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Stability Analysis for Uncertain Chains of Integrators Driven by Nested
Nonlinear Feedbacks

Jiandong Zhu', Chunjiang QianZ, Yunlei Zou??

Abstract—1t is proved that the linear uncertain systems
described by chains of integrators with unknown positive
parameters can be stabilized by a kind of nested nonlinear feed-
back controllers with any positive gains. A Lyapunov/Chetaev
function is constructed for the stability analysis of the closed-
loop system, and a necessary and sufficient condition for
the asymptotic stability is derived by using the technique of
homogeneous domination.

I. INTRODUCTION

This paper considers the local stability problem of the
general uncertain chain of integrators

T = a1x2,
Ty = agxs,
M
Tpo1 = An—1Tn,
Tpn = AnpU,
derived by a nested nonlinear controller with the form
= T3 T4
u = _(( . '((klml + k2$2)7-2 + k3x3>'r3 R
k1 2p1) ™+ k), )
where = (z1,...,2,)T € R" is the system state vector,

u € R is the control input, a/'s are uncertain positive constant
parameters, and 7;’s are ratios of odd positive integers. The
structure of the controller (2) is proposed in [1] for global
stabilization. However, in [1], the bounds of a;’s are known
and the gains k;’s are consequently designed by using the
bounds. In this paper, we focus on the stability analysis
of the closed-loop system instead of the controller design.
We assume that all the a;’s are arbitrary positive unknown
patameters and all the gains k; are any non-zero constants.
For example, simulations show that the nested nonlinear
controller

u=—(((k121)"3 + ko2)33/%® + k33) 3)

with any given positive gains k;’s can stabilize (1) with n =
3 for any possible uncertain positive parameters a;’s. This
motivates us to present a general theoretical result on the
asymptotic stability of (1) with a nested nonlinear feedback
strategy (2).
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It should be noted that, generally speaking, it is impossible
to design a linear feedback controller

u=—(kixy + kixe + - + knxy) G)

to stabilize (1) for all the possible unknown positive pa-
rameters a;’s. For example, as n = 3, the characteristic
polynomial of the closed-loop system of (1) with (2) is

A3 + a3k3A2 + agaska A + ajasask. (5)
For any given k1 > 0, ka > 0 and k3 > 0, letting a; = %,
as = % and ag = k%’ results a non-Hurwitz polynomial

A3+ 22 2—|— A =+ 2, which implies that the closed-loop system
is unstable.

The stabilization problem of chains of integrators has been
extensively investigated in the community of control theory.
Many control systems such as single-input controllable linear
systems and feedback linearizable nonlinear systems can
be equivalently transformed into chains of integrators. The
stabilization problem of chains of integrators using bounded
input with delays [2] or without delays [3] was already
treated. In [4], nested saturations were used for chains of
integrators. Delayed feedback control can also be used to
stabilize chains of integrators [5]. In [6], the application of
model (1) to planar vertical take off and landing (PVTOL)
was presented. The robust control strategy was designed
for chains of integrators with external disturbances [7]. A
nonlinear PI controller was proposed for (1) as a; = 1,
i=1,2,...,n—1 and the unknown parameter a,, # 0 [8].
In [1], as the unknown a;’s have known bounds, the gains
of the nested nonlinear controller (2) are designed by using
the technique of adding a power integrator (AAPI) proposed
in [9]. The AAPI technique is a very powerful tool to
design global stabilization controllers, which has been widely
applied to many control systems [7], [10], [11]. However,
the AAPI technique usually results a high-gain feedback
controller, which may cause implementation issue in practice.
In order to easily implement the nested nonlinear controller
(2), we try to analyze the stability of the closed-loop system
under the controller (2) with free feedback gains.

For homogeneous systems, it is well-known that an asymp-
totically stable homogeneous system admits a homogeneous
Lyapunov function. A natural idea is to generalize the con-
cept of homogeneity and apply the generalized homogeneity
to the stability analysis of a class of nonlinear systems.
Actually, in [12]-[15], the concept homogeneity with mono-
tone degrees (HMD) is proposed and has been successfully
applied to the design of stabilizing controllers for inherently
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nonlinear systems. Note that even if a nonlinear system
admits HMD, it may not be homogeneous. So it is interesting
to analyze the asymptotic stability for an inherently nonlinear
system with HMD.

