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Abstract

While Nash equilibrium in extensive-form games is well understood, very little1

is known about the properties of extensive-form correlated equilibrium (EFCE),2

both from a behavioral and from a computational point of view. In this setting, the3

strategic behavior of players is complemented by an external device that privately4

recommends moves to agents as the game progresses; players are free to deviate5

at any time, but will then not receive future recommendations. Our contributions6

are threefold. First, we show that an EFCE can be formulated as the solution to a7

bilinear saddle-point problem. To showcase how this novel formulation can inspire8

new algorithms to compute EFCEs, we propose a simple subgradient descent9

method which exploits this formulation and structural properties of EFCEs. Our10

method has better scalability than the prior approach based on linear programming.11

Second, we propose two benchmark games, which we hope will serve as the basis12

for future evaluation of EFCE solvers. These games were chosen so as to cover13

two natural application domains for EFCE: conflict resolution via a mediator, and14

bargaining and negotiation. Third, we document the qualitative behavior of EFCE15

in our proposed games. We show that the social-welfare-maximizing equilibria16

in these games are highly nontrivial and exhibit surprisingly subtle sequential17

behavior that so far has not received attention in the literature.18

1 Introduction19

Nash equilibrium (NE) [Nash, 1950], the most seminal concept in non-cooperative game theory,20

captures a multi-agent setting where each agent is selfishly motivated to maximize their own payoff.21

The assumption underpinning NE is that the interaction is completely decentralized: the behavior of22

each agent is not regulated by any external orchestrator. Contrasted with the other—often utopian—23

extreme of a fully managed interaction, where an external dictator controls the behavior of each agent24

so that the whole system moves to a desired state, the social welfare that can be achieved by NE is25

generally lower, sometimes dramatically so [Koutsoupias and Papadimitriou, 1999; Roughgarden and26

Tardos, 2002]. Yet, in many realistic interactions, some intermediate form of centralized control can27

be achieved. In particular, in his landmark paper, Aumann [1974] proposed the concept of correlated28

equilibrium (CE), where a mediator (the correlation device) can recommend behavior, but not enforce29

it. In a CE, the correlation device is constructed so that the agents—which are still modeled as fully30

rational and selfish just like in an NE—have no incentive to deviate from the private recommendation.31

Allowing correlation of actions while ensuring selfishness makes CE a good candidate solution32

concept in multi-agent and semi-competitive settings such as traffic control, load balancing [Ashlagi33

et al., 2008], and carbon abatement [Ray and Gupta, 2009], and it can lead to win-win outcomes.34

In this paper, we study the natural extension of correlated equilibrium in extensive-form (i.e., sequen-35

tial) games, known as extensive-form correlated equilibrium (EFCE) [Von Stengel and Forges, 2008].36

Like CE, EFCE assumes that the strategic interaction is complemented by an external mediator;37
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however, in an EFCE the mediator only privately reveals the recommended next move to each acting38

player, instead of revealing the whole plan of action throughout the game (i.e., recommended move39

at all decision points) for each player at the beginning of the game. Furthermore, while each agent is40

free to defect from the recommendation at any time, this comes at the cost of future recommendations.41

While the properties of correlation in normal-form (i.e., non-sequential) games are well-studied, they42

do not automatically transfer to the richer world of sequential interactions. It is known in the study of43

NE that sequential interactions can pose different challenges, especially in settings where the agents44

retain private information. Conceptually, the players can strategically adjust to dynamic observations45

about the environment and their opponents as the game progresses. Despite tremendous interest and46

progress in recent years for computing NE in sequential interactions with private information, with47

significant milestones achieved in the game of Poker [Bowling et al., 2015; Brown and Sandholm,48

2017; Moravčík et al., 2017] and other large, real-world domains, not much has been done to increase49

our understanding of (extensive-form) correlated equilibria in these settings.50

Contributions Our primary objective with this paper is to spark more interest in the community51

towards a deeper understanding of the behavioral and computational aspects of EFCE.52

• In Section 3 we show that an EFCE in a two-player general-sum game is the solution to a bilinear53

saddle-point problem (BSPP). This conceptual reformulation complements the EFCE construction54

by Von Stengel and Forges [2008], and allows for the development of new and efficient algorithms.55

