may be collected under a stationary time
window in which case sequential training schemes might be more desirable to consider.
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