This paper proposes a special HMD called homogeneity
with strictly decreasing degrees (HSDD), which plays an
important role in the construction of the Lyapunov/Chetaev
function. Then by using the Lyapunov second method and
Chetaev instability theorem, a necessary and sufficient con-
dition for the asymptotic stability of the closed-loop system
is obtained.

II. PRELIMINARIES

This section presents some fundamental theorem and some
useful inequalities which will play important roles in obtain-
ing the main results of this paper.

Theorem 1: (Lyapunov Stability Theorem) [16], [17]
Consider a nonlinear system

&= f(z), zeR" ()

where f(x) is Lipschitz continuous with respect to z, f(0) =
0. If there exists a locally positive definite function V()

such that av( )
T
= S f) )

is locally negative definite, then system (6) is asymptotically
stable.

Theorem 2: (Chetaev Instability Theorem [18]) If there
exists a continuously differentiable function V(z) such that
(i) the origin is a boundary point of the set G = {z €
R™ | V(z) > 0}; (ii) there exists a neighborhood U of the
2 =0 such that V(z) >0 V2 € UNG, then & = 0 is an
unstable equilibrium point of the system.

Lemma 1: (Jensen’s inequality) [19] For p > 1 and z; €
R, i=1,---,n, the following holds

w142t Fzal” < 0P (e Pl 4 o). (8)

Lemma 2: [20] For p > 1 which is a ratio of positive
odd integers, the following holds

z(x +a)? > 27 PPt 4 xaP, YV x, a € R

Lemma 3: [12] Let ¢ and d be positive constants. Given
any number v > 0, the following inequality holds

2|yl < [+

c c
— —— Tyt Y e R
) ) WY ey

Definition 1: [13] A continuous vector field v : R" —
R"™ with v = [Uh' .. 7U’n]T

with monotone degrees (HMD), if we can find positive real

is said to satisfy homogeneity

numbers (71, -, 7,) and real numbers 71 > 79 > -+ > 7,
such that

vi(eMxy, -, €ma,) =€ v () 9)

for all x € ™, ¢ > 0 and i = 1,2,---,n. The constants
ri’s and 7;’s are called homogeneous weights and degrees,
respectively.

Definition 2: A continuous vector field v : R® — R”"
with v = [vy,-++,v,]7T is said to satisfy homogeneity with
strictly decreasing degrees (HSDD), if it has HMD defined
in Definition 1 and the homogeneous degrees satisfy

T1 > T > " > Tp.

III. MAIN RESULTS

The nested controller (2) can be rewritten as the recutsive
form as follows:

filz1) = Fkix,
fozr,22) = fIQ/Tl + kowo,
S 10
for(@n, @) = [T f kamag, (19
fn(xla"'vxn) = f;i/{THI +knxna

where every 7; > 1 is a ratio of two positive odd integers.
We are interested in the stability analysis of the closed-
loop system:

Ty = a1x,
T2 = Q2%3,
)
Tp—1 = Gp-1Tn,
T = _anfn(xlvx%'”,mn)»
where 7;’s are ratios of odd positive integers satisfy

1 Srl <rg, (12)
O<’I"i+277’1‘+1 <Tip1— T4, i1=1,...,n—2.

Remark 1: Given r; and 7,41, one can determine 749
by (12). So it is easy to construct {r; }?_; satisfying (12).
Letmy =741 —1mifori=1,2,...,n—1and 7, = 0. Then
one can easily check that the closed-loop system (11) has
the HSDD

TL>Tg > > Ty

with respect to (11,72,...,Tp).

Lemma 4: Let 7y, rg, - -+, Ts and ny, Ng, -+, Ng (§ > 2)
be any given positive constants. For any € > 0, there exists
a positive number A such that

S
R o e e O N (13)
=2
for all xq, xo, -+, Ts € R.
Proof:  (Mathematical Induction) As s = 2, by Lemma 3,
we have that, for any € > 0, there exists A > 0 such that

1| a2 = (]| 75) (s 72 ) 7202
rimnitraong

S €|x1| + 2m2

+ rimidrang
+A|za| T 2 (14)
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Suppose that Lemma 4 holds for the case of s, i.e. assume
that (13) holds. In the rest of this proof, we consider the case
of s+1. By (13), we have that

[ ‘|x5|ns|xs+1 [ttt

mry+ - tnsrs
< €l T+ AZ|$1|

|21

mr 1+ +"1€7‘§

Jzspa et (15)

By Lemma 3, for each 7 > 1, there exists B; > 0 such that

n1T1+ +n<7‘<
| | Tt "+
it Hns sy mrit e
<y i + Bi|zs41] fett (16)

