Managing Edge Resources for
Fully Autonomous Aerial Systems

Jayson G. Boubin, Naveen T.R. Babu, Christopher Stewart,
John Chumley, and Shiqi Zhang
The Ohio State University Department of Computer Science

ABSTRACT

Fully autonomous aerial systems (FAAS) fly complex mis-
sions guided wholly by software. If users choose software,
compute hardware and aircraft well, FAAS can complete mis-
sions faster and safer than unmanned aerial systems piloted
by humans. On the other hand, poorly managed edge re-
sources slow down missions, waste energy and inflate costs.
This paper presents a model-driven approach to manage
FAAS. We fly real FAAS missions, profile compute and air-
craft resource usage and model expected demands. Naive
profiling approaches use traces from previous flights to infer
resource usage. However, edge resources can affect where
FAAS fly and which data they sense. Usage profiles can di-
verge greatly across edge management policies. Instead of
using traces, we characterize whole flight areas to accurately
model resource usage for any flight path. We combine ex-
pected resource demands to model mission throughput, i.e.,
missions completed per fully charged battery. We validated
our model by creating FAAS, measuring mission through-
put across many system settings. Our FAAS benchmarks,
released through our open source FAAS suite SoftwarePilot,
execute realistic missions: autonomous photography, search
and rescue, and agricultural scouting using well-known soft-
ware. Our model predicted throughput with 4% error across
mission, software and hardware settings. Competing ap-
proaches yielded 10-24% error. We used our SoftwarePilot
benchmarks to study (1) GPU acceleration, scale up, and
scale out, (2) onboard, edge and cloud computing, (3) energy
and monetary budgets, and (4) software driven GPU manage-
ment. We found that model-driven management can boost
mission throughput by 10X and reduce costs by 87%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SEC 2019, November 7-9, 2019, Arlington, VA, USA

© Association for Computing Machinery.

ACM ISBN 978-1-4503-6733-2/19/11...$15.00
https://doi.org/10.1145/3318216.3363306

ACM Reference Format:

Jayson G. Boubin, Naveen T.R. Babu, Christopher Stewart,, John
Chumley, and Shiqi Zhang, and The Ohio State University De-
partment of Computer Science. 2019. Managing Edge Resources
for Fully Autonomous Aerial Systems. In The Fourth ACM/IEEE
Symposium on Edge Computing (SEC 2019), November 7-9, 2019,
Arlington, VA, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3318216.3363306

1 INTRODUCTION

Unmanned aerial systems (UAS) hover, fly to waypoints and
perform defined actions, e.g., landing and takeoff. In addition
to rotors and motors, these aircraft carry computer systems,
cameras, batteries, etc. They can access high, vast or un-
safe places and capture detailed images and sensor readings.
Photographers, farmers and first responders pilot UAS via
remote control or smart phone [3, 13, 26, 32, 42]. These end
users decide where the UAS flies, when it senses data and
when missions are complete.

UAS piloting mistakes can have severe consequences. For
example, flying UAS in restricted areas risks human lives.
Other common mistakes, e.g., flying to unneeded waypoints,
degrade mission throughput (i.e., the number of missions
completed). Aerial systems that require less human piloting
are needed [32, 41]. There is growing support for software
development kits that control aircraft. Da-Jiang Innovations
(DJI) aircraft support software control from iOS, Android
and Linux devices [39]. Pixhawk and Aerostack also provide
platforms for software control [33, 37, 38].

Fully autonomous aerial systems (FAAS) are an emerging
workload wherein UAS execute dynamic missions defined
wholly by software. End users do not pilot FAAS nor do they
define preset waypoints. Instead, they provide goals, con-
straints and software that execute missions. Like edge-driven
video analytics [12, 17, 20, 21, 43-45], FAAS process images
in real time and leverage Al for scene analysis. However,
FAAS also control aircraft flight, making flight paths (and
which data gets sensed) dynamic.

Recent UAS carry sophisticated processors. For example,
the DJI Mavic carries the Myriad 2, a system on chip that
includes streaming vector engine processors, hardware ac-
celerators, multiple RISC cores and 2 MB on-chip memory.

However, compared to UAS, FAAS increase computational
demands significantly [3, 30, 41, 43, 44]. If aircraft surrender
battery capacity to onboard processors and carry heavier
payloads for data storage, flight times will suffer [43]. In-
stead of using onboard resources, FAAS workloads may run
on land using networked messages to control the aircraft
(i.e., edge cloudlets). Another choice connects aircraft to fast
cloud data centers. Latency, processing capacity and cost
differ among these choices. Professional end-users must un-
derstand how these factors affect their bottom line, but it is
hard to answer what-if questions comparing architecture and
software designs. For example, how many missions would
complete per fully charged battery (i.e., mission through-
put) if I ran FAAS software onboard the aircraft instead of
edge servers? Or does data processing speedup provided by
a GPU warrant its cost?

Autonomous systems combine many independent soft-
ware components. Many components support settings that
trade compute demand for energy savings. It is hard to pre-
dict the effects of these settings on mission throughput be-
cause they affect where FAAS fly, how many compute re-
sources they require, and the effects are mission specific. For
example, lightweight image classifiers can lower compute
demand and save energy, but FAAS also fly to more way-
points which can negate savings. End users could test each
setting and measure mission throughput directly. However,
long complex missions and many software settings make
exhaustive testing impractical.

This paper presents a modeling approach that predicts
mission throughput. Our approach profiles energy demands
for aircraft and compute. We model missions as a sequence
of waypoints. The waypoint that exhausts battery capac-
ity defines mission throughput. It is hard to profile energy
demands across system settings that affect autonomous de-
cisions; we call these autonomy settings. Autonomy settings
change flight paths, affecting which data is sensed during
mission execution and ultimately energy demands. We pro-
pose autonomy cubes, data structures that characterize the
whole flight area for a mission. Autonomy cubes can approx-
imate sensed data for any flight path, much like data cubes
(their intellectual inspiration) [18].

To validate the model, we created SoftwarePilot [6], an
FAAS suite that performs the following complex missions:
(1) autonomously capture high quality photographs of hu-
man faces, (2) search and map defined areas for first respon-
ders, and (3) scout crop fields for representative samples.
SoftwarePilot uses path finding and AI approaches found in
prior research [30, 37]. Each FAAS supports a wide range of
software and hardware settings. Toggling these settings can
increase waypoints per mission by 4X and compute demands
by 35X.

We collected 122 autonomy cubes, flying in 56 locations
and capturing 20970 data readings. We also flew 145 actual
FAAS missions and measured ground-truth mission through-
put. FAAS used DJI Spark and Mavic Pro aircraft. We com-
pared our modeling approach to Aerostack [37] and Auto-
ware [22, 30]. These approaches use reference traces from
prior missions to model energy usage. Our model predicted
throughput with 4% error. When trace and mission settings
differed on multiple dimensions, Aerostack and Autoware
yielded error up to 5X and 10X larger than our approach.

After validating our modeling approach, we explore model-
driven management of edge resources. First, we consider
scenarios where end users buy aircraft, software and hard-
ware separately and then combine them to make a FAAS.
After purchasing aircraft and software, these end users would
like to purchase compute hardware that will provide high
throughput. Under a cost budget, these end users may have
to maximize throughput per dollar. End users can use our
models to answer these questions. We used our modeling
approach to compare onboard, edge and cloud architectures.
Onboard compute and storage reduced flight time by 50%,
significantly degrading mission throughput. Edge computing
eventually provided best mission throughput and throughput
per dollar. However, we observed that larger aircraft could
boost onboard architectures. We also used our modeling ap-
proach to compare scale out, scale up and GPU approaches
to meet compute demands. We found that the best approach
depended on (1) autonomy settings and (2) energy capacity.
GPU improve throughput, but deplete batteries quickly. Scal-
ing up cores on chip provided a reliable approach to increase
throughput.

We also study the management scenario where end users
control the design and implementation of aircraft, proces-
sor and software [32]. These end users may sell FAAS to
militaries, smart cities or other large operations and can ad-
just all facets of FAAS to find high throughput settings. We
studied software and hardware co-design. We set up an adap-
tive policy that toggles between deep, compute intensive
Al models and less precise but energy efficient Al models.
An edge system running CPU and GPU can power off the
GPU for less precise models. We compared approaches that
toggle GPU states during missions and between missions.
Toggling GPU states during a mission provided higher mis-
sion throughput. We also modeled end-to-end cost for an
industrial application: agricultural scouting. With model-
driven edge management, FAAS missions are 87% cheaper
than human piloted UAS missions.

