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ABSTRACT

Fully autonomous aerial systems (FAAS) fly complex mis-
sions guided wholly by software. If users choose software,
compute hardware and aircraft well, FAAS can complete mis-
sions faster and safer than unmanned aerial systems piloted
by humans. On the other hand, poorly managed edge re-
sources slow down missions, waste energy and inflate costs.
This paper presents a model-driven approach to manage
FAAS. We fly real FAAS missions, profile compute and air-
craft resource usage and model expected demands. Naive
profiling approaches use traces from previous flights to infer
resource usage. However, edge resources can affect where
FAAS fly and which data they sense. Usage profiles can di-
verge greatly across edge management policies. Instead of
using traces, we characterize whole flight areas to accurately
model resource usage for any flight path. We combine ex-
pected resource demands to model mission throughput, i.e.,
missions completed per fully charged battery. We validated
our model by creating FAAS, measuring mission through-
put across many system settings. Our FAAS benchmarks,
released through our open source FAAS suite SoftwarePilot,
execute realistic missions: autonomous photography, search
and rescue, and agricultural scouting using well-known soft-
ware. Our model predicted throughput with 4% error across
mission, software and hardware settings. Competing ap-
proaches yielded 10ś24% error. We used our SoftwarePilot
benchmarks to study (1) GPU acceleration, scale up, and
scale out, (2) onboard, edge and cloud computing, (3) energy
and monetary budgets, and (4) software driven GPU manage-
ment. We found that model-driven management can boost
mission throughput by 10X and reduce costs by 87%.
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1 INTRODUCTION

Unmanned aerial systems (UAS) hover, fly to waypoints and
perform defined actions, e.g., landing and takeoff. In addition
to rotors and motors, these aircraft carry computer systems,
cameras, batteries, etc. They can access high, vast or un-
safe places and capture detailed images and sensor readings.
Photographers, farmers and first responders pilot UAS via
remote control or smart phone [3, 13, 26, 32, 42]. These end
users decide where the UAS flies, when it senses data and
when missions are complete.

UAS piloting mistakes can have severe consequences. For
example, flying UAS in restricted areas risks human lives.
Other common mistakes, e.g., flying to unneeded waypoints,
degrade mission throughput (i.e., the number of missions
completed). Aerial systems that require less human piloting
are needed [32, 41]. There is growing support for software
development kits that control aircraft. Da-Jiang Innovations
(DJI) aircraft support software control from iOS, Android
and Linux devices [39]. Pixhawk and Aerostack also provide
platforms for software control [33, 37, 38].
Fully autonomous aerial systems (FAAS) are an emerging

workload wherein UAS execute dynamic missions defined
wholly by software. End users do not pilot FAAS nor do they
define preset waypoints. Instead, they provide goals, con-
straints and software that execute missions. Like edge-driven
video analytics [12, 17, 20, 21, 43ś45], FAAS process images
in real time and leverage AI for scene analysis. However,
FAAS also control aircraft flight, making flight paths (and
which data gets sensed) dynamic.

Recent UAS carry sophisticated processors. For example,
the DJI Mavic carries the Myriad 2, a system on chip that
includes streaming vector engine processors, hardware ac-
celerators, multiple RISC cores and 2 MB on-chip memory.



However, compared to UAS, FAAS increase computational
demands significantly [3, 30, 41, 43, 44]. If aircraft surrender
battery capacity to onboard processors and carry heavier
payloads for data storage, flight times will suffer [43]. In-
stead of using onboard resources, FAAS workloads may run
on land using networked messages to control the aircraft
(i.e., edge cloudlets). Another choice connects aircraft to fast
cloud data centers. Latency, processing capacity and cost
differ among these choices. Professional end-users must un-
derstand how these factors affect their bottom line, but it is
hard to answer what-if questions comparing architecture and
software designs. For example, how many missions would
complete per fully charged battery (i.e.,mission through-

put) if I ran FAAS software onboard the aircraft instead of
edge servers? Or does data processing speedup provided by
a GPU warrant its cost?
Autonomous systems combine many independent soft-

