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Abstract— It is proved that the linear uncertain systems
described by chains of integrators with unknown positive
parameters can be stabilized by a kind of nested nonlinear feed-
back controllers with any positive gains. A Lyapunov/Chetaev
function is constructed for the stability analysis of the closed-
loop system, and a necessary and sufficient condition for
the asymptotic stability is derived by using the technique of
homogeneous domination.

I. INTRODUCTION

This paper considers the local stability problem of the
general uncertain chain of integrators

ẋ1 = a1x2,

ẋ2 = a2x3,
...

ẋn−1 = an−1xn,

ẋn = anu,

(1)

derived by a nested nonlinear controller with the form

u =−((· · ·((k1x
r2
r1

1 + k2x2)
r3
r2 + k3x3)

r4
r3 + · · ·

+kn−1xn−1)
rn

rn−1 + knxn), (2)

where x = (x1, . . . , xn)
T ∈ R

n is the system state vector,
u ∈ R is the control input, ai’s are uncertain positive constant
parameters, and ri’s are ratios of odd positive integers. The
structure of the controller (2) is proposed in [1] for global
stabilization. However, in [1], the bounds of ai’s are known
and the gains ki’s are consequently designed by using the
bounds. In this paper, we focus on the stability analysis
of the closed-loop system instead of the controller design.
We assume that all the ai’s are arbitrary positive unknown
parameters and all the gains ki are any non-zero constants.
For example, simulations show that the nested nonlinear
controller

u = −(((k1x1)
5/3 + k2x2)

33/25 + k3x3) (3)

with any given positive gains ki’s can stabilize (1) with n =
3 for any possible uncertain positive parameters ai’s. This
motivates us to present a general theoretical result on the
asymptotic stability of (1) with a nested nonlinear feedback
strategy (2).
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It should be noted that, generally speaking, it is impossible
to design a linear feedback controller

u = −(k1x1 + k1x2 + · · ·+ knxn) (4)

to stabilize (1) for all the possible unknown positive pa-
rameters ai’s. For example, as n = 3, the characteristic
polynomial of the closed-loop system of (1) with (2) is

λ3 + a3k3λ
2 + a2a3k2λ+ a1a2a3k1. (5)

For any given k1 > 0, k2 > 0 and k3 > 0, letting a1 = 2k2

k1
,

a2 = k3

k2
and a3 = 1

k3
results a non-Hurwitz polynomial

λ3 + λ2 + λ+ 2, which implies that the closed-loop system
is unstable.

The stabilization problem of chains of integrators has been
extensively investigated in the community of control theory.
Many control systems such as single-input controllable linear
systems and feedback linearizable nonlinear systems can
be equivalently transformed into chains of integrators. The
stabilization problem of chains of integrators using bounded
input with delays [2] or without delays [3] was already
treated. In [4], nested saturations were used for chains of
integrators. Delayed feedback control can also be used to
stabilize chains of integrators [5]. In [6], the application of
model (1) to planar vertical take off and landing (PVTOL)
was presented. The robust control strategy was designed
for chains of integrators with external disturbances [7]. A
nonlinear PI controller was proposed for (1) as ai = 1,
i = 1, 2, . . . , n−1 and the unknown parameter an 6= 0 [8].
In [1], as the unknown ai’s have known bounds, the gains
of the nested nonlinear controller (2) are designed by using
the technique of adding a power integrator (AAPI) proposed
in [9]. The AAPI technique is a very powerful tool to
design global stabilization controllers, which has been widely
applied to many control systems [7], [10], [11]. However,
the AAPI technique usually results a high-gain feedback
controller, which may cause implementation issue in practice.
In order to easily implement the nested nonlinear controller
(2), we try to analyze the stability of the closed-loop system
under the controller (2) with free feedback gains.

For homogeneous systems, it is well-known that an asymp-
totically stable homogeneous system admits a homogeneous
Lyapunov function. A natural idea is to generalize the con-
cept of homogeneity and apply the generalized homogeneity
to the stability analysis of a class of nonlinear systems.
Actually, in [12]-[15], the concept homogeneity with mono-
tone degrees (HMD) is proposed and has been successfully
applied to the design of stabilizing controllers for inherently
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nonlinear systems. Note that even if a nonlinear system
admits HMD, it may not be homogeneous. So it is interesting
to analyze the asymptotic stability for an inherently nonlinear
system with HMD.