As a proof of concept, by using our reformulation we devise a variant of projected subgradient56

descent which outperforms linear-programming(LP)-based algorithms proposed by Von Stengel57

and Forges [2008] in large game instances.58

• In Section 4 we propose two benchmark games; each game is parametric, so that these games can59

scale in size as desired. The first game is a general-sum variant of the classic war game Battleship.60

The second game is a simplified version of the Sheriff of Nottingham board game. These games61

were chosen so as to cover two natural application domains for EFCE: conflict resolution via a62

mediator, and bargaining and negotiation. We will release the source code for our parametric game63

generators, so that the research community can benefit from our implementation work.64

• By analyzing EFCE in our proposed benchmark games, we show that even if the mediator cannot65

enforce behavior, it can induce significantly higher social welfare than NE and successfully deter66

players from deviating in at least two (often connected) ways: (1) using certain sequences of actions67

as ‘passcodes’ to verify that a player has not deviated: defecting leads to incomplete or wrong68

passcodes which indicate deviation, and (2) inducing opponents to play punitive actions against69

players that have deviated from the recommendation, if such a deviation is detected. Crucially,70

both deterrents are unique to sequential interactions and do not apply to non-sequential games.71

This corroborates the idea that the mediation of sequential interactions is a qualitatively different72

problem than that of non-sequential games and further justifies the study of EFCE as an interesting73

direction for the community. To our knowledge, these are the first experimental results and74

observations on EFCE in the literature.75

2 Preliminaries76

Extensive-Form Games Extensive-form games (EFGs) are sequential games that are played over77

a rooted game tree. Each node in the tree belongs to a player and corresponds to a decision point78

for that player. Outgoing edges from a node v correspond to actions that can be taken by the player79

to which v belongs. Each terminal node in the game tree is associated with a tuple of payoffs that80

the players receive should the game end in that state. To capture imperfect information, the set of81

vertices of each player is partitioned into information sets. The vertices in a same information set82

are indistinguishable to the player that owns those vertices. For example, in a game of Poker, a83

player cannot distinguish between certain states that only differ in opponent’s private hand. As a84

result, the strategy of the player (specifying which action to take) is defined on the information sets85

instead of the vertices. For the purpose of this paper, we only consider perfect-recall EFGs. This86

property means that each player does not forget any of their previous action, nor any private or public87

observation that the player has made. The perfect-recall property can be formalized by requiring that88

for any two vertices in a same information set, the paths from those vertices to the root of the game89

tree contain the exact same sequence of actions for the acting player at the information set.90

A pure normal-form strategy for Player i defines a choice of action for every information set that91

belongs to i. A player can play a mixed strategy, i.e., sample from a distribution over their pure92

normal-form strategies. However, this representation contains redundancies: some information sets93
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for Player i may become unreachable reachable after the player makes certain decisions higher up in94

the tree. Omitting these redundancies leads to the notion of reduced-normal-form strategies, which95

are known to be strategically equivalent to normal-form strategies (e.g., [Shoham and Leyton-Brown,96

2009] for more details). Both the normal-form and the reduced-normal-form representation are97

exponentially large in the size of the game tree.98

Here, we fix some notations. Let Z be the set of terminal states (or equivalently, outcomes) in the99

game and ui(z) be the utility obtained by player i if the game terminates at z ∈ Z. Let Πi be the100

set of pure reduced-normal-form strategies for Player i. We define Πi(I), Πi(I, a) and Πi(z) to be101

the set of reduced-normal-form strategies that (a) can lead to information set I , (b) can lead to I and102

prescribes action a at information set I , and (c) can lead to the terminal state z, respectively. We103

denote by Σi the set of information set-action pairs (I, a) (also referred to as sequences), where I is104

an information set for Player i and a is an action at set I . For a given terminal state z let σi(z) be the105

last (I, a) pair belonging to Player i encountered in the path from the root of the tree to z.106

