
CSMA 2019
14ème Colloque National en Calcul des Structures

13-17 Mai 2019, Presqu’île de Giens (Var)

Multi-scale reduced-order model of composite microstructure based
on X-ray micro-CT imaging

A. Madra1, K. Su2, J. Du2, M. Hillman1

1 CEE, The Pennsylvania State University, {amadra,mhillman}@psu.edu
2 MNE, The Pennsylvania State University, {kxs535,jingdu}@psu.edu

Résumé — In the process of Data-Driven modeling of the material microstructures, a reduced-order
representation is preferred, as it is more manageable from the numerical standpoint. Its main drawback
though is the loss of the connection between the parameters of the reduced-order model and the physical
properties of the microstructure. We propose a methodology for exploring the intrinsic dimensionality
of the multi-scale shape-manifold models of a heterogeneous material and point-out how the represen-
tativity of both geometric and spatial features changes depending on snapshot selection. The process is
illustrated for an X-ray micro-CT scan of a polymer-ceramic composite microstructure.
Mots clés — Data-driven models, reduced-order modeling, composites.

1 Introduction

Volume imaging methods such as X-ray micro-CT enable the construction of realistic, numerical re-
presentations of the experimental material microstructure. While full-resolution reconstructions are the
most accurate, their memory requirements are usually prohibitive for the purposes of numerical simula-
tion and a reduced-order model is sought for instead. A successful approach to achieve low-dimensional
representations of geometry by combining Singular Value Decomposition (SVD) with shape manifold
interpolation has been proposed in [1, 2, 3]. The method is very effective in capturing the geometry
of single-scale features, such as the surface of the impression left by the indenter [4] or a mesoscale
envelope of a woven reinforcement in composites [5]. This efficiency is mainly because a low-rank re-
construction captures dominant features at a given scale and discards the higher-rank fluctuations. How
this approach performs for microstructures possessing different spatial and geometric features at mul-
tiple scales remains unexplored. Here, by modifying the snapshot size we unravel the relations between
low-rank features and physically semantic characteristics of the material, such as the shape and spatial
distribution gradient of filler particles.

The rest of this paper is organized as follows : first the pre-processing of the X-ray micro-CT scans is
briefly outlined and the acquisition of snapshots is described. Then, a reduced-order model is constructed
through incremental Singular Value Decomposition and a low-rank manifold fitted with Diffuse Approxi-
mation (DA). Finally, the influence of snapshot size is investigated in relation to feature representativity
and accuracy of the reconstruction. The conclusion sums up the current limitations of the method and
proposes future expansion and applications.

2 Data pre-processing

2.1 Material and image acquisition

The material subject to investigation is an epoxy (Epo-tek 301) composite with a filler of alumina
particles (Al2O3, Saint-Gobain, grit size 150). While the total filler fraction was 35% by weight, it is
distributed with a gradient varying in the x direction (Fig. 1a). The specimen tested was a cuboid of
dimensions 20×5×5 mm3. Further manufacturing parameters are detailed in [6, 7]. The X-ray micro-
CT scans were performed on a GE v|tome|x L300 nano/microCT at the Penn State Center for Quantitative
Imaging. The scan at a resolution of 6 µm, yielded 1214 tomogram slices, i.e., two-dimensional 32-bit
grayscale images of 917×980 pixels in size.
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2.2 Image processing

In transmission X-ray microcomputed tomography (X-ray micro-CT), the internal 3D microstructure
of the material is revealed by imaging the distribution of the coefficient of attenuation µ defined in the
Beer-Lambert’s law [8]. At lower beam energies, as is the case here, the value of µ is directly related to
the atomic number of a given phase in the material. A tomographic scan T is a 3D array representing
µ(x,y,z) where x = 1, . . . ,Nx, y = 1, . . . ,Ny, z = 1, . . . ,Nz.

Here, we chose to explore the filler phase as it is the element of the microstructure displaying a high
degree of variability, it will be considered for the data-driven model. To isolate it from other phases in
the material (epoxy and air), a segmentation of the scan is necessary. The goal of the segmentation is to
obtain a partition of all pairs of µ values and locations (x,y,z) into classes corresponding to particular
phases ω

µ(x,y,z) 7→ ωphase. (1)

Here, a supervised clustering Fast-Random-Forest (FRF) algorithm [9] has been applied yielding seg-
mentation shown in Fig. 1b.

(a) Raw tomogram slice Txyz for z = 1. (b) Tomogram slice for z = 1 after segmentation.

FIGURE 1 – X-ray micro-CT data preprocessing for Data-Driven modeling.

2.3 Snapshot acquisition

To construct a reduced-order model of the material, we will take subsets Tm of different dimensions
nx×ny×nz of the tomographic scan T . For simplicity, only 2D slices of T will be considered, where in
each subset z = const. Thus

card[Tm] = nx ·ny ·1 = N (2)

with N - the dimensionality of the subset, and M - number of subsets : 1≤M ≤ Nx ·Ny, reaching in size
from the entire 2D slice to individual pixels.