ware components. Many components support settings that
trade compute demand for energy savings. It is hard to pre-
dict the effects of these settings on mission throughput be-
cause they affect where FAAS fly, how many compute re-
sources they require, and the effects are mission specific. For
example, lightweight image classifiers can lower compute
demand and save energy, but FAAS also fly to more way-
points which can negate savings. End users could test each
setting and measure mission throughput directly. However,
long complex missions and many software settings make
exhaustive testing impractical.
This paper presents a modeling approach that predicts

mission throughput. Our approach profiles energy demands
for aircraft and compute. We model missions as a sequence
of waypoints. The waypoint that exhausts battery capac-
ity defines mission throughput. It is hard to profile energy
demands across system settings that affect autonomous de-
cisions; we call these autonomy settings. Autonomy settings
change flight paths, affecting which data is sensed during
mission execution and ultimately energy demands. We pro-
pose autonomy cubes, data structures that characterize the
whole flight area for a mission. Autonomy cubes can approx-
imate sensed data for any flight path, much like data cubes
(their intellectual inspiration) [18].

To validate the model, we created SoftwarePilot [6], an
FAAS suite that performs the following complex missions:
(1) autonomously capture high quality photographs of hu-
man faces, (2) search and map defined areas for first respon-
ders, and (3) scout crop fields for representative samples.
SoftwarePilot uses path finding and AI approaches found in
prior research [30, 37]. Each FAAS supports a wide range of
software and hardware settings. Toggling these settings can
increase waypoints per mission by 4X and compute demands
by 35X.

We collected 122 autonomy cubes, flying in 56 locations
and capturing 20970 data readings. We also flew 145 actual
FAAS missions and measured ground-truth mission through-
put. FAAS used DJI Spark and Mavic Pro aircraft. We com-
pared our modeling approach to Aerostack [37] and Auto-
ware [22, 30]. These approaches use reference traces from
prior missions to model energy usage. Our model predicted
throughput with 4% error. When trace and mission settings
differed on multiple dimensions, Aerostack and Autoware
yielded error up to 5X and 10X larger than our approach.

After validating ourmodeling approach, we exploremodel-
driven management of edge resources. First, we consider
scenarios where end users buy aircraft, software and hard-
ware separately and then combine them to make a FAAS.
After purchasing aircraft and software, these end users would
like to purchase compute hardware that will provide high
throughput. Under a cost budget, these end users may have
to maximize throughput per dollar. End users can use our
models to answer these questions. We used our modeling
approach to compare onboard, edge and cloud architectures.
Onboard compute and storage reduced flight time by 50%,
significantly degrading mission throughput. Edge computing
eventually provided best mission throughput and throughput
per dollar. However, we observed that larger aircraft could
boost onboard architectures. We also used our modeling ap-
proach to compare scale out, scale up and GPU approaches
to meet compute demands. We found that the best approach
depended on (1) autonomy settings and (2) energy capacity.
GPU improve throughput, but deplete batteries quickly. Scal-
ing up cores on chip provided a reliable approach to increase
throughput.

We also study the management scenario where end users
control the design and implementation of aircraft, proces-
sor and software [32]. These end users may sell FAAS to
militaries, smart cities or other large operations and can ad-
just all facets of FAAS to find high throughput settings. We
studied software and hardware co-design. We set up an adap-
tive policy that toggles between deep, compute intensive
AI models and less precise but energy efficient AI models.
An edge system running CPU and GPU can power off the
GPU for less precise models. We compared approaches that
toggle GPU states during missions and between missions.
Toggling GPU states during a mission provided higher mis-
sion throughput. We also modeled end-to-end cost for an
industrial application: agricultural scouting. With model-
driven edge management, FAAS missions are 87% cheaper
than human piloted UAS missions.
Our contributions are as follows:

- Our modeling approach precisely predicts mission through-
put. We show that autonomy settings have large effects on
FAAS flight path and energy usage.
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4 IMPLEMENTING FAAS

Table 1 decomposes FAAS and presents a layered, systems
view of their components. This section presents each layer
and compares system settings for 3 FAAS.