Extensive-Form Correlated Equilibrium Extensive-form correlated equilibrium (EFCE) is a107

solution concept for extensive-form games introduced by Von Stengel and Forges [2008].1 Like108

in the traditional correlated equilibrium (CE), introduced by Aumann [1974], a correlation device109

selects private signals for the players before the game starts. These signals are sampled from a110

correlated distribution µ—a joint probability distribution over Π1×Π2—and represent recommended111

player strategies. However, while in a CE the recommended moves for the whole game tree are112

privately revealed to the players when the game starts, in an EFCE the recommendations are revealed113

incrementally as the players progress in the game tree. In particular, a recommended move is only114

revealed when the player reaches the decision point in the game for which the recommendation is115

relevant. Moreover, if a player ever deviates from the recommended move, they will stop receiving116

recommendations. To concretely implement an EFCE, one places recommendations into ‘sealed117

envelopes’ which may only be opened at its respective information set. Sealed envelopes may118

implemented using cryptographic techniques (see Dodis et al. [2000] for one such example).119

In an EFCE, the players know less about the set of recommendations that were sampled by the120

correlation device. The benefits are twofold. First, the players can be more easily induced to play121

strategies that hurt them (but benefit the overall social welfare), as long as “on average” the players122

are indifferent as to whether or not to follow the recommendations: the set of EFCEs is a superset123

of that of CEs. Second, since the players observe less, the set of probability distributions for the124

correlation device for which no player has an incentive to deviate can be described succinctly in125

certain classes of games: Von Stengel and Forges [2008, Theorem 1.1] show that in two-player,126

perfect-recall extensive-form games with no chance moves, the set of EFCEs can be described by127

a system of linear equations and inequalities of polynomial size in the game description. On the128

other hand, the same result cannot hold in more general settings: Von Stengel and Forges [2008,129

Section 3.7] also show that in games with more than two players and/or chance moves, deciding130

the existence of an EFCE with social welfare greater than a given value is NP-hard. It is important131

to note that this last result only implies that the characterization of the set of all EFCEs cannot be132

of polynomial size in general (unless P = NP). However, the problem of finding one EFCE can be133

solved in polynomial time: Huang [2011] and Huang and von Stengel [2008] show how to adapt the134

Ellipsoid Against Hope algorithm [Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown,135

2015] to compute an EFCE in polynomial time in games with more than two players and/or with136

chance moves. Unfortunately, that algorithm is only theoretical, and known to not scale beyond137

extremely small instances [Leyton-Brown, 2019].138

3 Extensive-Form Correlated Equilibria as Bilinear Saddle-Point Problems139

Our objective for this section is to cast the problem of finding an EFCE in a two-player game as a140

bilinear saddle-point problem, that is a problem of the form minx∈X maxy∈Y x⊤Ay, where X and Y141

are compact convex sets. In the case of EFCE, X and Y are convex polytopes that belong to a space142

whose dimension is polynomial in the game tree size. This reformulation is meaningful:143

• From a conceptual angle, it brings the problem of computing an EFCE closer to several other144

solution concepts in game theory that are known to be expressible as BSPP. In particular, the BSPP145

1Other CE-related solution concepts in sequential games include the agent-form correlated equilibrium
(AFCE), where agents continue to receive recommendations even upon defection, and normal-form coarse CE
(NFCCE). NFCCE does not allow for defections during the game, in fact, before the game starts, players must
decide to commit to following all recommendations upfront (before receiving them), or elect to receive none.
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formulation shows that an EFCE can be viewed as a NE in a two-player zero-sum game between a146

deviator, who is trying to decide how to best defect from recommendations, and a mediator, who147

is trying to come up with an incentive-compatible set of recommendations.148

• From a geometric point of view, the BSPP formulation better captures the combinatorial structure149

of the problem: X and Y have a well-defined meaning in terms of the input game tree. This has150

algorithmic implications: for example, because of the structure of Y (which will be detailed later),151

the inner maximization problem can be solved via a single bottom-up game-tree traversal.152

• From a computational standpoint, it opens the way to the plethora of optimization algorithms (both153

general-purpose and those specific to game theory) that have been developed to solve BSPPs.154