Applying (16) to (17) yields that there exists A such that

SRR N N

1
5t it Hn s aren

+AZ\1‘Z i

|21

nri+ - Hn sH s+
<elm|

(17
[

Proposition 1: By a diffeomorphism transformation, (11)
is equivalent to the system as follows:

kiay 2

é1= T (ea—eq' ) =:g1(e1,e2),
. kg ML il
éi=——(n—e; " HF——e ) gialer, - e) (18)
ki Ti—1
::gi(€17'”7ei+1)7 i:273,"'7n_1a
. P
én=—knanen +Tfne,[_11 Gn1(€1, - *sen)-
n—1
Proof: Construct a nonlinear transformation
eZ:fi(‘rlv"'ami% 1=1,2,---,n 19)

whete each f; is defined by (10). It is easy to check that the
inverse mapping of (19) is

T = kflel,
Ty = kgl( e;@/m)’
. 20
zo= ke e, 0
- 1 n/Tn—1
Ty = k,(en—e,1" 7).

Since 7; > r;—1, both the transformation (19) and its
inverse mapping (20) are smooth, which implies that the
transformation described by (19) is a diffeomorphism. A
straightforward computation shows that system (11) is equiv-
alently transformed into (18). u

Lemma 5: Fach function g;(eq,- -, e;11) defined by the
right hand side of (18) satisfies

L mtn
ey SCi QD el e ),

k=1j=k

lgi(er, -, (21)

whete T, = 741 — 7 and each C; is a constant dependent
on g;(+).

Proof: (Mathematical Induction) For the case of ¢ = 1,
from (8) it follows that

r2
e fea)
L feal),

lg1(e1,e2)] < Ci(les

= Cy(lea|” (22)

where C is dependent on g1. Suppose that the lemma holds
for the case of 4, i.e. (21) holds. In the following, let us
estimate |g;41|- From (18), Lemma 1 and Assumption 1, it
follows that there exists a constant A > 0 such that

Rty S
|gi+1|= s T ea—el —e," gi
3

T i
< A(lesa| T+ |esaHlei 7 gal)

Tip1 il 771
=A(lesa| " +ewd) |gi])- (23)

By the induction assumption, applying (21) to (23), we have
that

Titd T
|gi+1] < Allesa| ™

+m22w¥ﬂm>

k=1 j=k

+lesal)

(24)

Using Lemma 4 to the last term of (24), we obtain that there
exists B > 0 such that

(legl ™ +|6L+1|)|62|”
Tt Tl T T +rit1
< Blej 7 tled 7 Hleal ™ el ). (29)

From (24) and (25), it follows the conclusion of the case of
1+1. So, by Mathematical Induction, the proof is complete.
|
Theorem 3: Consider the closed-loop (11) of the un-
certain chain of integrators (1) under the nested nonlinear
controller (1). Assume that the unknown parameters a;’s are
positive, the feedback gains k;’s are nonzero, and 7;’s satisfy
(12). Then system (11) is asymptotically stable if and only
if k; > 0.
Proof: Construct the following Lyapunov [Chetaev func-

tion
3 (e 7]
= Z*Qil» (26)
o i
where

l; :—k‘lﬂk a ,i=1,2,---,n—1, ln:—k?;la;l 27)

and
Oéi:2’l"n7";122’i:1’2)...’n (28)

The derivative of (26) along (18) can be easily computed as

n—1 i1
. ai—1; i 2
V= E e (e, —eip1)tey,
i=1
n -
lﬂ"i e
a;—1 _Ti—1
+ E —el e gi,l(el,--~,ei). (29)
= i1
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From (29), Lemma 2 and Assumption 1, it follows that

n—1 i
Vi) > e Ry Z|e

e@_H |+ e

i

Lir; 4 ot
72 — ‘ it :711 gi—l(elv"'76i)

-1
=S el - Y e
i=1 i=1

Liri | a1 7
*Zr i|ab ein gia(er, - e, (30)
X —
where
i = — 14—t = T 0 1,
T T

By (30) and Lemma 4, for any £>0, there is A such that

1 @i =it _ Ty =Tt

Qi e— —

7" eiv1| < ele] " +Aleiy| T
Titoir; Titairg

ze\ei i +A‘€z+1‘ it
=cle;|" + Alej |,

(31
where
T+a;r; S TiHl + Qi1 T

fiv1 = = Wit
i1 Ti41

due to 7; > T;41 and (28). Moreover, by Lemma 5, we have

- T
les| e [ |9i71|
1—1 1—1

SC%AZ Z|€i

k=1j=k

Q.