FAAS missions:We implemented (1) autonomous photog-
raphy, (2) search and rescue, and (3) agricultural scouting.
For autonomous photography, the FAAS positions itself and
takes high-quality portraits of human faces. It autonomously
explores its flight area. This workload was inspired by com-
putational photography and SkyDio [1, 3].

The search and rescue FAAS extends autonomous photog-
raphy. It searches multiple areas for humans. During emer-
gencies or disasters, it could help first responders discover
victims. The FAAS navigates the aircraft between areas, e.g.,
rooms in a building, and also explores areas thoroughly.

As discussed, agricultural scouting is commercially viable
today. This FAAS takes aerial images of a crop field similar
to prior work [5]. For this work, we had access to a corn
field, so our missions produce detailed images of corn and
planting rows. Scouting as a workload kernel underlies aerial
surveillance and military target detection.

Flight area and flight actions: Autonomous photography
covers a 2x2x3x3 hyper cube. The aircraft can translate X, Y
and Z axes and rotate the camera. We have collected 110 au-
tonomy cubes for this benchmark. Search and rescue explores
15 2x2x3x3 hyper cubes and supports the same actions.

Agricultural scouting covers a 75-acre crop field. The flight
area is a 55x43 grid. The aircraft can translate X and Y dimen-
sions only. In total, we have collected 122 autonomy cubes
(20970 images) across (1) all 3 FAAS, (2) diverse settings:
outdoors, indoors, raining and windy, and (3) with multiple
targets: humans and corn. Capturing a cube took roughly 11
minutes for autonomous photography cubes and 4 hours for
agricultural scouting.

Utility functions and constraints: Photography and crop
analysis use different utility functions. A good portrait con-
tains a centered, bright and crisp face [8]. We created a utility
function using the following features: face detection, face
location in the image, image brightness and size of the facial
bounding box. A good picture of a crop field avoids blur, con-
trasts crops and soil and does not include extraneous objects.
Our utility function here considers glare, image brightness
and corn crops counted. For all utility functions, each feature
is weighted and the whole function is normalized.

End users set thresholds. When utility exceeds the thresh-
old, the FAAS mission is complete. Our photography FAAS
support 3 thresholds. A high threshold encourages the FAAS
to explore its flight area. As a result, missions are longer. A
low threshold encourages the FAAS to land quickly. We label

this setting as high throughput. Finally, the default settings
aims for a medium threshold that provides good mix.
Flight area bounds FAAS flight path spatially. Flight ac-

tions that cause the aircraft to leave that area are not exe-
cuted. If the aircraft battery falls below 10% of its capacity,
our FAAS lands immediately. The Max Waypoints setting
bounds flight path temporally. After exceeding this threshold,
the mission completes.

Path finding: By default, 4000 training data entries are used
to decide where to fly. Each training data entry describes
a single image from a collected autonomy cube. Training
data entries consist of a vector of utility features, as well as
pointers to other training data entries that represent sensed
data within the autonomy cube that the FAAS could reach
with one motion (e.g a training data entry may have pointers
to data sensed using the left, right, up, and down flight ac-
tions). This reduces dozens or hundreds of autonomy cubes
containing tens of gigabytes of image data into portable CSV
files on the order of megabytes.

Pathfinding algorithms run on top of our cubes and train-
ing set to model FAAS actions. The K-Nearest Neighbors
(KNN) algorithm finds 9 entries with utility features nearest
to the sensed image. By default, we implement greedy path
finding. The expected utility gain is the mean gain observed
by nearest neighbors grouped by flight action. This approach
takes the flight action with the largest expected utility gain.

A* Search improves greedy KNN with a linear heuristic to
model thewhole flight area, choosing a flight action along the
best expected path. Energy-aware A* Search weights flight
actions according to aircraft profiles. It produces flight paths
that prefer low energy actions. A* Search and its energy-
aware variant are well studied and have been used in recent
research [9, 22, 30].