Furthermore, it is easy to show that by dualizing the inner maximization problem in the BSPP155

formulation, one recovers the linear program introduced by Von Stengel and Forges [2008] (we show156

this in Appendix A). In this sense, our formulation subsumes the existing one.157

Triggers and Deviations One effective way to reason about extensive-form correlated equilibria is158

via the notion of trigger agents, which was introduced (albeit used in a different context) in Gordon159

et al. [2008] and Dudik and Gordon [2009]:160

Definition 1. Let σ̂ :=(Î , â) ∈ Σi be a sequence for Player i, and let µ̂ be a distribution over Πi(Î).161

A (σ̂, µ̂)-trigger agent for Player i is a player that follows all recommendations given by the mediator162

unless they get recommended â at Î; in that case, the player ‘gets triggered’, stops following the163

recommendations and instead plays based on a pure strategy sampled from µ̂ until the game ends.164

A correlated distribution µ is an EFCE if and only if any trigger agent for Player i can get utility at165

most equal to the utility that Player i earns by following the recommendations of the mediator at166

all decision points. In order to express the utility of the trigger agent, it is necessary to compute the167

probability of the game ending in each of the terminal states. As we show in Appendix B, this can be168

done concisely by partitioning the set of terminal nodes in the game tree into three different sets. In169

particular, let Z
Î,â

be the set of terminal nodes whose path from the root of the tree contains taking170

action â at Î and let Z
Î

be the set of terminal nodes whose path from the root passes through Î and171

are not in Z
Î,â

. We have172

Lemma 1. Consider a (σ̂, µ̂)-trigger agent for Player 1, where σ̂ = (Î , â). The value of the173

trigger agent, defined as the expected difference between the utility of the trigger agent and the174

utility of an agent that always follows recommendations sampled from correlated distribution µ,175

is computed as v1,σ̂(µ, µ̂) :=
∑

z∈Z
Î
u1(z)ξ1(σ̂; z)y1,σ̂(z) −

∑
z∈Z

Î,â
u1(z)ξ1(σ1(z); z), where176

ξ1(σ̂; z) :=
∑

π1∈Π1(σ̂)

∑
π2∈Π2(z)

µ(π1, π2) and y1,σ̂(z) :=
∑

π̂1∈Π1(z)
µ̂(π̂1).177

(A symmetric result holds for Player 2, with symbols ξ2(σ̂; z) and y2,σ̂(z).) It now seems natural to178

perform a change of variables, and pick distributions for the random variables y1,σ̂(·), y2,σ̂(·), ξ1(·; ·)179

and ξ2(·; ·) instead of µ and µ̂. Since there are only a polynomial number (in the game tree size) of180

combinations of arguments for these new random variables, this approach allows one to remove the181

redundancy of realization-equivalent normal-form plans and focus on a significantly smaller search182

space. In fact, the definition of ξ = (ξ1, ξ2) also appears in [Von Stengel and Forges, 2008], referred183

to as (sequence-form) correlation plan. In the case of the y1,σ̂ and y2,σ̂ random variables, it is clear184

that the change of variables is possible via the sequence form [von Stengel, 2002]; we let Yi,σ̂ be the185

sequence-form polytope of feasible values for the vector yi,σ̂ . Hence, the only hurdle is characterizing186

the space spanned by ξ1 and ξ2 as µ varies across the probability simplex. In two-player perfect-recall187

games with no chance moves, this is exactly one of the merits of the landmark work by Von Stengel188

and Forges [2008]. In particular, the authors prove that in those games the space of feasible ξ can be189

captured by a polynomial number of linear constraints. In more general cases the same does not hold190

(see second half of Section 2), but we prove the following (Appendix C):191

Lemma 2. In a two-player game, as µ varies over the probability simplex, the joint vector of ξ1(·; ·),192

ξ2(·; ·) variables spans a convex polytope X in R
n, where n is at most quadratic in the game size.193

Saddle-Point Reformulation According to Lemma 1, for each Player i and (σ̂, µ̂)-trigger agent194

for them, the value of the trigger agent is a biaffine expression in the vectors yi,σ̂ and ξi, and can195

be written as vi,σ̂(ξi, yi,σ̂) = ξ⊤i Ai,σ̂yi,σ̂ − b⊤i,σ̂ξi for a suitable matrix Ai,σ̂ and vector bi,σ̂, where196

the two terms in the difference correspond to the expected utility for deviating at σ̂ according to the197