Our contributions are as follows:

- Our modeling approach precisely predicts mission through-
put. We show that autonomy settings have large effects on
FAAS flight path and energy usage.

unmanned aerial systems (UAS)

mission operator defined unmanned
: —_—
goals flight path flight
! <
mission sensed
complete goals met data
fully autonomous aerial systems (FAAS)
mission » path finding software manages unmanned

goals software flight path ﬂiiht

mission

\ials
B not met Softwar sensed
complete ™ goals met analysi data

Fig. 1: With FAAS, humans set mission goals but do
not pilot.

- We built three open source FAAS through SoftwarePilot (au-
tonomous photography, search and rescue, and agricultural
scouting). We measure their mission throughput directly and
validate our modeling approach.

- We demonstrate edge resource management techniques
that boost throughput and lower costs.

The remainder of this paper is as follows. Section 2 pro-
vides an overview of FAAS. Section 3 presents an energy
model driven by autonomy cubes. Section 4 describes the
implementation of FAAS. Section 5 validates our model and
studies FAAS workloads. Section 6 uses our modeling ap-
proach to guide FAAS system management. Section 7 dis-
cusses future work and limitations of our approaches. Sec-
tion 8 discusses related work. Section 9 presents conclusions.

2 MOTIVATION AND BACKGROUND

Autonomous systems perform complex tasks in vaguely de-
fined areas without receiving commands from humans. By
this definition, UAS are not autonomous. Humans decide (1)
where to fly, (2) when to sense data and (3) when a mission
is complete. Figure 1 depicts UAS workflow. Humans set
high-level mission goals, e.g., take a great photo of a human
target. Then, they pilot the aircraft to waypoints by (1) using
remote control devices, (2) making gestures or (3) providing
a list of GPS coordinates. At each waypoint, the UAS senses
data from its surroundings, e.g. detailed images or GPS data.
After studying data, humans decide if their goals are met. If
not, they choose new waypoints and repeat.

Figure 1 also depicts workflow for FAAS. Humans set goals,
but all remaining work is done by software. The system is
capable of completing multiple missions without a human
issuing commands. To remove humans from the loop, soft-
ware must decide when a mission is complete, meaning both
human end users and software can understand mission goals.

There is a semantic gap between true goals and goals that
can be expressed in software. Today, autonomous systems
require end users to translate their vague, high-level goals
into mathematical equations (called utility functions). If the
mission is not complete, FAAS software must also choose
the next waypoint.

An Example FAAS Mission: Crop fields are vast. Scouting
reports can miss subtle problems, e.g., over crowding or
crop disease. Human piloted UAS have transformed scouting.
Companies, like Fly The Farm [29], fly over fields and capture
detailed images. These images inform farmers, guiding the
application of fertilizer and pesticides. However, UAS pilots
charge $1-$5 per acre. One scouting report can cost nearly
3% of net profits for corn fields [7, 16, 42]. By eschewing
human pilots, FAAS can lower costs.

Figure 2 depicts flight area and two agricultural scouting
missions explored similarly in prior research [5]. Flight area
comprises waypoints where the aircraft can fly. Each cell
in Figure 2 represents a waypoint (here, a GPS location).
Following the blue line, our FAAS flight controller directs
the aircraft to a waypoint (A1) and captures a detailed im-
age. FAAS software analyzes the image, counting corn crops.
If the image contains enough crops to accurately measure
the state of the field, the mission is complete. (Note, the
image may be fed into subsequent analysis, such as yield
modeling [26].) If not, FAAS path finding software chooses
a new waypoint (B1). This process repeats and the mission
completes at waypoint B2.

FAAS visit only some waypoints on each mission. As
shown in Figure 2 path finding software (A* search versus
nearest neighbors) changes where FAAS fly and how quickly
missions complete. The settings represented by the red line
choose a longer flight path. This is a key distinction: Video
analytics using UAS fly to preset waypoints and adapt video
quality dynamically [43]. With FAAS, analytics can affect
flight actions, changing resource demands in ways that are
hard to predict.

Runtime Execution: Figure 1 depicts runtime execution
with key software in red. First, software manages flight con-
trols for takeoff, landing and maneuvers. Sensing software
pulls data from aircraft sensors. These data producing and
actuation components are latency sensitive and normally
use processors placed onboard the aircraft [3]. Like video
analytics, FAAS use Al models to convert sensed images to
multi-dimensional points [17, 20, 36, 43]. Each dimension
represents the output of a model. This discussion does not
require a specific class of model (e.g., DNN or regression)
and models are built offline. During runtime, models are
evaluated to classify scenes. This execution can use onboard
processors, edge cloudlets or cloud resources [43]. Reinforce-
ment learning can be a robust approach to autonomously
control devices [27]. In this approach, FAAS are distributed

Fig. 2: Two agricultural scouting missions. Each im-
age represents an allowed waypoint where the aircraft
could have flown (i.e., flight area). Lines represent ac-
tual waypoints visited. Both missions begin at A1.

with training data on observed settings. Each training data el-
ement contains (1) scene features computed using Al models,
(2) a flight action and (3) a utility gain. An entry means that
taking the flight action after observing the scene features,
at one point in time, led to the utility gain. Reinforcement
learning maps scenes to actions. End users must define utility
of sensed data as a function over extracted features. This
software too can execute onboard, at edge cloudlets or cloud.

3 PERFORMANCE MODELING

Figure 3 outlines our approach to model mission through-
put. Model inputs relate to autonomy (goals & workload),
compute architecture and aircraft.

Our approach has four stages, shown as boxes in Figure 3.
First, we collect all data that could be sensed during a mis-
sion, i.e., an autonomy cube. Autonomy cubes are used to
construct precise flight paths along with a pathfinding al-
gorithms discussed later (KNN, A*). Given a flight path, the
next stages profile compute and aircraft workloads using
empirical data. Finally, bottleneck analysis predicts whether
aircraft or compute exhausts batteries first.

3.1 Autonomy profiling

FAAS are hard to model, because their flight path depends on
which data is sensed at runtime. Two FAAS flying only a few
feet apart can differ on the utility of their sensed data. Their
flight paths could diverge, affecting energy usage per mission
and ultimately mission throughput. We mitigate variation
caused by spatial displacement by modeling expected mis-
sion throughput averaged over many runs. Path finding, Al
models, utility functions and other autonomy settings have
systemic and non-linear effects on flight path.

Competing Approaches: Before detailing our approach,
it helps to explain how recent work models autonomous

systems [22, 30, 38]. Autoware [22, 30] uses a long, represen-
tative trace from a self-driving car. This trace suffices for re-
search because safety concerns constrain driving maneuvers
and execution environments. Aerostack [38] creates multiple
traces where users change the environment between traces.
This approach captures a wide range of maneuvers, but, if
autonomy settings change, flight paths will diverge from
previous traces.

We use autonomy cubes, a data structure that captures

all images that can be sensed during a mission within user
defined constraints. Autonomy cubes represent a principled
ideal for benchmarking; they can be used to compute flight
paths across any FAAS autonomy setting. By depicting cap-
tured images at each allowed GPS location, Figure 2 presents
a simple 2-D autonomy cube.
Defining autonomy cubes: Shown in Equation 1, A way-
point x is a multi-dimensional point. Dimensions can abstract
(1) GPS or grid positions (e.g., Figure 2), (2) aircraft poses
(e.g., aircraft attitude, gimbal positions), and localized data
(e.g., altimeter and compass readings). Waypoint x is a set
of dimensions d;...d, that uniquely describes the UAVs real
world position and state. FAAS fly in a discrete and finite
space. where the dimensions are constrained either by lim-
itations of the vehicle, the user, or communication range.
For each dimension d; in which the vehicle can move (e.g
yaw, upward motion, northward motion). dimensions are
constrained to some maximum magnitude D;, describing the
maximum range of the vehicles motion in said direction as
such: Vi: 0 < d; < D;.

x = (dy, ..., dg) (1)

fai € FA : {Xm} - {Xn} (2)

FS: {x, faj,y} — {1]0} if faj(x) =y (3)
_ u(ai(x)) . '

= 7u(ai(y)) FS{x, fa;, y} (4)

As shown in Equation 2, we abstract flight actions FA as
a set of functions that move the UAV between waypoints.
Precisely, a flight action applies a set force. The force moves
a hovering aircraft along six degrees of freedom. Actions are
calibrated offline. Each action fa; moves aircraft from one
expected waypoint to another. Due to spatial displacement,
actual and expected positions may differ slightly. For exam-
ple, wind can apply unexpected force, moving the aircraft
away from its expected position. Note, waypoints reachable
by any combination of actions define flight area.