This paper proposes a special HMD called homogeneity
with strictly decreasing degrees (HSDD), which plays an
important role in the construction of the Lyapunov/Chetaev
function. Then by using the Lyapunov second method and
Chetaev instability theorem, a necessary and sufficient con-
dition for the asymptotic stability of the closed-loop system
is obtained.

II. PRELIMINARIES

This section presents some fundamental theorem and some
useful inequalities which will play important roles in obtain-
ing the main results of this paper.

Theorem 1: (Lyapunov Stability Theorem) [16], [17]
Consider a nonlinear system

ẋ = f(x), x ∈ ℜn, (6)

where f(x) is Lipschitz continuous with respect to x, f(0) =
0. If there exists a locally positive definite function V (x)
such that

V̇ (x) :=
∂V (x)

∂x
f(x) (7)

is locally negative definite, then system (6) is asymptotically
stable.

Theorem 2: (Chetaev Instability Theorem [18]) If there
exists a continuously differentiable function V (x) such that
(i) the origin is a boundary point of the set G = {x ∈
ℜn | V (x) > 0}; (ii) there exists a neighborhood U of the
x = 0 such that V̇ (x) > 0 ∀ x ∈ U ∩G, then x = 0 is an
unstable equilibrium point of the system.

Lemma 1: (Jensen’s inequality) [19] For p ≥ 1 and xi ∈
ℜ, i = 1, · · · , n, the following holds

|x1+x2+· · ·+xn|
p ≤ np−1(|x1|

p+|x2|
p+· · ·+|xn|

p). (8)

Lemma 2: [20] For p ≥ 1 which is a ratio of positive
odd integers, the following holds

x(x+ a)p ≥ 21−pxp+1 + xap, ∀ x, a ∈ ℜ.

Lemma 3: [12] Let c and d be positive constants. Given
any number γ > 0, the following inequality holds

|x|c|y|d ≤
c

c+ d
γ|x|c+d +

d

c+ d
γ−

c
d |y|c+d, ∀ x, y ∈ ℜ.

Definition 1: [13] A continuous vector field v : Rn →
Rn with v = [v1, · · · , vn]

T is said to satisfy homogeneity
with monotone degrees (HMD), if we can find positive real
numbers (r1, · · · , rn) and real numbers τ1 ≥ τ2 ≥ · · · ≥ τn
such that

vi(ǫ
r1x1, · · · , ǫ

rnxn) = ǫri+τivi(x) (9)

for all x ∈ ℜn, ǫ > 0 and i = 1, 2, · · · , n. The constants
ri’s and τi’s are called homogeneous weights and degrees,
respectively.

Definition 2: A continuous vector field v : Rn → Rn

with v = [v1, · · · , vn]
T is said to satisfy homogeneity with

strictly decreasing degrees (HSDD), if it has HMD defined
in Definition 1 and the homogeneous degrees satisfy

τ1 > τ2 > · · · > τn.

III. MAIN RESULTS

The nested controller (2) can be rewritten as the recursive
form as follows:

f1(x1) = k1x1,

f2(x1, x2) = f
r2/r1
1 + k2x2,

...

fi+1(x1, · · · , xi+1) = f
ri+1/ri
i + ki+1xi+1,

...

fn(x1, · · · , xn) = f
rn/rn−1

n−1 + knxn,

(10)

where every ri ≥ 1 is a ratio of two positive odd integers.
We are interested in the stability analysis of the closed-

loop system:

ẋ1 = a1x2,

ẋ2 = a2x3,
...

ẋn−1 = an−1xn,

ẋn = −anfn(x1, x2, · · · , xn),

(11)

where ri’s are ratios of odd positive integers satisfy

1≤r1<r2,

0<ri+2−ri+1<ri+1−ri, i = 1, . . . , n−2.
(12)

Remark 1: Given ri and ri+1, one can determine ri+2

by (12). So it is easy to construct {ri}
n
i=1 satisfying (12).

Let τi = ri+1 − ri for i = 1, 2, . . . , n− 1 and τn = 0. Then
one can easily check that the closed-loop system (11) has
the HSDD

τ1 > τ2 > · · · > τn

with respect to (r1, r2, . . . , rn).