(sequence-form) strategy yi,σ̂ and the expected utility for not deviating at σ̂. Given the correlation198

plan ξ = (ξ1, ξ2) ∈ X , the maximum value of any deviation for any player can therefore be expressed199
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as v∗(ξ) := max{i,σ̂,yi,σ̂} vi,σ̂(ξi, yi,σ̂) = maxi∈{1,2} maxσ̂∈Σi
maxyσ̂∈Yσ̂

{ξ⊤i Ai,σ̂yi,σ̂ − b⊤i,σ̂ξi}.200

We can convert the maximization above into a continuous linear optimization problem by introducing201

the multipliers λi,σ̂ ∈ [0, 1] (one per each Player i ∈ {1, 2} and trigger σ̂ ∈ Σi), and write202

v∗(ξ) = max{λi,σ̂,zi,σ̂}

∑
i

∑
σ̂ ξ

⊤
i Ai,σ̂zi,σ̂ − λi,σ̂b

⊤
i,σ̂ξi, where the maximization is subject to the203

linear constraints [C1]
∑

i∈{1,2}

∑
σ̂∈Σi

λi,σ̂ = 1 and [C2] zi,σ̂ ∈ λi,σ̂Yi,σ̂ for all i ∈ {1, 2}, σ̂ ∈ Σi.204

These linear constraints define a polytope Y .205

A correlation plan ξ is an EFCE if an only if vi,σ̂(ξ, yi,σ̂) ≤ 0 for every trigger agent, i.e., v∗(ξ) ≤ 0.206

Therefore, to find an EFCE, we can solve the optimization problem minξ∈X v∗(ξ), which is a bilinear207

saddle point problem over the convex domains X and Y , both of which are convex polytopes that208

belong to R
n, where n is at most quadratic in the input game size (Lemma 2). If an EFCE exists, the209

optimal value should be non-positive and the optimal solution is an EFCE (as it satisfies v∗(ξ) ≤ 0).210

In fact, since EFCE’s always exist (as EFCEs are supersets of CEs Von Stengel and Forges [2008]),211

and one can select triggers to be terminal sequences for Player 1, the optimal value of the BSPP212

is always 0. The BSPP can be interpreted as the NE of a zero-sum game between the mediator,213

who decides on a suitable correlation plan ξ and a deviator who selects the yi,σ̂’s to maximize each214

vi,σ̂(ξi, yi,σ̂). The value of this game is always 0. Finally, we can enforce a minimum lower bound τ215

on the sum of players’ utility by introducing an additional variable λsw ∈ [0, 1] and maximizing the216

new objective v∗(ξ) + λswτ − λsw
∑

z∈Z u1(z)ξ1(z; z) − λsw
∑

z∈Z u2(z)ξ2(z; z) subject to [C2]217

and the modified constraint [C ′
1]
∑

i∈{1,2}

∑
σ̂∈Σi

λi,σ̂ = 1− λsw.218

Computing an EFCE using Subgradient Descent Von Stengel and Forges [2008] show that a219

(SW-maximizing) EFCE of a two-player game without chance may be expressed as the solution of220

an LP and solved using generic methods such as the simplex algorithm or interior-point methods.221

However, this does not scale to large games as these methods require to store and invert large matrices.222

Here, we showcase the benefits of exploiting the combinatorial structure of the BSPP formulation by223

proposing a simple algorithm based on subgradient descent; in Section 5 we show that this method224

scales better than commercial state-of-the-art LP solver in large games.225

For brevity, we only provide a sketch of our algorithm, which computes a (not necessarily SW-226

maximizing) EFCE. Conceptually, since the function v∗(ξ) is convex, we may perform subgradient227

descent on ξ. This is convenient, because the subgradients ∂/∂ξ v∗(ξ) may be readily expressed as228