A single step along a flight path has a starting point, action
and ending point. The flight step function FS (Equation 3)
indicates valid steps where the flight action leads to an end
point within the confines of the FAAS flight areas dimensions.
A waypoint will always have |FA| flight actions, but only
some may produce valid flight steps. At each waypoint, FAAS
senses its surroundings, transforms sensed data using Al

compute

; compute
Work_load architecture profFi)Iing ~——y. 1. latency
settings 2. energy mission
goals generate 3. idle power performance thouahput
autonomy flight path flight actions modeling ghp
: aircraft 1. latency
—_— "
cubes aircraft profiling 2. energy

3. hover power

Fig. 3: Modeling mission throughput for multiple architectures, aircraft and autonomy settings.

models (ai) and computes utility (0 <= u(x) <= 1) of its
current state, which we call a featureset. Each valid flight step,
i.e.,, FS(...) — 1, has utility gain. Referring to Figure 2, the
first flight step for the blue line is: {[A, 1], FlyNorth, [B, 1]}.
The Al models for this mission include A* (i.e., aiax).

We now define autonomy cube, Vx € X ac = U(x, ai(x)),
where X represents the set of all reachable waypoints. This
is to say that an autonomy cube is a data structure that repre-
sents the set of all reachable waypoints and their featuresets.

Equation 4 shows that ac allows FAAS to compute utility
gain for any valid flight step. As shown in Equation 5, a flight
path is a sequence of N valid flight steps. Autonomous sys-
tems aim to maximize total utility gain TG, i.e., the product
of utility gains acquired at each step in the path.

fp = {Xn, faf(n), yn}N
TG : {fp} —Tre R I r= 1_[ug(xns faf(n), Yn) (5)

Using autonomy cubes: Autonomy cubes can be used to
simulate a FAAS mission. For this paper, we constrain flight
areas to an n-dimensional mesh of waypoints, e.g., a building
or crop field. Each dimension corresponds to a FAAS flight
action. Each action has an inverse action that is expected to
return the aircraft to its original position. Supported actions
include x,y, z translation and pitch, yaw, roll and gimbal
pitch.

Capturing autonomy cubes: Quadcopters support 6 con-
trollable degrees of freedom, meaning they can use pitch,
yaw and roll to fly in any direction along an x,y,z coordinate
system [31]. Unlike cars and fixed wing planes, the coor-
dinate system can be explored in any direction relatively
quickly, requiring at most rotation and thrust. However, they
only move forward in time. We exploit quadcopter maneu-
verability to capture sensed data before it changes, i.e., we
transform time into discrete blocks based on how frequently
the utility of sensed data changes.

Equation 6 defines scene persistence P as the minimum
discrete time slots ¢ such that a hovering aircraft perceives
qualitatively similar utility. As shown in Equation 7, to cap-
ture an autonomy cube, the aircraft or aircrafts fly to each
waypoint in X before P seconds have elapsed. Due to the
unpredictable nature of FAAS pathing, we must safely assure

that a cube can be created within persistence constraints
before flight. This is done by assuming that each flight ac-
tion takes worst-case time. If a worst-case flight path can
complete an autonomy cube within P seconds, so can all
others. for this reason, we use the slowest flight action (fas)
to model shifting between waypoints.

It is possible to use multiple aircraft to collect an auton-
omy cube. Equation 6 introduces the variable s representing
swarm size (the number of UAV capturing the autonomy
cube) to account for the decrease in latency of using a swarm
of UAV.

P = Latency(fas(x)) X t : (6)

Max;(Latency(fa;(x))) * |X| <P @)
s

Examining Equation 7, we observe four techniques to scale
our approach.

1. Increase scene persistence: Scenes can be tweaked manually
so that key features change less frequently. For example, we
have tested our FAAS benchmarking suite using mannequins
in place of fidgety humans, and farm land.

2. Shrink flight area: We can shrink the total area where
aircraft can fly or allow fewer flight actions. Of course, fewer
flight actions degrades total utility gain.

3. Speedup flight actions: We could also reduce flight time
going between waypoints. Scheduling autonomy cube flight
paths by prioritizing waypoints with the shortest flight time
relative to the current waypoint would minimize delay per
flight step.

4. Use swarms to partition cubes: Finally, multiple quadcopters
can be deployed at once, allowing each to capture a fraction
(é) of the flight area. We have used swarms to capture au-
tonomy cubes used with our FAAS. However, for workloads
that require tight maneuvering (autonomous photography),
partitioning presents several research challenges. First, parti-
tioning to minimize expected delay per action is challenging.
Seconding, partitioning should consider the effects of battery
capacity. Partitioning on search and rescue (partitioning by
rooms) and agricultural sampling (by field region) are much
more feasible. Finally, aircraft flying in the same region may
interfere with each other.

We used swarms comprising 2 & 3 aircraft to partition flight
area along the vertical axis (y-axis) for our autonomous pho-
tography benchmark. As expected, we were able to cover
up 3X more flight area in the best case. However, we also
observed anomalies unique to aerial systems. Placing air-
craft immediately under each other (i.e., partitioning y while
strictly keeping x & z the same) affected wind patterns, creat-
ing suctions. The aircraft crashed into each other. Partitions
that worked well slightly offset the aircraft in the x & z
dimensions.

3.2 Aircraft profiling

In the second stage of our modeling approach, we profile
latency and energy functions for flight actions on an input
aircraft. In Equation 8, the LatencyA function estimates la-
tency using the average delay of flight actions executed at
multiple, sampled points within the flight area denoted by N.
Conceptually, we do the same for energy and hover power.
This profiling is done offline.

LatencyA = {faj(x)} »reR:

. (% 3)
e > LatencI};A(faI((xn)),N << IX]

3.3 Compute profiling

Compute latency and energy vary depending on the content
of data sensed at a waypoint. Unlike UAV actions, which
have a tight latency distribution, compute latency has more
variance. Scheduling fluctuations, unpredictable threading
overhead, model timing, and network interference all cause
compute timings to vary. Compute latency was profiled on-
line, requiring a varied set of execution environments and
conditions. experimental latency numbers for all individual
components of our benchmark were compiled into normal
distributions (represented my p and o), truncated to the
third standard deviation. Our model uses these distributions
to predict compute latency for offline missions similarly to
Equation 8.

LatencyC = {ai(x)} — (y,0) € R :

o= Zn’W,N << [X] ¥

3.4 Throughput modeling

Recall, FAAS compute their flight path fp; at runtime. As
shown in Equation 10, each flight step fs; , € fp; is informed
by data observed during execution.

Ugh n+1 {Xn, fagm), YnIn — {Xne1, fagmer), Yor1} (10)

Specifically, FAAS compute expected utility gain ug , using
past and training data comprised of additional autonomy

FAAS autonomous search
mission photography | and rescue

utility functions | 1) prioritize high utility (util)

agricultural
scouting
1) high utility req.

and flight 2) prefer short missions (tput) |2) max waypoints
constraints 3) good mix (10, 20 or 30)

flight area | 2X2x3x3 hyper 15 hyper | nx m grid over

cube near cubesin a crop field
subject target area
flight actions translate x, y and z, translate x
gimbal pitch andy
path finding [1) choose from K-nearest neighbors
algorithm 2) use A* search to avoid local optima

3) use energy aware A* (EA*) which
prioritizes low power movements

Al classifier | 1) Integer precision (int) fast but less accurate,

accuracy & 2) floating point precision (fp),

complexity 3) deep most accurate but require GPU (all)

execution edge systems, cloud, or onboard
context

arch. support scale up, scale out, gpu acceleration

Table 1: Layered implementation and system settings.

cubes to infer the effects of flight actions. Flight path fp; is
the result of iterative invocations of expected utility gain
given an autonomous cube, i.e., fp; = H;g oy ac}. To model
throughput, we assume we access to ug and ac.