Lemma 4: Let r1, r2, · · ·, rs and n1, n2, · · ·, ns (s ≥ 2)
be any given positive constants. For any ε > 0, there exists
a positive number A such that

|x1|
n1· · ·|xs|

ns≤ε|x1|
n1r1+···+nsrs

r1 +A

s
∑

i=2

|xi|
n1r1+···+nsrs

ri (13)

for all x1, x2, · · ·, xs ∈ ℜ.
Proof: (Mathematical Induction) As s = 2, by Lemma 3,
we have that, for any ε > 0, there exists Ã > 0 such that

|x1|
n1 |x2|

n2 = (|x1|
1
r1 )r1n1(|x2|

1
r2 )r2n2

≤ ε|x1|
r1n1+r2n2

r1 +Ã|x2|
r1n1+r2n2

r2 . (14)

5015



Suppose that Lemma 4 holds for the case of s, i.e. assume
that (13) holds. In the rest of this proof, we consider the case
of s+1. By (13), we have that

|x1|
n1 · · ·|xs|

ns|xs+1|
ns+1

≤ (ε|x1|
n1r1+···+nsrs

r1 +A

s
∑

i=2

|xi|
n1r1+···+nsrs

ri )|xs+1|
ns+1 . (15)

By Lemma 3, for each i ≥ 1, there exists Bi > 0 such that

|xi|
n1r1+···+nsrs

ri |xs+1|
ns+1

≤ |xi|
n1r1+···++ns+1rs+1

ri +Bi|xs+1|
n1r1+···++ns+1rs+1

rs+1 . (16)

Applying (16) to (17) yields that there exists Â such that

|x1|
n1 · · ·|xs|

ns|xs+1|
ns+1

≤ ε|x1|
n1r1+···++ns+1rs+1

r1 +Â

s+1
∑

i=2

|xi|
n1r1+···++ns+1rs+1

ri . (17)

Proposition 1: By a diffeomorphism transformation, (11)
is equivalent to the system as follows:

ė1=
k1a1

k2
(e2−e

r2
r1

1 )=: g1(e1, e2),

ėi=
kiai

ki+1
(ei+1−e

ri+1

ri

i )+
ri

ri−1
e

ri
ri−1

−1

i−1 gi−1(e1,· · ·,ei) (18)

=:gi(e1, · · · , ei+1), i = 2, 3, · · · , n−1,

ėn=−knanen +
rn

rn−1
e

rn
rn−1

−1

n−1 gn−1(e1,· · ·,en).

Proof: Construct a nonlinear transformation

ei = fi(x1, · · · , xi), i = 1, 2, · · · , n, (19)

where each fi is defined by (10). It is easy to check that the
inverse mapping of (19) is

x1 = k−1
1 e1,

x2 = k−1
2 (e2 − e

r2/r1
1 ),

...

xi = k−1

i (ei − e
ri/ri−1

i−1
),

...

xn = k−1
n (en − e

rn/rn−1

n−1 ).

(20)

Since ri > ri−1, both the transformation (19) and its
inverse mapping (20) are smooth, which implies that the
transformation described by (19) is a diffeomorphism. A
straightforward computation shows that system (11) is equiv-
alently transformed into (18).

Lemma 5: Each function gi(e1, · · · , ei+1) defined by the
right hand side of (18) satisfies

|gi(e1, · · · , ei+1)|≤Ci(
i

∑

k=1

i
∑

j=k

|ej |
τk+ri
rj +|ei+1|

τi+ri
ri+1 ), (21)

where τk = rk+1 − rk and each Ci is a constant dependent
on gi(·).

Proof: (Mathematical Induction) For the case of i = 1,
from (8) it follows that

|g1(e1, e2)| ≤ C1(|e1|
r2
r1+ |e2|)

= C1(|e1|
τ1+r1

r1 + |e2|), (22)

where C1 is dependent on g1. Suppose that the lemma holds
for the case of i, i.e. (21) holds. In the following, let us
estimate |gi+1|. From (18), Lemma 1 and Assumption 1, it
follows that there exists a constant A > 0 such that

|gi+1|=

∣

∣

∣

∣

ki+1

ki+2
(ei+2−e

ri+2

ri+1

i+1 )+
ri+1

ri
e

ri+1

ri
−1

i gi

∣

∣

∣

∣

≤A(|ei+1|
ri+2

ri+1+|ei+2|+|ei|
ri+1

ri
−1

|gi|)

=A(|ei+1|
τi+1+ri+1

ri+1 +|ei+2|)+|ei|
ri+1

ri
−1

|gi|). (23)

