Revisiting Online Scheduling for Al-Driven
Internet of Things

Naveen T.R. Babu and Christopher Stewart, The Ohio State University

ABSTRACT

Al-driven Internet of Things (IoT) use Al Inference to charac-
terize data processed from various sensors. Together, Al and
IoT support smart buildings, cities, cars and drones. How-
ever, Al Inference requires updates when executed in new
contexts. Frequent updates consume more energy and drain
precious IoT batteries. Updates can be batched together to
save energy, but it is challenging to batch updates well with-
out knowing when updates will arrive, what their processing
needs will be and how long they can be delayed. This work
studies update batching and its potential energy savings. We
define an update batching policy as a sequence of discrete
choices about when to apply concurrent updates. This allows
us to use random walks to sample update batching policies.
Random walks simulate nearly 1M batching policies and
models their energy footprint for an Al-driven IoT compris-
ing 50 Al Inference components. The best policy uses much
less energy than 99" and 95!” percentiles. First-come-first-
serve and Shortest-job-first policies perform like the median
sampled batching policy, using 7X more energy.

ACM Reference Format:

Naveen T.R. Babu and Christopher Stewart, The Ohio State Uni-
versity. 2019. Revisiting Online Scheduling for AI-Driven Internet
of Things. In The Fourth ACM/IEEE Symposium on Edge Computing
(SEC 2019), November 7-9, 2019, Arlington, VA, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3318216.3363326

1 MOTIVATION

Internet of Things (IoT) can sense their surroundings and
push data to the cloud for analysis [16]. Increasingly, IoT
can execute Al inference using convolutional neural net-
works [12], deep random forests [17], etc. Al inference char-
acterizes sensed data, reduces bandwidth to the cloud and
enables low latency reactions [16].

There are many paradigms for IoT to use Al inference. For
example, IoT could use onboard processors to (1) harvest data,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SEC 2019, November 7-9, 2019, Arlington, VA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6733-2/19/11...$15.00
https://doi.org/10.1145/3318216.3363326

(2) train Al models and (3) execute Al inference. In this paper,
we study a competing model where IoT download models
trained in the cloud. This paradigm fits nicely with power
constrained processors on modern IoT. Also, this paradigm
allows Al models to train with data from diverse sources,
improving accuracy. Early examples of Al-driven IoT include
(1) the AI Developer Kit [3] that pairs Qualcomm Neural
Acceleration and Microsoft Al for smart cameras and (2) Fully
Autonomous Precision Agriculture where smart drones use
Al inference to sample large fields for crop scouting [5, 6].
Problem Statement: Deep learning models are produced
from training data and model parameters. When either of
these inputs change, IoT must update their Al software or
risk inaccurate results. For example, in a common practice
called progressive sampling, cloud data centers initially push
truncated model parameters to IoT and progressively push
full parameters over time. This approach trades classification
accuracy for latency [13, 16].

If IoT employ few and small Al inference models, updates
caused by progressive sampling and model retraining have
negligible resource demands. However, as Al-driven IoT pro-
liferate, the aggregate energy footprint of updates can drain
IoT batteries and reduce their lifetime. When updates are
available, IoT schedulers have two choices: delay or install now.
It helps to delay updates because, if they are installed in
batches, IoT processors enjoy long idle periods, transition
to deep sleep modes and save energy. However, delaying
updates degrades accuracy. Prior work has shown that stal-
eness corresponds to answer quality [7, 9, 10]. Hard limits
on staleness prevent gross degradation on quality. However,
even with staleness bounds, deciding when to install updates
for energy efficiency is challenging since update arrival times
and their processing needs are stochastic.

An IoT scheduler repeatedly chooses to delay or apply
available updates. An update batching policy is the collec-
tion of choices over a trace of update arrivals. Figure 1 uses
fully autonomous aerial systems [6], an emerging class of
Al-driven IoT, to depict batching policies. With fully au-
tonomous aerial systems, unmanned aircraft are piloted
wholly by software. First, Al path planning algorithms spec-
ify a flight action. When the action completes, the aircraft
takes a picture and uses Al inference to characterize its sur-
roundings and choose the next flight action. While the air-
craft flies, processors idle. During this time, Al software
can be updated or processors can enter deep sleep mode.