We model energy used by the aircraft with two terms. First
for every step along a flight path, we sum energy used for
the corresponding action. Second, multiply latency for com-
pute by power used when hovering. The inverse applies to
compute. When both compute and aircraft have distinct en-
ergy sources with known storage capacities (Cg;r and Cepp),
mission throughput is computed by looking at the number of
missions completed before exhausting one energy sources.

Equations 11 shows how we calculate final throughput
based on aircraft and compute energy (E,ir and E.mp). E,ir
can be calculated by summing the energy consumption of
all individual flight actions. The energy consumption of a
flight action amounts to its latency times the base power
consumption of the UAV (hover power) plus the extra energy
required to perform that flight action. E.mp is similarly pro-
filed, using compute idle power as its base. Throughput (¢put)
describes the maximum number (N) of waypoints reached
in a mission, which is dependent on E,ir and E.mp. When
one component runs out of energy, the system’s mission
completes, as shown in 11.

E.ir(N) : Z(EnA(fan) + LatencyC(ai(xy)) X PwrA(faygver))
Ecmp(N) : Z(EnC(ai(xn)) + LatencyA(fan) x PwrC(idle)) (11)

tput = min N : Cyjr — Eair(N) = 0 or Cemp — Ecmp(N) = 0

4 IMPLEMENTING FAAS

Table 1 decomposes FAAS and presents a layered, systems
view of their components. This section presents each layer
and compares system settings for 3 FAAS.

FAAS missions: We implemented (1) autonomous photog-
raphy, (2) search and rescue, and (3) agricultural scouting.
For autonomous photography, the FAAS positions itself and
takes high-quality portraits of human faces. It autonomously
explores its flight area. This workload was inspired by com-
putational photography and SkyDio [1, 3].

The search and rescue FAAS extends autonomous photog-
raphy. It searches multiple areas for humans. During emer-
gencies or disasters, it could help first responders discover
victims. The FAAS navigates the aircraft between areas, e.g.,
rooms in a building, and also explores areas thoroughly.

As discussed, agricultural scouting is commercially viable
today. This FAAS takes aerial images of a crop field similar
to prior work [5]. For this work, we had access to a corn
field, so our missions produce detailed images of corn and
planting rows. Scouting as a workload kernel underlies aerial
surveillance and military target detection.

Flight area and flight actions: Autonomous photography
covers a 2x2x3x3 hyper cube. The aircraft can translate X, Y
and Z axes and rotate the camera. We have collected 110 au-
tonomy cubes for this benchmark. Search and rescue explores
15 2x2x3x3 hyper cubes and supports the same actions.

Agricultural scouting covers a 75-acre crop field. The flight
area is a 55x43 grid. The aircraft can translate X and Y dimen-
sions only. In total, we have collected 122 autonomy cubes
(20970 images) across (1) all 3 FAAS, (2) diverse settings:
outdoors, indoors, raining and windy, and (3) with multiple
targets: humans and corn. Capturing a cube took roughly 11
minutes for autonomous photography cubes and 4 hours for
agricultural scouting.

Utility functions and constraints: Photography and crop
analysis use different utility functions. A good portrait con-
tains a centered, bright and crisp face [8]. We created a utility
function using the following features: face detection, face
location in the image, image brightness and size of the facial
bounding box. A good picture of a crop field avoids blur, con-
trasts crops and soil and does not include extraneous objects.
Our utility function here considers glare, image brightness
and corn crops counted. For all utility functions, each feature
is weighted and the whole function is normalized.

End users set thresholds. When utility exceeds the thresh-
old, the FAAS mission is complete. Our photography FAAS
support 3 thresholds. A high threshold encourages the FAAS
to explore its flight area. As a result, missions are longer. A
low threshold encourages the FAAS to land quickly. We label

this setting as high throughput. Finally, the default settings
aims for a medium threshold that provides good mix.

Flight area bounds FAAS flight path spatially. Flight ac-
tions that cause the aircraft to leave that area are not exe-
cuted. If the aircraft battery falls below 10% of its capacity,
our FAAS lands immediately. The Max Waypoints setting
bounds flight path temporally. After exceeding this threshold,
the mission completes.

Path finding: By default, 4000 training data entries are used
to decide where to fly. Each training data entry describes
a single image from a collected autonomy cube. Training
data entries consist of a vector of utility features, as well as
pointers to other training data entries that represent sensed
data within the autonomy cube that the FAAS could reach
with one motion (e.g a training data entry may have pointers
to data sensed using the left, right, up, and down flight ac-
tions). This reduces dozens or hundreds of autonomy cubes
containing tens of gigabytes of image data into portable CSV
files on the order of megabytes.

Pathfinding algorithms run on top of our cubes and train-
ing set to model FAAS actions. The K-Nearest Neighbors
(KNN) algorithm finds 9 entries with utility features nearest
to the sensed image. By default, we implement greedy path
finding. The expected utility gain is the mean gain observed
by nearest neighbors grouped by flight action. This approach
takes the flight action with the largest expected utility gain.

A* Search improves greedy KNN with a linear heuristic to
model the whole flight area, choosing a flight action along the
best expected path. Energy-aware A* Search weights flight
actions according to aircraft profiles. It produces flight paths
that prefer low energy actions. A* Search and its energy-
aware variant are well studied and have been used in recent
research [9, 22, 30].

Al models: Each FAAS characterizes sensed data into a vec-
tor with up to 64 dimensions. Each dimension represents
the output of an Al classifier. We distinguish classifiers by
compute demand and support any subset of these groups.
Integer models include OpenCV local binary pattern, cas-
cade models using only integer data types, and RGB image
classifiers. These models are lightweight, fast and imprecise.
Floating point models include DLIB histogram of gradients.
The are more precise than integer models but also slower to
compute. Deep models include DLIB’s convolutional neural
network (CNN) for face recognition and our custom CNN
for crop recognition. We execute deep models only when
GPUs are available (i.e., not on CPUs).

Execution context and architectural support: SoftwarePi-
lot, our FAAS suite, is composed of micro services. Each
micro service provides basic functions, e.g., issuing aircraft
commands, data sensing, data storage, running sensed data
through an Al model, querying path finding algorithms etc.

Micro services exchange messages using Californium UDP
CoAP clients and servers [28]. Our suite allows for execution
of autonomy cube-based pathfinding and modeling on edge
or cloud systems.

5 EVALUATION

Modeling simplifies testing of a wide array of hardware set-
tings on FAAS throughput. Given ground truth data and
profile information, the goal of our modeling approach is
to make results from modeled flights and actual FAAS mis-
sions virtually indistinguishable. Our FAAS provide ground
truth. We can measure mission throughput directly with
real aircraft, goals, software settings and compute hardware.
This section first compares our model predictions to ob-
served throughput. Then, we compare competing modeling
approaches. Finally, we isolate compute and aircraft profiles,
and characterize these workloads.

5.1 Model validation

We flew each benchmark under the system settings in Table 1.
Our FAAS uses the DJI Android SDK to control the aircraft
via WiFi connected laptop (edge device). Our platform can
also run software components across multiple devices or on
the cloud. Edge devices run Ubuntu Linux 18.04.

Each test started with fully charged aircraft and edge bat-
teries. We then flew missions until one of the batteries fell
below the safe landing threshold. Observed mission through-
put is the number of missions completed. We repeated each
test 6 times and report mean throughput.