By the induction assumption, applying (21) to (23), we have
that

|gi+1| ≤ A(|ei+1|
τi+1+ri+1

ri+1 +|ei+2|)

+ACi

i
∑

k=1

i
∑

j=k

(|ej |
τk+ri
rj +|ei+1|)|ei|

ri+1

ri
−1

. (24)

Using Lemma 4 to the last term of (24), we obtain that there
exists B > 0 such that

(|ej |
τk+ri
rj +|ei+1|)|ei|

ri+1

ri
−1

≤ B(|ej|
τk+ri+1

rj +|ei|
τk+ri+1

ri +|ei+1|
τi+ri+1

ri+1 +|ei|
τi+ri+1

ri ). (25)

From (24) and (25), it follows the conclusion of the case of
i+1. So, by Mathematical Induction, the proof is complete.

Theorem 3: Consider the closed-loop (11) of the un-
certain chain of integrators (1) under the nested nonlinear
controller (1). Assume that the unknown parameters ai’s are
positive, the feedback gains ki’s are nonzero, and ri’s satisfy
(12). Then system (11) is asymptotically stable if and only
if ki > 0.

Proof: Construct the following Lyapunov/Chetaev func-
tion

V (e) =

n
∑

i=1

li

αi
eαi

i , (26)

where

li=−ki+1k
−1

i a−1i , i=1, 2,· · ·, n− 1, ln=−k−1n a−1n (27)

and
αi = 2rnr

−1

i ≥ 2, i = 1, 2, · · · , n. (28)

The derivative of (26) along (18) can be easily computed as

V̇ =

n−1
∑

i=1

eαi−1

i (e
ri+1

ri

i −ei+1)+e2n

+

n
∑

i=2

liri

ri−1

eαi−1

i e

ri
ri−1

−1

i−1
gi−1(e1, · · · , ei). (29)
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From (29), Lemma 2 and Assumption 1, it follows that

V̇(x)≥

n−1
∑

i=1

e
αi−1+

ri+1

ri

i −

n−1
∑

i=1

|eαi−1

i ei+1|+e2n

−
n
∑

i=2

liri

ri−1

|eαi−1

i e

ri
ri−1

−1

i−1
gi−1(e1,· · ·,ei)|

=

n−1
∑

i=1

|ei|
µi+|en|

2 −

n−1
∑

i=1

|eαi−1

i ei+1|

−

n
∑

i=2

liri

ri−1
|eαi−1

i e

ri
ri−1

−1

i−1 gi−1(e1, · · · , ei)|, (30)

where

µi =αi−1+
ri+1

ri
=

τi+ αiri

ri
, i = 1, 2, · · · , n−1,

By (30) and Lemma 4, for any ε>0, there is Ā such that

|eαi−1

i ei+1| ≤ ε|ei|
αiri−ri+ri+1

ri +Ā|ei+1|
αiri−ri+ri+1

ri+1

= ε|ei|
τi+αiri

ri + Ā|ei+1|
τi+αiri

ri+1

= ε|ei|
µi + Ā|ei+1|

µ̂i+1 , (31)

where

µ̂i+1 =
τi+αiri

ri+1
>

τi+1 + αi+1ri+1

ri+1
= µi+1

due to τi > τi+1 and (28). Moreover, by Lemma 5, we have

|ei|
αi−1|ei−1|

ri
ri−1

−1
|gi−1|

≤Ci−1

i−1
∑

k=1

i−1
∑

j=k

|ei|
αi−1|ei−1|

ri
ri−1

−1
(|ej|

τk+ri−1

rj +|ei|
τi−1+ri−1

ri ). (32)

Now, let us estimate the terms of the right-hand side of (32).
As k= i−1, we have that j= i−1 and

|ei|
αi−1|ei−1|

ri
ri−1

−1
|ej|

τk+ri−1

rj

= |ei|
αi−1|ei−1|

τi−1+ri
ri−1

≤ ε|ei−1|
τi−1+αiri

ri−1 + Â|ei|
τi−1+αiri

ri (33)

where
τi−1+αiri

ri−1
=

τi−1+αi−1ri−1

ri−1
= µi−1

and
τi−1 + αiri

ri
>

τi + αiri

ri
= µi.

As k<i−1, we have that

|ei|
αi−1|ei−1|

ri
ri−1

−1
|ej|

τk+ri−1

rj

≤ ε|ej|
τk+αiri

rj +A(|ei|
τk+αiri

ri + |ei−1|
τk+αiri

ri−1 ).