[Jactive compute [light compute (updates)

I deep sleep [restore active state
9]
2
o
o
i}
=}
ol
o
O

busy |d|e busy |d|e busy |d|e busy
< hover hover hover hover
9O and and and and
G get ﬂy to get ﬂy to get fly to get
:: image next Iimage next Iimage next image
o

-ﬁ- way —?— way T way T
point point point

execution over time

Figure 1: Sample Workload

If IoT enter deep sleep, there is a penalty to restore active
state. The IoT scheduler seeks to apply Al updates in batches
(at light compute power) to free up long idle periods that
warrant deep sleep. This problem formulation represents a
challenging offline scheduling problem (NP-Hard). In prac-
tice, the IoT scheduler must make choices online, making the
problem even harder. Below, we outline several important
contributions needed for Al-driven IoT.

1. Online scheduling under high CPU utilization: As
tasks, Al updates are background jobs with limited delay
tolerance. The foreground IoT jobs (e.g., image processing
and Al inference) must receive priority. As updates be-
come frequent, resource demand and capacity converge.
An online scheduling approach that provides competitive
guarantees would be a valuable contribution.

2. Staleness, latency and other workload trade-offs:
Quality, latency and throughput have complex trade-
offs [4]. If an IoT scheduler could expose these trade-offs,
end users could make personalized choices about device
lifetime and performance.

3. IoT hardware and Al optimization: We suspect that
energy used on Al updates will vary depending on IoT
hardware (CPU versus GPU) and Al inference models
(CNN versus random forest). For a given workload, stan-
dard scheduling policies may perform better under cer-
tain hardware and Al combinations. We would like to
devise approaches to characterize these interactions.

2 EARLY RESULTS

Our first objective is to characterize the potential impact of
scheduling in terms of energy savings. In this early work,
we have sampled batching policies by modeling the problem
with random walk techniques [14]. Given a trace of update

% FCFS M SJF
7 LRU M Potential Heuristic

=
o
J

8 -

Normalize Energy

50% CPU util

freq updates
(75% util)

Figure 2: Results

arrival and idle time period, a random walk uses stochastic
processes to choose between install now or delay.

Our approach requires a trace of representative updates to
Al models. Even though progressive sampling and periodic
retraining are common practices, we are unaware of extant
traces. We re-purposed energy demands, storage size, trans-
fer time and accuracy data from multiple DNN configura-
tions [13]. We organized DNN models by size and simulated
progressive DNN transfer by streaming smaller first and then
larger configurations from server to edge. For retraining, we
assumed Poisson inter arrivals. This resulting trace produces
a sequence of Al model updates with their corresponding
(absolute) arrival times and processing requirements. For
this paper, we allowed a scheduler to delay updates until a
model was 2 versions out of date. In future work, we plan to
explore staleness tradeoffs.

We conducted roughly 1M random walks and report re-
sults from the policy that provided lowest energy footprint,
i.e, potential heuristic schedule. We compared that result to
traditional online scheduling approaches [15]:

e - First-Come-First-Serve (FCFS),
e - Shortest-Job-First (SJF) and
e - Least-Recently-Updated (LRU)

Figure 2 shows simulation results with IoT composed from
50 Al inference components. Traditional approaches con-
sume 6-8X more energy compared to the best random walk.
This suggests there is substantial room for efficient sched-
ulers.

We also computed 99th, 95th and 50th percentiles from
our random walk simulations. We found that significant gap
exists between the best policy and high ranking policies. For
example, we found that 99th percentile can use 1.67X more
energy than the best policy. The median policy performed

comparably to traditional scheduling techniques. These re-
sults suggest that Al-driven IoT schedulers demand theoreti-
cal guarantees that they approximate the best policy. Subtle
policy shifts can cost 2X energy usage. In future work, we
are further exploring these early findings across hardware
and AI profiles. If they stand, Al-driven IoT may usher a
new era where scheduling policies are mission critical for
the lifetime of IoT and cyber-physical systems.