Unless noted otherwise, we used the DJI Spark aircraft [11].
Its body is roughly 6 square inches. It weighs 300 grams.
We observed that it can hover for 11-13 minutes without
recharging its 16 Wh lithium ion battery. Also unless oth-
erwise noted, we use edge architecture setup, because it is
easier to change architecture settings. We tested edge devices
with the following compute architectures.

e 2¢: HP G6 laptop; 2-core i5 7200u processor; 3.1 GHz; 3
MB cache; 4 GB DDR4 RAM; 500 GB hard drive.

e 2x2c: 2 HP G6 laptops using 1 Gbps Ethernet router. One
laptop runs flight control, pulls images from the aircraft
and computes integer AI models. The other laptop runs
path finding algorithms and floating point models.

e 4c: 4-core i5 7300u processor; 3.5 Ghz Ghz; 3 MB cache;
4 GB DDR4 RAM; 500 GB hard drive.

e 4ci7: 4-core i7 7500u processor; 3.5 Ghz; 4 MB cache; 8
GB RAM; 256 GB SSD.

e 4c+gpu: 4ci7 connects to an NVIDIA 1080 Ti.
e 2c+gpu: GPU is connected to 2c.

=, . 25= W predicted 7 observed |
=)
2 c 20+
£35
93 154

17}
g £ 104
-~ 5 -

0 =i

arch |2c 2x2c 4c 4c 4c 4c 2c 2c 2c 2¢ 2c
gpu (N0 N0 nNO yes N0 yes no nNo N0 no no
Almodels (fp fp fp al fp all int int fp int int
path find knn knn knn knn a* a* ea* knnknn a* a*
waypoints 110 10 10 10 10 10 6 15 10 15 6
goal [mix mix mix mix tput tput tput util util util util

Fig. 4: Our model predicts mission throughput pre-
cisely. Baseline setting is highlighted

Prediction accuracy: Recall, our modeling approach pre-
dicts expected mission throughput, i.e., an average over many
missions. For autonomous photography and search and res-
cue, our approach uses autonomy cubes to produce 50 mis-
sion flight paths for each autonomy setting. Note, compute
hardware settings do not affect flight paths. Autonomy set-
tings include AI models, path finding and utility functions.
For each flight path, Section 3 describes the workflow to
predict mission throughput. Agricultural scouting covers a
larger area. We have fewer cubes. Here, we generate 6 flight
paths for each autonomy setting. Autonomy cubes were im-
plemented by a micro service that returns an image from a
cube waypoint in place of the aircraft camera. FAAS software
interacts with the micro service as it would with the aircraft.
Figure 4 compares predicted and observed mission through-
put for autonomous photography. We shorten the names of
mission goal parameters to mix, util and tput for space. We
also shorten integer and floating point settings for AI mod-

els to int and fp. Our tests cover every autonomy setting

. |pred—obs|
supported. Mean absolute percent error (i.e., =———) was

4%. Error can be attributed to subtle differences in flight con-
ditions, battery age, and hardware timing between profile
and test flights. We found that GPU, goals and path finding
settings affected throughput by up to 1.8X, 1.75X and 1.71X
in isolation. Combined, settings had complex effects. For ex-
ample, adding a GPU sped up throughput by 1.15X under
4c, KNN and util. However, under 4c, A* and tput speed up
was 1.23X-a 7% improvement. Util and KNN missions spent
more time hovering. Energy used hovering lessened whole
system speedup gained by adding a GPU.

Competing modeling approaches: We also studied mod-
eling approaches inspired by recent research. In Autoware [22,
23, 30], researchers use ROSBAG recordings from a real, long-
running self-driving car. We mimicked this approach by col-
lecting long traces over multiple missions. For autonomous

[0 autoware using knn trace to model a*

flight path (based on Fig 2) our approach using autonomy cubes

knn|knn[A,1]~ fly[A,Zan[A,Z]-’ fly[A,3<\:nn[A,3]-’ fly[B, 3]
a* |ax [A,1]> fly[B,1] ‘ex [A,2]> fly[B,2] @ [A,3]> fly[B, 3]

a* |a* [A,11°Fly[B,1]70x [B,11<:y[s,z]»a/*;3,z]»comp1ete
[¢)

autonomy cube” supplies data

Fig. 5: Depicting Autoware versus our approach.

photography and search and rescue, we combined 100 mis-
sion flight paths. Scouting used 12 missions.

Autoware does not consider autonomy settings. As such,
this approach does not model flight path well. Figure 5 depicts
the problem using examples from Figure 2. Autoware profiles
compute workloads on new hardware. However, Autoware
can not acquire data outside of the trace. If autonomy settings
change where FAAS would fly, Autoware doesn’t have access
to the sensed data and profiles using available data. Figure 5
highlights the problem: A* missions complete faster than
KNN and Mix missions. As a result, Autoware over estimates
the total compute workload.

Aerostack flies autonomous aircraft in a wide range of
settings by manually inserting obstacles [38]. This approach
improves Autoware’s methodology, because traces include
data from multiple settings. We mimicked this approach by
creating 3 long running traces for each setting.

Figures 6 (a — d) compare our approach, Autoware and
Aerostack. We also compare a simple modeling approach
driven by data collected from DJI and Intel (DJI). This ap-
proach ignores autonomy and uses flight time and aggre-
gate cycles per second to model throughput as a function
of speedup, max waypoints and flight time. Autoware and
Aerostack traces used missions conducted under baseline
setting. Aerostack traces toggled waypoints (15) and A" for
multiple traces.

Across all workloads, settings, and architectures, compet-
ing approaches increase relative error from 1.2x-10x. Work-
loads with high flight overhead and lower detail sensed data
experienced less error than low overhead workloads. In au-
tonomous photography, where subtle differences in pathing
can cause massive differences in sensed data, sees between
1.7X to over 10X error when using other approaches.

In Figures 6 (a,c & d), we used a setting close to the refer-
ence trace: we changed mix to util. In these graphs, Autoware
and Aerostack avoid inflating error by 2X. Given our model
predicts throughput with 4%, these results are not too bad.
However, Figures 6(b) makes 2 major changes: we changed
mix to tput and knn to A*. As shown earlier, these settings
affect throughput greatly. DJI inflates relative error 10X, Au-
toware by up to 20X and Aerostack by 5%. These results
suggest that benchmarking must account for flight path—
and, more broadly, software settings related to autonomy.

Changing aircraft: To assure the validity of our modeling
approach, we created and validated models for the DJI Mavic
Pro as well as the Spark. The DJI Mavic Pro is a 734g personal
UAV, roughly 12 inches in length. It has a 43 Wh lithium ion
battery and a maximum hover time of 23-25 minutes. Mavic,
with more powerful motors and processors, requires more
energy to run than Spark. Across the flight components we
modeled, Mavic consumes 45-55% more energy than Spark.
Validation through 5 fully autonomous missions provided
an average error of 3% for our Mavic model.
Image Quality: Figure 6(e) describes the effects of image
quality on throughput. Recent UAS work suggests using high
compression ratios [4, 15] (such as JPEG60) or low resolution
images to speed up detection. As shown, processing times
decrease with compression ratio. However, image quality
degrade object detection. As a result, aircraft explore more
waypoints, possibly without producing valuable outcomes.
Figure 6(e) shows the decrease in throughput as image
quality degrades using DLIB’s facial recognition CNN. At
the default quality of the DJI Spark camera (12 megapixels),
our FAAS can complete 27 missions per charge. At lower
image quality (3 megapixels [4, 15]), mission throughput has
degraded 62%. This result shows that end-to-end metrics are
critical in autonomous systems— results driven by processing
time alone can miss whole system impacts.

5.2 Workload study

Figure 6(f) reports the impact of aircraft hover, flying, net-
worked data transfer, idle compute and runtime software
on total system energy. The aircraft accounts for 58-90%.
The use of GPU increases the impact of compute by 4.6X.
Table 6(g) delves into the architectural metrics affecting com-
pute latency on facial recognition workloads. These data
were collected on the 4c hardware using the Linux Perf tool.
We observe that autonomy settings affect waypoints per mis-
sion (WPM). Integer models are too imprecise, causing the
FAAS to visit many waypoints. However, integer models ex-
ecute efficiently on general purpose processors, reducing the
frequency of cache and branch misses by 25%. This setting
provided the lowest latency, speeding up runtime by 4X.

Under A* search, the runtime executes more instructions
per waypoint (IPW) before encountering cache misses than
baseline setting. However, despite the lower cache miss rate,
it also incurs more branch misses and executes more IPW
(i-e., instructions spent computing utility gain for a sequence
of actions). The net result is a 29% slowdown.