Two types of features are extracted from each subset Tm. Firstly, a measure of filler volume fraction
Vf is considered both for the entire Tm

Vf =
card[µ(x,y,z) ∈ ω f iller]

nx ·ny
(3)

and also locally at the left and right extreme of the region Tm (Fig. 2a) as given by

Vf l or f r =
card[µ(x,y,z) ∈ ω f iller]

nx ·ny ·η
(4)
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(a) Subset Tt with indicated areas for calculation of Vf l
and Vf r.

(b) Level-set φ of Tm.

FIGURE 2 – Two types of microstructural features extracted from a tomogram subset Tm shown in Fig.
1b.

where η ∈< 0,1 > is a factor determined empirically and

x = 1, . . . ,nx ·η, y = 1, . . . ,ny, for the left extreme Vf l,

x = nx−nx ·η, . . . ,nx, y = 1, . . . ,ny, for the right extreme Vf r.
(5)

Secondly, we will consider snapshots sm of the level-set function φ(x,y,z) of Tm defined as
φ > 0, if inside the particle,
φ = 0, if on the surface/outline of the particle,
φ < 0, if outside of the particle.

(6)

Since tomographic scans T are represented as discrete 3D arrays, φ can be efficiently approximated using
the fast marching method [10] (Fig. 2b).

3 Reduced-order model

3.1 Incremental SVD

All snapshots sm

sm =


...

φ(x,y,z)
...

 ∈ RN (7)

where m = 1, . . . ,M are collected in a matrix of snapshots S

S =

s1 · · · sm · · · sM

 ∈ RN×M. (8)

To represent all sm in a common shape-space, we perform a Singular Value Decomposition (SVD) of the
snapshot matrix

S =UΣV ∗ (9)

where Σ – diagonal matrix of singular values, and U , V – orthonormal basis of M snapshots, s.t.

U =

u1 · · · uM

 . (10)
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Since tomographic data leads to large N×M values requiring high memory storage capacity, the SVD de-
composition may be intractable. The key issue is the identification of only those snapshots that contribute
significantly to the creation of the new basis. Thus, we will consider R << M snapshots that are chosen
following the incremental SVD algorithm in [11] yielding a reduced-order basis UR. All snapshots sm are
then projected into the new, reduced-order shape-space (see Fig. 3 for R = 3)

A =

α(1) · · · α(R)

 , α(r) =


α
(r)
1
...

α
(r)
R

 . (11)

(a) nx = 50, ny = 25, M=7398 (b) nx = 75, ny = 50, M=7333

(c) nx = 100, ny = 75, M=1620 (d) nx = 200, ny = 150, M=1440

FIGURE 3 – Snapshots sm of different subset Tm dimensions nx× ny projected into the reduced feature
space R = 3. The colors correspond to the filler volume fraction Vf of the Tm. In (d) two distinct clusters
I and II are indicated.

3.2 Shape manifold representation

To further reduce the amount of data required to represent the microstructure, we will search for a
low-dimensional shape manifold

M (α) = 0, M ∈ RR (12)

that represents all possible microstructures within the admissible range of values of α. It can be approxi-
mated as

ψ(α) = pT (α)a(α) (13)

where p are polynomial basis functions and a are coefficients minimizing the weighted moving least
squares criterion

J(a(α)) =
1
2 ∑

α(r)∈V (α)

w(α(r),α)(pT (α(r))a−α(r))2 (14)
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with a neighborhood V (α) defined by the radius of influence d(r) of point α(r) and the weighting function
w, e.g.

w(α(r),α) = exp

(
−||α

(r)−α||
2d(r)

)
. (15)

Here, this concept has been illustrated for three-dimensional manifolds that can be visualized (Fig. 4),
although the intrinsic dimensionality will vary depending on the scale, as will be shown in the sequel.

(a) nx = 50, ny = 25 (b) Cluster I, nx = 200, ny = 150 (c) Cluster II, nx = 200, ny = 150

FIGURE 4 – Manifold M (α) fitted to projected snapshots sm for different dimensions nx× ny of subset
Tm.

4 Influence of snapshot size

4.1 Feature representativity

Two features are considered here as key in material model formulation : level-set on segmented
subsets of the X-ray microtomographic scan, and global and local filler volume fraction measurements. In
Fig. 3, four different sizes of subset Tm are explored in conjunction with the global Vf in Tm. Clearly, α1 is
directly tied to the Vf value, regardless of the subset size. On the other hand, the intrinsic dimensionality
of projected samples increases significantly with larger subset sizes, beginning with a 2D surface for
50×25 (Fig. 3a), and subsequently turning into a seemingly random cloud (Fig. 3c) or multiple clouds
(Fig. 3d) of points. This change in dimensionality can be attributed to the increasing importance of the
variation in spatial organization of the specimen, better captured by the larger subsets. Thus, a smaller
subset describes particle shape and volume fraction, while a larger one adds information on the spatial
distribution. The main question is then : how to separate the large-scale effects of density gradient from
the micro-scale parameters of the microstructure?