AI models: Each FAAS characterizes sensed data into a vec-
tor with up to 64 dimensions. Each dimension represents
the output of an AI classifier. We distinguish classifiers by
compute demand and support any subset of these groups.
Integer models include OpenCV local binary pattern, cas-
cade models using only integer data types, and RGB image
classifiers. These models are lightweight, fast and imprecise.
Floating point models include DLIB histogram of gradients.
The are more precise than integer models but also slower to
compute. Deep models include DLIB’s convolutional neural
network (CNN) for face recognition and our custom CNN
for crop recognition. We execute deep models only when
GPUs are available (i.e., not on CPUs).

Execution context and architectural support: SoftwarePi-
lot, our FAAS suite, is composed of micro services. Each
micro service provides basic functions, e.g., issuing aircraft
commands, data sensing, data storage, running sensed data
through an AI model, querying path finding algorithms etc.
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7 LIMITATIONS AND FUTUREWORK

Our Autonomy Cube modeling approach and analysis in-
cludes many limitations and future opportunities. First and
foremost, autonomy cubes can be difficult to collect. We flew
over 100 FAAS missions to collect autonomy cubes for both
FAAS modeling and as input to pathfinding algorithms. This
is not feasible for all FAAS tasks. Future work should explore
the creation of autonomy cubes from extant geotagged multi-
dimensional image sets. For instance, large available datasets
like Google Street View [2], or autonomous driving datasets
like KITTI [14] could be used to construct autonomy cubes
for a multitude of relevant FAAS tasks.

Many of ourmanagement strategies focused on decreasing
compute power consumption of a single FAAS. Multiple
FAAS, i.e., swarms, can share edge compute systems while
each UAV carries its own battery on board. The aggregate
compute demands of a large swarm could transform power
usage, making edge system batteries the bottleneck resources.
Our approach can adjust battery sizes, but we can not model
how swarms will inflate compute demands.

8 RELATED WORK

FAAS choose their flight path at runtime similar to self-
driving cars. Workload settings that affect their flight path
can change energy usage and throughput significantly. We
quantified this and proposed autonomy cubes to capture
representative traces when settings change. Autoware is a
project designed tomake autonomous drivingmore open [22].
Autoware presents open algorithms, libraries, and consumer
hardware components for autonomous driving, many of
which are applicable to FAAS. It’s motion planning design,
as referenced in section 5, was improved upon in this paper.
Lin et. al extend Autoware to study accelerators [30]. Object
detection and tracking for self-driving cars can be sped up
169X using consumer grade hardware, but compute speedup
can reduce driving range. This result parallels our obser-
vations with mission throughput. Aerostack [38] presents
an open source, component based software architecture for
aerial robotics, emphasizing full autonomy. Aerostack’s de-
sign influenced the design and implementation of our own
FAAS software.

Other recent studies explore acceleration and edge devices.
Sirius [19] studied FPGAs, CPUs, GPUs, and coprocessors
on personal assistant benchmarks. In-situ AI [40] studied
autonomous IoT. Computational sprinting has targeted in-
teractive, mobile workloads with dynamic architectural opti-
mizations [34, 35].

9 CONCLUSION

Unmanned aircraft are changing industries from agriculture
to surveillance and photography. Fully autonomous aerial
systems are piloted by softwareÐeschewing costly and mis-
take prone human piloting. Software and hardware settings
affect where these systems fly and when missions complete.
Recent benchmarking papers use few settings, e.g., from
prior traces, but extrapolate throughput broadly. This paper
presents a modeling approach that can model flight paths
across autonomy settings. Autonomy cubes provide sensed
data for any reachable waypoint, enabling our approach.
We have collected autonomy cubes for real FAAS execut-
ing diverse missions across a wide range of settings. Our
model predicts FAAS throughput within 4%. We used our
model to evaluate system management problems and uncov-
ered insights that can improve throughput 10X and FAAS
reduce costs 87%. Code for our modeling approach and au-
tonomy cubes are open source, made available through the
SoftwarePilot project.
Acknowledgments: This work was funded in part by NSF
Grants 1749501 and 1350941with support fromNSFCENTRA
collaborations (grant 1550126).
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