6 SYSTEM MANAGEMENT

Our model can help FAAS end users: (1) manage compute
hardware, (2) assess trade-offs between tightly and loosely

5= 5X 82 0x 53X 52 2.0X
5o 4X 7 5o =)O) °3
<} 7 3 Z 2X 5]
o g 3X 77 - O e} _Dg P
SE ox /VV ‘/ ©E 5X SE |y g 1ox44 7 A
T3 1X % 17 =5 =5 N 5 182 18s 0% WV
© O 2 IRy % BN © < S % BR7 BR% BR%
EQOX- s |§3¢ 0X gﬁox EOOOX A4 447
2= NS SN S 82 NBs s N & g LN
x Lo+ 4 x TR % = < R &ESY &
N N Q «Q N ~N Q «Q N To¥ +
o S ° o T T o J Q@ Q
= —__= 22
| diin autoware aerostack] |7 dii = autoware aerostack] [7dji = autoware aerostack] |7 dii autoware 7 aerostack |
high util photography high tput & a* photography high util crop scouting high util search and rescue
() (c) (d)
30.00 8 w >~(b%0% 3.00
525.00 6 ~ =
£20.00 g 2 40% 5 200
S15.00 4F — 20% L 100
210.00 2 £ BT
e 25 2 0% ga
E 500 8 % s = 5 5 = go 000
S 0.00 T T 0 § e 3 % o 5, EgZ s =2 T 3 g
3 PN R o B W F e @ 5 8 3 =i 2 g : 5 §
S image compression ratio =~ c 0® 2 ® 3
\r]T:)sEs(i:::)r??put e Time B mix 7 high uti | ~ baseline high util ar mint |
Tmage compression high tput mix + GPU photography workload
throughput a(nsj processing time energy consur?f)ption breakdown attributes by strategy
€ (9)

Fig. 6: (a — d) Comparing trace and cube driven modeling approaches. (e) poor image quality degrades mission. (f)
Autonomy settings shift compute and aircraft energy demands. (g) Autonomy settings affect common architecture

counters.

coupled aircraft, software and hardware, and (3) adapt hard-
ware and software at runtime.

6.1 Managing compute resources

Our modeling approach uses autonomy settings to construct
realistic flight paths. Flight paths and autonomy cubes yield
representative compute workloads. These workloads can be
tested without flying the aircraft. Consider an end user that
owns a commodity aircraft. This end user may ask, which
hardware resources will provide good throughput? Reusing
flight paths across competing hardware solves this problem.

When upgrading compute resources, there are 3 options.
With scale out, compute resources are replicated and the
workload is balanced across them. Upgrading from our 2¢
to 2x2c setups reflects scale out. Scale up replaces resources
with faster or more energy efficient resources, e.g., 2¢ i5 to
4c i7. Finally, workload targeted accelerators can augment
existing resources, e.g., 2c+gpu.

Figure 7(a) plots speedup achieved by scaling out, scaling
up, and adding GPU using the autonomous photography
FAAS. Speedup is ?;:St‘:: For this plot, the denominator is
from a 2¢ processor running on a device that has 2 Wh bat-
tery. Under 2 Wh battery, only scale up provides speedup

10

greater than the increase in system cost. If the upgrade in-
cludes a 20 Wh battery, scale out and scale up are worthy in-
vestments. GPU speedup does not match its 9X cost increase.
However, a GPU provides greatest increase in throughput.

6.2 Comparing onboard, edge and cloud

DJI software development kits support edge architecture
where tablets run Al software and control aircraft remotely [10].
For developers, these devices offer one hop, low latency ac-
cess to the aircraft and powerful compute. Further, develop-
ers can procure resources as needed.

Processors located onboard could provide lower latency,
but there is a downside: onboard devices take energy from the
aircraft, decreasing flight time. Note, flight time decreases for
two reasons. First, and most directly, processors use energy
for vision processing, path finding, etc. Second, more subtly,
their weight increases thrust needed to take off, hover and
fly. Small aircraft simply can not move enough air to carry
an Nvidia 1080 Ti (1041 g). Even larger unmanned aerial
vehicles would notice decreased in flight time.

The cloud is also an option. Elastic cloud services could
dynamically provision resources, allowing end users to lease
hardware on demand and avoid over provisioning. The down-
side is that slow network latency reduces responsiveness.

We extended our aircraft profiles to model flight time
given added payload. The relationship between flight time

10 -
g
o &6
g o
& =4
o
o O kL N W A O
o o & & o
0+ aircract lifetime
out up gpu
= onboard
knn,2 Whi | knn,20 Wh o edge
a*,20 Whit costincreasq [... .ceeveuees cloud

(CY

|| deeIs == intonly __
g | | |
50] 1 1
L & |
12% 5% 37% 50% 62% 75% 87%
Position in flight p?é? (execution over time)
< | mourapproach 7| ubora static |
39 2
£ 3
Sa 1
2
= 0

path finding: knn

knn
battery:2 Wh |20 Wh |20 Wh
(d)

Fig. 7: Model-driven management of autonomous photography FAAS: (a) speedup and cost by architecture op-
timization, (b) efficiency of onboard, edge, and cloud systems, (c) utility of images captured across FAAS mis-
sions with adaptive model switching, (d-e) a comparison of throughput and utility across adaptive switching ap-

proaches.

and payload weight depends on nominal thrust and aircraft
weight [31]. Specifically, we modeled flight time lost to carry
Intel i5 CPU, DDR4 RAM and SSD using manufacturer pro-
vided thrust and power loading data.

We compared three aircraft: (1) Spark, a 300g UAV that
can carry 500g; (2) Mavic, a 734g UAV that can carry 1300g;
And (3) Matrice 100, a 2400g enterprise UAV that carries
3600g. For Spark, onboard CPU and RAM would degrade
flight time by 20%. The full compute system would degrade
flight time by 50%. For Mavic and Matrice, the full compute
system onboard would degrade flight time by 10%.

We updated our aircraft profiles to get onboard through-
put. We increased energy needs for each flight action in pro-
portion to flight time degradation caused by onboard payload.
Then at each waypoint, we subtracted compute energy from
aircraft capacity. For cloud throughput, we deployed 2x2¢
set up using an AWS micro instance as the second processor.
This led to a 12% throughput degradation due to moving
images between the edge and cloud.

Figure 7(b) explores the relationship between throughput
per dollar and aircraft lifetime (measured in missions). This
figure uses the Spark aircraft and assumes that users either
purchase hardware or cloud time on an instance that has
a static cost per FAAS mission. Throughput per dollar of
the cloud system remains static. We used AWS on-demand
micro instances for pricing. Onboard and edge systems have
overhead cost that cloud systems do not, but minimal mainte-
nance costs, meaning they experience gains in total through-
put per dollar as the system is used. Cloud systems also
experience much higher latency than edge systems making
edge systems more attractive for live FAAS processing. The
crossover point is where onboard and edge systems become
more cost effective compared to cloud systems. Using our

11

4c configuration with a high throughput autonomy setting
and a DJI Spark, an edge system would become cost effective
after only 10 missions. Moving the system onboard takes 5X
as long to cross over.

6.3 Adaptive hardware-workload co-design

End users may have many options as to which AI models
they choose to deploy on their FAAS. Our benchmarks can
switch between multiple models that vary in (1) recognition
accuracy and (2) latency. Highly accurate models are needed
to detect distant or dark objects. Less complex models suffice
for clear, crisp images. However, highly accurate DNN with
DLIB (deep models) require a costly, power hungry GPU.
We also use the OpenCV LBP cascade classifier (int models)
which, when run on a 2 core laptop, has lower latency than
DNN, but also lower accuracy. Deep models can find small,
unclear faces in large, noisy images, but as images become
clearer, it’s performance converges with that of int models.

As the performance of Deep and Int models converge, it
is prudent to turn off the GPU and use only the faster Int
models. This approach conserves edge battery and increases
throughput by decreasing feature extraction latency.

Figure 7(c) depicts an experimentally obtained example
mission sequence where the GPU is duty cycled. We set a
utility threshold of 0.5, turning off the GPU and using Int
models only after a 0.5 utility image was found. All signifies
waypoints where deep models were computed whereas Int
signifies waypoints where only Int models were computed.
For waypoints occurring after the duty cycle threshold, Int
models and deep models performed similarly, finding images
at comparable utility and choosing the same paths.

