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ABSTRACT

AI-driven Internet of Things (IoT) use AI Inference to charac-

terize data processed from various sensors. Together, AI and

IoT support smart buildings, cities, cars and drones. How-

ever, AI Inference requires updates when executed in new

contexts. Frequent updates consume more energy and drain

precious IoT batteries. Updates can be batched together to

save energy, but it is challenging to batch updates well with-

out knowing when updates will arrive, what their processing

needs will be and how long they can be delayed. This work

studies update batching and its potential energy savings. We

define an update batching policy as a sequence of discrete

choices about when to apply concurrent updates. This allows

us to use random walks to sample update batching policies.

Random walks simulate nearly 1M batching policies and

models their energy footprint for an AI-driven IoT compris-

ing 50 AI Inference components. The best policy uses much

less energy than 99th and 95th percentiles. First-come-first-

serve and Shortest-job-first policies perform like the median

sampled batching policy, using 7X more energy.
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1 MOTIVATION

Internet of Things (IoT) can sense their surroundings and

push data to the cloud for analysis [16]. Increasingly, IoT

can execute AI inference using convolutional neural net-

works [12], deep random forests [17], etc. AI inference char-

acterizes sensed data, reduces bandwidth to the cloud and

enables low latency reactions [16].

There are many paradigms for IoT to use AI inference. For

example, IoT could use onboard processors to (1) harvest data,
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(2) train AI models and (3) execute AI inference. In this paper,

we study a competing model where IoT download models

trained in the cloud. This paradigm fits nicely with power

constrained processors on modern IoT. Also, this paradigm

allows AI models to train with data from diverse sources,

improving accuracy. Early examples of AI-driven IoT include

(1) the AI Developer Kit [3] that pairs Qualcomm Neural

Acceleration andMicrosoft AI for smart cameras and (2) Fully

Autonomous Precision Agriculture where smart drones use

AI inference to sample large fields for crop scouting [5, 6].

Problem Statement: Deep learning models are produced

from training data and model parameters. When either of

these inputs change, IoT must update their AI software or

risk inaccurate results. For example, in a common practice

called progressive sampling, cloud data centers initially push

truncated model parameters to IoT and progressively push

full parameters over time. This approach trades classification

accuracy for latency [13, 16].

If IoT employ few and small AI inference models, updates

caused by progressive sampling and model retraining have

negligible resource demands. However, as AI-driven IoT pro-

liferate, the aggregate energy footprint of updates can drain

IoT batteries and reduce their lifetime. When updates are

available, IoT schedulers have two choices: delay or install now.

It helps to delay updates because, if they are installed in

batches, IoT processors enjoy long idle periods, transition

to deep sleep modes and save energy. However, delaying

updates degrades accuracy. Prior work has shown that stal-

eness corresponds to answer quality [7, 9, 10]. Hard limits

on staleness prevent gross degradation on quality. However,

even with staleness bounds, deciding when to install updates

for energy efficiency is challenging since update arrival times

and their processing needs are stochastic.

An IoT scheduler repeatedly chooses to delay or apply

available updates. An update batching policy is the collec-

tion of choices over a trace of update arrivals. Figure 1 uses

fully autonomous aerial systems [6], an emerging class of

AI-driven IoT, to depict batching policies. With fully au-

tonomous aerial systems, unmanned aircraft are piloted

wholly by software. First, AI path planning algorithms spec-

ify a flight action. When the action completes, the aircraft

takes a picture and uses AI inference to characterize its sur-

roundings and choose the next flight action. While the air-

craft flies, processors idle. During this time, AI software

can be updated or processors can enter deep sleep mode.





comparably to traditional scheduling techniques. These re-

sults suggest that AI-driven IoT schedulers demand theoreti-

cal guarantees that they approximate the best policy. Subtle

policy shifts can cost 2X energy usage. In future work, we

are further exploring these early findings across hardware

and AI profiles. If they stand, AI-driven IoT may usher a

new era where scheduling policies are mission critical for

the lifetime of IoT and cyber-physical systems.

3 DISCUSSION

Currently, Artificial Intelligence (AI) in edge computing is

still in rudimentary stage and there’s enormous research

going on in this area [1] [11]. We believe as the use of ac-

celerators in edge computing become common, there would

be more AI Inference components used in IOT devices and

these AI Inference components receive frequent cloud-edge

updates over period of time [2]. There is room for implement-

ing an Online scheduling policy for AI-Driven IoT. Tradi-

tional Online scheduling techniques like FCFS [15], SJF [15]

and LRU [15] aren’t energy efficient. From the schedules

collected through Random walk, there is significant gap be-

tween best and high ranking scheduling policy. Although

these are early results, there is scope to perform in-depth

Design of experiments [8] to understand the impact of differ-

ent factors affecting update scheduling and a need to design

an efficient Online scheduler for AI-Driven IoT.
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