Considering k<i−1 and k ≤ j < i, we have

τk+αiri

rj
≥

τj+αjrj

rj
= µj ,

τk+ αiri

ri
>

τi+ αiri

ri
= µi

and
τk+ αiri

ri−1
>

τi−1 + αi−1ri−1

ri−1
= µi−1.

Moreover,

|ei|
αi−1|ei−1|

ri
ri−1

−1
|ei|

τi−1+ri−1

ri

= |ei|
αiri−ri+τi−1+ri−1

ri |ei−1|
ri

ri−1
−1

≤ ε|ei−1|
τi−1+αiri

ri−1 +A|ei|
τi−1+αiri

ri

where
τi−1+αiri

ri−1
=

τi−1+αi−1ri−1

ri−1
= µi−1,

τi−1 + αiri

ri
>

τi + αiri

ri
= µi.

By the discussion below (30), letting ε > 0 be sufficiently
small, we conclude that there exist constants Ki (i =
1, 2, · · · , n) such that

V̇(x) ≥
n
∑

i=1

Ki|ei|
µi + h(e1, e2, · · · , en),

where h(e1, e2, · · · , en) is composed of higher order terms.
Therefore, if ε is sufficiently small, there exists a domain
D ⊂ ℜn such that V̇ (e) is positive definite on D, that is,

V̇ (e) > 0, ∀ e ∈ D\{0}. (34)

From (27), it is easily seen that

li<0 (i =1, 2, · · ·, n) ⇔ ki>0 (i =1, 2, · · ·, n). (35)

If ki > 0 (i = 1, 2, · · · , n), it is clear that V (e) is negative
definite due to (35) and (26). This, together with (34), implies
that the zero solution of (11) is asymptotically stable by
Lyapunov Stability Theorem. Therefore the positivity of ki’s
is sufficient for the asymptotic stability of (11) .

On the other hand, if there exists a ki < 0, by (35) there
exists an lj > 0. In this case, by (26) we know that the set
G := {e ∈ ℜn | V (e) > 0} is not empty and e = 0 is
a boundary point of G. Therefore, from (34) and Chetaev
Instability Theorem, it follows that the zero solution of (11)
is unstable. This implies that the positivity of ki’s is also
necessary for the asymptotic stability of (11) .

Remark 2: In our recent papers [21] and [22], the idea of
HSDD has been used to stabilize a kind of nonlinear systems
via a linear feedback control. However, in this paper, we use
a nonlinear feedback to stabilize a class of linear systems.

Remark 3: One interesting question is whether the main
result of this paper can be generalized to the p-power
integrator system as follows:

ẋ1 = a1x
p1

2 ,

ẋ2 = a2x
p2

3 ,
...

ẋn−1 = an−1x
pn−1

n ,

ẋn = anu
pn .

(36)
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Actually, one can design a similar nested nonlinear controller.
If the closed-loop system admits HSDD, the asymptotic
stability can be obtained in a similar way. However, how
to ensure the existence of HSDD for (36) seems to be a
difficult problem.

IV. SIMULATIONS

Consider the nonlinear system (1) with n = 3. Let

r1 = 1, r2 =
5

3
, r3 =

11

5
. (37)

It is easy to see that

r2 − r1 =
2

3
>

8

15
= r3 − r2. (38)

Therefore, we conclude that the closed-loop system

ẋ1 = a1x2,

ẋ2 = a2x3, (39)

ẋ3 =−a3(((k1x1)
5/3 + k2x2)

33/25 + k3x3)

is asymptotically stable as long as ai > 0 and ki > 0, i =
1, 2, 3.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

 x
i

x
1

x
2

x
3

 k
1
= k

2
= k

3
=1 

 a
1
= a

2
= a

3
=1

Fig. 1. The time response curves as ki = ai = 1, i = 1, 2, 3.

Simulations show that as the parameters and the gains vary,
the stability of the closed-loop system is not destroyed.

V. CONCLUSION

For a class of uncertain linear systems described by mul-
tiple integrators controlled by a nested nonlinear feedback,
the asymptotic stability is proved by using the concept
homogeneity with strictly decreasing degrees (HSDD) and
the technique of homogeneous domination. In the future
work, we will investigate the general nonlinear systems
admitting HSDD.
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Fig. 2. The time response curves as ai’s are disturbed.
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Fig. 3. The time response curves as ki’s are disturbed.
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