Figure 7(d-e) explore the differences in throughput and
utility of duty cycling GPU using 3 different policies:

e Our Approach: Assigns a user defined threshold for
duty cycling. Once one image in a flight path exceeds
that threshold using the DNN model, the GPU is turned
off and the LBP model is used for facial recognition.

e Ubora: Mimicks adaptive quality management in recent
research [24, 25]. Each mission is treated as a query. GPU
and Int models are toggled once at the start of each mis-
sion. Average utility taken over the flight path is com-
pared to a duty cycle threshold. If average utility exceeds
the threshold, GPU is turned off until average utility falls
below the threshold.

e Static: Uses deep models for all feature extraction, with
no GPU duty cycling.

Figure 7(d) shows a 1.3X gain from using our duty cycling
approach as compared to the static approach, and a 1.4X gain
as compared to Ubora when using either A* configuration.
The A* configurations both have large enough edge batteries
such that they are bottlenecked by the UAV battery, so gains
or losses in throughput are entirely dependent on execution
time savings during feature extraction, which are realized
by the GPU configuration. The Ubora approach sees a de-
crease in throughput as compared to both others. Using a
cumulative utility threshold allows for the Ubora approach
to miss local utility spikes in a high variance workload like
UAV data collection. In our test configurations, Ubora duty
cycled the GPU either too early or too late. Duty cycling too
late (after integer models and deep models converge) causes
Ubora to function like our approach, but with more GPU
usage. Duty cycling too early potentially switches to integer
models before accuracy converges, taking more waypoints
on average to meet utility goal. This affect can be seen in
Figure 7(e), where Ubora sees considerably lower average
utility than both our approach and the static approach. The
failings of the Ubora approach in this context, contrasted
with the success of our simpler approach, demonstrate that
while duty cycling models and hardware in FAAS workloads
can be advantageous, one must carefully choose their duty
cycling approach.

Average utility across autonomy setting is also important.
As our architecture, models, and path-finding algorithms
improve, so does average utility. Our KNN configuration
sees 0.83X lower image utility as compared to A* using the
same models. When transitioning to a deep model on the
GPU configuration, we see a 1.06X improvement in average
utility which can be attributed to the higher accuracy of
the deep model. Using our low battery configuration (where
edge battery is a throughput bottleneck), we see that our ap-
proach makes a 1.65X improvement over a non-duty cycling
approach, and a 1.15X improvement over Ubora.

12

$20,000 = [—+— uas (human) baseline faas
+ $15,000 —¢— model-driven —<— adapive model-driv.
G $10,000
OFFFF T r T T T T T T T T
ENWAADNROEREERRERREERN
OCO0O0OO0O0O0O0O0QORLNWAIDN®®O
. T " 00000000000
missions per hour

Fig. 8: Agricultural scouting cost as end users use
parallelism to increase throughput. Our model-driven
edge management provides savings at scale.

6.4 Speedup for autonomous photography

Our model-driven approaches found highest throughput us-
ing 4-core Intel I7 with GPU while using low utility threshold,
adaptive duty cycling and A* search. This setting completed
34 missions using Spark without recharging. Compared to
2-core Intel I5 using greedy KNN to find high utility images,
the 4-core setting sped up compute latency by 15X. Looking
deeper, the following changes were significant:

e Autonomy settings: A* search and lower threshold re-
duced waypoints per mission, providing 4.1X speedup.

e Using a GPU: Up to 2.25X over other approaches.

e Software driven power management: 1.3X through-
put increase over static GPU usage.

Combined, the best settings yield a 10.2X increase in mission
throughput compared to the 2-core setting mentioned above.

6.5 End-to-end savings for crop scouting

Our scouting FAAS covers roughly 1-acre per mission and
completes 15 missions per hour. 1 FAAS would require 10
hours to scout a 150-acre field. However, multiple FAAS
can work in parallel to scout the whole field faster. Given a
deadline, we can estimate total hardware and software cost
for all parallel FAAS. In contrast, UAS require human piloting.
Based on first hand experience, we assume human pilots
can execute 11 lawnmower missions for $20 per hour [29].
We also model cost for UAS equipment such as batteries,
compute resources, and aircraft.

Figure 8 shows the cost for parallel UAS and baseline FAAS
to achieve x mission throughput per hour. Baseline FAAS (2c,
autoware, KNN) outperforms human piloted UAS. additional
equipment and labor costs inflate UAS costs. Our model-
driven approaches improve mission throughput significantly,
gaining 6X and 4.2X on UAS and baseline. Adaptive GPU
power cycling provides further improvements. Model-driven,
adaptive FAAS reduce costs by 87% compared to human-
piloted UAS.

7 LIMITATIONS AND FUTURE WORK

Our Autonomy Cube modeling approach and analysis in-
cludes many limitations and future opportunities. First and
foremost, autonomy cubes can be difficult to collect. We flew
over 100 FAAS missions to collect autonomy cubes for both
FAAS modeling and as input to pathfinding algorithms. This
is not feasible for all FAAS tasks. Future work should explore
the creation of autonomy cubes from extant geotagged multi-
dimensional image sets. For instance, large available datasets
like Google Street View [2], or autonomous driving datasets
like KITTI [14] could be used to construct autonomy cubes
for a multitude of relevant FAAS tasks.

Many of our management strategies focused on decreasing
compute power consumption of a single FAAS. Multiple
FAAS, i.e., swarms, can share edge compute systems while
each UAV carries its own battery on board. The aggregate
compute demands of a large swarm could transform power
usage, making edge system batteries the bottleneck resources.
Our approach can adjust battery sizes, but we can not model
how swarms will inflate compute demands.

8 RELATED WORK

FAAS choose their flight path at runtime similar to self-
driving cars. Workload settings that affect their flight path
can change energy usage and throughput significantly. We
quantified this and proposed autonomy cubes to capture
representative traces when settings change. Autoware is a

project designed to make autonomous driving more open [22].

Autoware presents open algorithms, libraries, and consumer
hardware components for autonomous driving, many of
which are applicable to FAAS. It’s motion planning design,
as referenced in section 5, was improved upon in this paper.
Lin et. al extend Autoware to study accelerators [30]. Object
detection and tracking for self-driving cars can be sped up
169X using consumer grade hardware, but compute speedup
can reduce driving range. This result parallels our obser-
vations with mission throughput. Aerostack [38] presents
an open source, component based software architecture for
aerial robotics, emphasizing full autonomy. Aerostack’s de-
sign influenced the design and implementation of our own
FAAS software.

Other recent studies explore acceleration and edge devices.
Sirius [19] studied FPGAs, CPUs, GPUs, and coprocessors
on personal assistant benchmarks. In-situ AI [40] studied
autonomous IoT. Computational sprinting has targeted in-
teractive, mobile workloads with dynamic architectural opti-
mizations [34, 35].

9 CONCLUSION

Unmanned aircraft are changing industries from agriculture
to surveillance and photography. Fully autonomous aerial
systems are piloted by software—eschewing costly and mis-
take prone human piloting. Software and hardware settings
affect where these systems fly and when missions complete.
Recent benchmarking papers use few settings, e.g., from
prior traces, but extrapolate throughput broadly. This paper
presents a modeling approach that can model flight paths
across autonomy settings. Autonomy cubes provide sensed
data for any reachable waypoint, enabling our approach.
We have collected autonomy cubes for real FAAS execut-
ing diverse missions across a wide range of settings. Our
model predicts FAAS throughput within 4%. We used our
model to evaluate system management problems and uncov-
ered insights that can improve throughput 10X and FAAS
reduce costs 87%. Code for our modeling approach and au-
tonomy cubes are open source, made available through the
SoftwarePilot project.

Acknowledgments: This work was funded in part by NSF
Grants 1749501 and 1350941 with support from NSF CENTRA
collaborations (grant 1550126).

REFERENCES

[1] E. Ackerman. Skydio announces sdk to make worldaAZs cleverest
drone even cleverer. https://spectrum.ieee.org/.

[2] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh,
Stéphane Lafon, Richard Lyon, Abhijit Ogale, Luc Vincent, and Josh
Weaver. Google street view: Capturing the world at street level. Com-
puter, 43(6):32-38, 2010.