3 DISCUSSION

Currently, Artificial Intelligence (Al) in edge computing is
still in rudimentary stage and there’s enormous research
going on in this area [1] [11]. We believe as the use of ac-
celerators in edge computing become common, there would
be more Al Inference components used in IOT devices and
these Al Inference components receive frequent cloud-edge
updates over period of time [2]. There is room for implement-
ing an Online scheduling policy for Al-Driven IoT. Tradi-
tional Online scheduling techniques like FCFS [15], SJF [15]
and LRU [15] aren’t energy efficient. From the schedules
collected through Random walk, there is significant gap be-
tween best and high ranking scheduling policy. Although
these are early results, there is scope to perform in-depth
Design of experiments [8] to understand the impact of differ-
ent factors affecting update scheduling and a need to design
an efficient Online scheduler for AI-Driven IoT.
Acknowledgments: This work was funded in part by NSF
Grants 1749501 and 1350941 with support from NSF CENTRA
collaborations (grant 1550126).

REFERENCES

[1] Ai on the edge: Is it ready for prime time?
https://www.forbes.com/sites/forbestechcouncil/2019/03/04/ai-
on-the-edge-is-it-ready-for-prime-time/, 2019.

[2] How ai accelerators are changing the face of edge comput-
ing. https://www.forbes.com/sites/janakirammsv/2019/07/15/how-ai-
accelerators-are-changing-the-face-of-edge-computing/, 2019.

[3] Vision ai development kit. https://developer.qualcomm.com/hardware/vision-

ai-development-kit, 2019.

[4] Naveen T.R. Babu and Christopher Stewart. Energy, latency and stale-
ness tradeoffs in ai-driven iot. In ACM Symposium on Edge Computing,
2019.

[5] Jayson Boubin, Naveen T.R. Babu, John Chumley Christopher Stewart,
and Shiqi Zhang. Managing edge resources for fully autonomous aerial
systems. In ACM Symposium on Edge Computing, 2019.

[6] Jayson Boubin, John Chumley, Christopher Stewart, and Sami Khanal.
Autonomic computing challenges in fully autonomous precision agri-
culture. In International Conference on Autonomic Computing, 2019.

[7] Yuxiong He, Sameh Elnikety, and Hongyang Sun. Tians scheduling:
Using partial processing in best-effort applications. In International
Conference on Distributed Computing Systems, 2011.

[8] RajJain. The art of computer systems performance analysis - techniques
for experimental design, measurement, simulation, and modeling. Wiley
professional computing. Wiley, 1991.

[9] Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari,
Yuxiong He, and Sameh Elnikety. Measuring and managing answer
quality for online data-intensive services. In IEEE International Con-
ference on Autonomic Computing, 2015.

[10] Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari,
Yuxiong He, and Sameh Elnikety. Obtaining and managing answer
quality for online data-intensive services. In ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, 2017.

[11] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, and Fahim Kawsar. An early resource characterization of deep
learning on wearables, smartphones and internet-of-things devices.
In Proceedings of the 2015 International Workshop on Internet of Things
Towards Applications, 2015.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553), 2015.

[13] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and
Junzhao Du. On-demand deep model compression for mobile devices:
A usage-driven model selection framework. In ACM MobiSys, 2018.

[14] Lovasz and Laszlo. Random walks on graphs: A survey, combinatorics,
paul erdos is eighty. Bolyai Soc. Math. Stud., 2:1-46, 01 1993.

[15] Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating
system concepts. Wiley, 2018.

[16] M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang, J. Wang, and
T. Li. In-situ ai: Towards autonomous and incremental deep learning
for iot systems. In IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2018.

[17] Zhi-Hua Zhou and Ji Feng. Deep forest. arXiv preprint arXiv:1702.08835,
2017.

	Abstract
	1 Motivation
	2 Early Results
	3 Discussion
	References