In Fig. 3d it can be observed that a larger snapshot size not only increased the dimensionality of the
model, but also separated the snapshots into two distinct classes. The observation of the Vf gradient made
by comparison of the Vf r values in Fig. 5 indicates that Vf r is a major cause for the clustering. Although,
this separation is also evident for Vf in Fig. 3d for the same subset dimensions, it does not manifest for
Vf l (Fig. 5b), where the average Vf l for both clusters remains similar.

One way to diminish the influence of Vf r on the reduced-order model formulation, or to essentially
separate it as a large-scale feature, is to classify the snapshots and find distinct shape manifolds for
each of the clusters. This strategy has been employed here with Vf r used as a criterion for unsupervised
classification with a k-means algorithm. Then new orthogonal bases U I

R and U II
R have been constructed

for the clusters I and II, yielding a projection into a new feature space where a 2D surface fit was possible
(Fig. 4b-4c), spanning all admissible values of Vf r used for the manifold interpolation.

It should be noted, that for smaller subsets, the gradient of Vf remains observable, with the highest
values of Vf l and Vf r present at the opposite edges of the projected snapshots (Fig. 5a and 5c respectively).
However, since the snapshots are smaller, the observed gradient is smoother than for larger subsets.
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Hence even for smaller snapshots, all three features : Vf , Vf l , and Vf r together can be used to guide the
construction of a shape manifold (Fig. 4a), but only if the density gradient remains relatively continuous.

(a) Vf l : nx = 50, ny = 25 (b) Vf l : nx = 200, ny = 150

(c) Vf r : nx = 50, ny = 25 (d) Vf r : nx = 200, ny = 150

FIGURE 5 – Filler volume fraction (a-b) Vf l and (c-d) Vf r of projected snapshots sm for two different
dimensions nx×ny of subset Tm.

4.2 Accuracy of the reconstruction

The size of a snapshot apart from influencing the representativity of the features, also plays a major
role in the overall performance of the proposed methodology. The original unsegmented scan requires
> 4 GB of memory. After segmentation and by storing as compressed images (.png), this requirement
goes down to ∼ 23 MB. This is a number manageable for the purposes of morphological measurements
and qualitative 3D analysis. For larger scans or scan time-series (in-situ), this number may increase
drastically, thus the interest for a low-dimensional manifold representation.

A subset of size 50×25 yields snapshots of length N = 1250 required to describe the microstructure
(Fig. 6a). A reconstruction plausibly indicating spatial filler distribution is achievable with a manifold of
dimension R = 15 (Fig. 6b ; 1.2% of the entire set), and the reconstruction retaining both distribution and
shape of the filler requires R = 175 (Fig. 6c ; 14%). A larger subset is originally described with snapshots
with N = 30 000 (Fig. 6d), but a plausible reconstruction is achievable with R= 400 (Fig. 6f ; 1.3%). This
represents a significant reduction in memory requirements, especially if the same approach is considered
for 3D subsets.
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(a) Original snapshot at point i, N =
1250

(b) i reconstruction with R = 15. (c) i reconstruction with R = 175.

(d) Original snapshot at point ii,
N = 30 000.

(e) ii reconstruction with R = 100. (f) ii reconstruction with R = 400.

FIGURE 6 – Original microstructure and reconstructions of snapshots at points i (Fig. 4a) and ii (Fig. 4b)
for a varying dimensionality R of the shape manifold.

5 Conclusions

The impact of snapshot selection on the reduced-order data-driven model formulation has been ex-
plored. Despite being presented only for 2D subsets of the tomographic scan, the method can be easily
adapted to 3D. The main challenge is to imbue the lower dimensional representations with a strong
connection to physical parameters, such as attempted here : α1 is clearly equivalent to Vf . At the same
time, the connection of other features with those used for low-rank decomposition will require a careful
investigation and classification of snapshots prior to the SVD to emphasize the representativity of physi-
cal features in the reduced-order space. The full exploration of the changes in dimensionality related to
the snapshot size and selection are currently underway.

The further applications of the reduced-order model are multiple. First of all, an in-depth, structu-
red conceptual model of the microstructure is created. This enables formulation of quantitatively sound
observations of the impact of manufacturing and design parameters on material morphology. Secondly,
a shape-manifold model is useful for generating new microstructures within the admissible range, espe-
cially those that were not subject to experimental examination. The validity of the manifold interpolation
as opposed to other methods of interpolation is the subject of the ongoing work.
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