o ) (2
Now, let us estimate the terms of the right-hand side of (32).
As k=i—1, we have that j=i—1 and

_q. Tk
|ea| ™ - el v
i1t
= ‘ei | a1 |€i71 i1
Ti—1 oy 7_1+a T
< elea| 1 A Ale w0 (33)
here
v Tl oyt Tt QT
= = i1
T Tic1 ’
d
an Tl QT Tt ayT;
T T
As k<i—1, we have that
i TRt i1
leil* et [1 1\%1
Tt Tk+am
< el T AT e ).

Consideting k<i—1 and k < j <14, we have

Tt | QT
Z = Mja
Ty Ty
T+ a;1; Ti+ Q1
> = L
7i T

and
Te+ Ty Tl + 0T
> = L1
i1 i
Moreover,
Ti—: 1+71 1
leil* el
ajri—r; + i1 tmi S
= el ”‘ Jeia [+
i1t T T togT;
< eleia| "+ Aled
where
Tia+ouT Tt ot
= = M1,
Ti1 Ti1
Tl T oy T oy
> = -
Ti i

By the discussion below (30), letting € > 0 be sufficiently
small, we conclude that there exist constants K; (I =
1,2,-+-,n) such that

Vir) > ZKi\eiV“ + h(er, ez, -, en),

i=1

where h(ey, ez, -, ep) is composed of higher order terms.
Therefore, if ¢ is sufficiently small, there exists a domain
D C " such that V(e) is positive definite on D, that is,

V(e) >0, Ve D\{0}. (34)
From (27), it is easily seen that
;<0 (i=12,--,n) ©k>0(=12,---,n). (35

Ifk; >0 (i=1,2,---,n), it is clear that V(e) is negative
definite due to (35) and (26). This, together with (34), implies
that the zero solution of (11) is asymptotically stable by
Lyapunov Stability Theotem. Thetrefore the positivity of k;’s
is sufficient for the asymptotic stability of (11) .

On the other hand, if there exists a k; < 0, by (35) there
exists an [; > 0. In this case, by (26) we know that the set
G :={eec R | V(e > 0} is not empty and e = 0 is
a boundaty point of G. Therefore, from (34) and Chetaev
Instability Theorem, it follows that the zero solution of (11)
is unstable. This implies that the positivity of k;’s is also
necessary for the asymptotic stability of (11) . |

Remark 2: In our recent papers [21] and [22], the idea of
HSDD has been used to stabilize a kind of nonlinear systems
via a linear feedback control. However, in this paper, we use
a nonlinear feedback to stabilize a class of linear systems.

Remark 3: One interesting question is whether the main

result of this paper can be generalized to the p-power
integrator system as follows:

o — p1

T = a1xry,

o P2

T2 = agT3",

(36)

. Pn—1
Tpn—1 = Qp-— 11'nn 9

Ty = apubr.
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Actually, one can design a similar nested nonlinear controller.
If the closed-loop system admits HSDD, the asymptotic
stability can be obtained in a similar way. However, how
to ensure the existence of HSDD for (36) seems to be a

difficult problem.

IV. SIMULATIONS

Consider the nonlinear system (1) with n = 3. Let

1 > 1 (37
T = s To = -, Ty = —
1 2 3 3 5
It is easy to see that
2 > i 38)
Ty —T1 =5 > — =73 —TIa.
2" TI=3 > =Ts T (

Therefore, we conclude that the closed-loop system

Iy = a122,

.’i?Q = a3, (39)

i3 = —az(((k121)%3 4 kow2)3%/?® + kax3)

is asymptotically stable as long as a; > 0 and k; > 0, ¢ =
1,2,3.

—
— %

0.8

X
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04|

0.2

-1
0 5 10 15 20 25 30 35 40 45 50

Fig. 1. The time response curves as k; = a; = 1,1 =1,2,3.

Simulations show that as the parameters and the gains vary,
the stability of the closed-loop system is not destroyed.

V. CONCLUSION

For a class of uncertain linear systems described by mul-
tiple integrators controlled by a nested nonlinear feedback,
the asymptotic stability is proved by using the concept
homogeneity with strictly decreasing degrees (HSDD) and
the technique of homogeneous domination. In the future
work, we will investigate the general nonlinear systems
admitting HSDD.
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Fig. 2. 'The time response curves as a;’s are disturbed.
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