[3] Brendan Barry, Cormac Brick, Fergal Connor, David Donohoe, David
Moloney, Richard Richmond, Martin O’Riordan, and Vasile Toma.
Always-on vision processing unit for mobile applications. IEEE Micro,
35(2), 2015.

[4] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui,
Aleksandra Faust, and Vijay Reddi. Mavbench: Micro aerial vehicle
benchmarking. In MICRO, 2018.

[5] Jayson Boubin, John Chumley, Christopher Stewart, and Sami Khanal.
Autonomic computing challenges in fully autonomous precision agri-
culture. In 2019 IEEE International Conference on Autonomic Computing
(ICAC). IEEE, 2019.

[6] Jayson Boubin, Christopher Stewart, Shiqi Zhang, Naveen T.R. Babu,
and Zichen Zhang. Softwarepilot. http://github.com/boubinjg/
softwarepilot, 2019.

[7] T.Brechman. 3 examples showing why crop scouting pays, even in an
off year. www.indianaprairiefarmer.com, 2016.

[8] CNN. 7 tips for taking better selfies. https://www.cnn.com/2013/12/
11/tech/mobile/selfie-photo-tips/, 2013.

[9] Carmelo Di Franco and Giorgio C Buttazzo. Energy-aware coverage
path planning of uavs. In ICARSC, pages 111-117, 2015.

[10] DJI Prerequisites-dji mobile sdk documentation. https://developer.dji.
com/, 2018.

[11] DJI Spark specs. https://www.dji.com/spark/info, 2018.

[12] AR Elias, N Golubovic, C Krintz, and et al. Where’s the bear?-
automating wildlife image processing using iot and edge cloud systems.
In IEEE Internet of Things Design and Implementation, 2017.

=

[13] Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler,

Matia Pizzoli, and Davide Scaramuzza. Autonomous, vision-based
flight and live dense 3d mapping with a quadrotor micro aerial vehicle.
Journal of Field Robotics, 33(4), 2016.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pages 3354—

[32] Lockheed Martin. The future of autonomy isn’t human-less. it’s

human more. https://www.lockheedmartin.com/en-us/capabilities/
autonomous-unmanned-systems.html, 2018.

Lorenz Meier, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich
Fraundorfer, and Marc Pollefeys. Pixhawk: A micro aerial vehicle
design for autonomous flight using onboard computer vision. Au-
tonomous Robots, 33(1-2), 2012.

3361. IEEE, 2012. [34] N Morris, C Stewart, L Chen, R Birke, and et al. Model-driven compu-
[15] H. Genc, Y. Zu, T. Chin, M. Halpern, and V. J. Reddi. Flying iot: Toward tational sprinting. In ACM Eurosys, 2018.

low-power vision in the sky. IEEE Micro, 37(6):40-51, November 2017. [35] Nathaniel Morris, Siva Meenakshi Renganathan, Christopher Stewart,
[16] D. Gomez-Candon, A. De Castro, and F. Lopez-Grandos. Assessing Robert Birke, and Lydia Chen. Sprint ability: How well does your
the accuracy of mosaics from unmanned aerial vehicle (uav) imagery software exploit bursts in processing capacity? In ICAC, 2016.
for precision agriculture purposes in wheat. In Remote Sensing, 2014. [36] Krishna Giri Narra, Zhifeng Lin, Ganesh Ananthanarayanan, Salman
G Grassi, K Jamieson, P Bahl, and G Pau. Parkmaster: An in-vehicle, Avestimehr, and Murali Annavaram. Collage inference: Tolerating
edge-based video analytics service for detecting open parking spaces stragglers in distributed neural network inference using coding, 2019.
in urban environments. In ACM Symposium on Edge Computing, 2017. [37] Jose Luis Sanchez-Lopez, Ramén A Suérez Fernandez, Hriday Bavle,
[18] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Carlos Sampedro, Martin Molina, Jesus Pestana, and Pascual Campoy.

(17

—

=

—

—

[t

flan?

=

=

—

=

=

—

Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. Data mining and knowledge discovery, 1997.

[19] Johann Hauswald, Michael A Laurenzano, Yunqi Zhang, Cheng Li,

Austin Rovinski, Arjun Khurana, Ronald G Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, et al. Sirius: An open end-to-end voice
and vision personal assistant and its implications for future warehouse
scale computers. In ASPLOS, 2015.

CC Hung, G Ananthanarayanan, and et al. Videoedge: Processing
camera streams using hierarchical clusters. In ACM Symposium on
Edge Computing, 2018.

S Kartakis, W Yu, R Akhavan, and et al. Adaptive edge analytics for
distributed networked control of water systems. In IEEE Internet of
Things Design and Implementation, 2016.

Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya,
Kazuya Takeda, and Tsuyoshi Hamada. An open approach to au-
tonomous vehicles. IEEE Micro, 35(6), 2015.

Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato
Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando,
Yusuke Fujii, and Takuya Azumi. Autoware on board: enabling au-
tonomous vehicles with embedded systems. In International Conference
on Cyber-Physical Systems, 2018.

Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari,
Yuxiong He, and Sameh Elnikety. Measuring and managing answer
quality for online data-intensive services. In ICAC, 2015.

Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari,
Yuxiong He, and Sameh Elnikety. Obtaining and managing answer
quality for online data-intensive services. In ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, 2017.
Sami Khanal, John Fulton, Nathan Douridas, Andrew Klopfenstein,
and Scott Shearer. Integrating aerial images for in-season nitrogen
management in a corn field. computers and electronics in agriculture,
148, 2018.

Dong Ki Kim and Tsuhan Chen. Deep neural network for real-time
autonomous indoor navigation. arXiv preprint arXiv:1511.04668, 2015.
Matthias Kovatsch, Martin Lanter, and Zach Shelby. Californium: Scal-
able cloud services for the internet of things with coap. In International
Conference on the Internet of Things, 2014.

Meg Kummerow. Fly the farm. http://www.flythefarm.com.au/, 2018.
Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E
Hagque, Lingjia Tang, and Jason Mars. The architectural implications of
autonomous driving: Constraints and acceleration. In ASPLOS, 2018.
Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial
vehicles. IEEE Robotics and Automation magazine, 20(32), 2012.

Aerostack: An architecture and open-source software framework for
aerial robotics. In International Conference on Unmanned Aircraft
Systems, 2016.

[38] Jose Luis Sanchez-Lopez, Martin Molina, Hriday Bavle, Carlos Sampe-

dro, Ramén A Suarez Fernandez, and Pascual Campoy. A multi-layered
component-based approach for the development of aerial robotic sys-
tems: the aerostack framework. Journal of Intelligent & Robotic Systems,
88, 2017.

Popular Science. Dji wants you to develop software for their drones.
https://www.popsci.com/, 2015.

M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang, J. Wang, and
T. Li. In-situ ai: Towards autonomous and incremental deep learning
for iot systems. In High Performance Computer Architecture, 2018.
Kimon P Valavanis and George J Vachtsevanos. Future of unmanned
aviation. In Handbook of unmanned aerial vehicles. Springer, 2015.
Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Ranveer Chandra,
Anish Kapoor, Sudipta Sinha, Madhusudhan Sudarshan, and Sean
Stratman. Farmbeats: An iot platform for data-driven agriculture. In
NSDI, 2017.

J Wang, Z Feng, Z Chen, S George, and et al. Bandwidth-efficient live
video analytics for drones via edge computing. In ACM Symposium on
Edge Computing, 2018.

SYi, Z Hao, Q Zhang, Q Zhang, W Shi, and et al. Lavea: Latency-aware
video analytics on edge computing platform. In ACM Symposium on
Edge Computing, 2017.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J Freedman. Live video analytics at
scale with approximation and delay-tolerance. In NSDI, 2017.

	Abstract
	1 Introduction
	2 Motivation and Background
	3 Performance Modeling
	3.1 Autonomy profiling
	3.2 Aircraft profiling
	3.3 Compute profiling
	3.4 Throughput modeling

	4 Implementing FAAS
	5 Evaluation
	5.1 Model validation
	5.2 Workload study

	6 System Management
	6.1 Managing compute resources
	6.2 Comparing onboard, edge and cloud
	6.3 Adaptive hardware-workload co-design
	6.4 Speedup for autonomous photography
	6.5 End-to-end savings for crop scouting

	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	References