Ai∗,σ̂∗y∗i∗,σ̂∗ −bi∗,σ̂∗ , where (i∗, σ̂∗, y∗i∗,σ̂∗) is a triplet which maximizes the objective v∗(ξ); this can229

be computed by traversing the tree. Unfortunately, maintaining feasibility (that is, ξ ∈ X ) is trickier,230

because projecting onto X is challenging, even in games without chance, where ξ can be expressed231

by a polynomial number of constraints [Von Stengel and Forges, 2008]. To overcome this, we show232

that in games with no chance X can be expressed as the intersection of convex polytopes X1,X2 and233

non-negative orthant. Projection on X1 and X2 individually can be efficiently done, in parallel, by234

precomputing a sparse Cholesky factor of the constraints that define X1 and X2: we prove that a235

sparse (polynomial) factorization always exists, and implemented a custom parallel algorithm that236

computes the factorization by exploiting the structure of the game tree. This allows for the use of a237

recent algorithm by Wang and Bertsekas [2013], where gradient steps are interlaced with projections238

onto X1, X2, and the non-negative orthant in a cyclical manner. See Appendix D.239

4 Introducing the First Benchmarks for EFCE240

In this section we introduce the first two benchmark games for EFCE. These games are naturally241

parametric so that they can scale in size as desired and hence used to evaluate different EFCE solvers.242

In addition, we show that the EFCE in these games are interesting behaviorally: the correlation plan243

in social-welfare-maximizing EFCE is highly nontrivial and even seemingly counter-intuitive. We244

believe some of these induced behaviors may prove practical in real-world scenarios and hope our245

analysis can spark an interest in EFCEs and other equilibria in sequential settings.246

4.1 Battleship: Conflict Resolution via a Mediator247

In this section we introduce our first proposed benchmark game to illustrate the power of correlation248

in extensive-form games. Our game is a general-sum variant of the classic game Battleship. Each249

player takes turns to secretly place a set of ships S (of varying sizes and value) on separate grids of250

size H ×W . After placement, players take turns firing at their opponent—ships which have been hit251

at all the tiles they lie on are considered destroyed. The game continues until either one player has252

lost all of their ships, or each player has completed r shots. At the end of the game, the payoff of253
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each player is computed as the sum of the values of the opponent’s ships that were destroyed, minus254

γ times the value of ships which they lost, where γ ≥ 1 is called the loss multiplier of the game. The255

social welfare (SW) of the game is the sum of utilities to all players.256

In order to illustrate a few interesting feature of social-welfare-maximizing EFCE in this game, we257

will focus on the instance of the game with a board of size 3× 1, in which each player commands258

just 1 ship of value and length 1, there are 2 rounds of shooting per player, and the loss multiplier is259

γ = 2. In this game, the social-welfare-maximizing Nash equilibrium is such that each player places260

their ship and shoots uniformly at random. This way, the probability that Player 1 and 2 will end the261

game by destroying the opponent’s ship is 5/9 and 1/3 respectively (Player 1 has an advantage since262

they act first). The probability that both players will end the game with their ships unharmed is a263

meagre 1/9. Correspondingly, the maximum SW reached by any NE of the game is −8/9.264

In the EFCE model, it is possible to induce the players to end the game with a peaceful outcome—that265

is, no damage to either ship—with probability 5/18, 2.5 times of the probability in NE, resulting in a266

much-higher SW of −13/18. Before we continue with more details as to how the mediator (correlation267

device) is able to achieve this result in the case where γ = 2, we remark that the benefit of EFCE268

is even higher when the loss multiplier γ increases: Figure 1 (left) shows, as a function of γ, the269

probability with which Player 1 and 2 terminate the game by sinking their opponent’s ship, if they270

play according to the SW-maximizing EFCE. For all values of γ, the SW-maximizing NE remains the271

same while with a mediator, the probability of reaching a peaceful outcome increases as γ increases,272

and asymptotically gets closer to 1/3 and the gap between the expected utility of the two players273

vanishes. This is remarkable, considering Player 1’s advantage for acting first.274
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Figure 1: (Left) Probabilities of players sinking their opponent when the players play according to the SW-
maximizing EFCE. For γ ≥ 2, the probability of the game ending with no sunken ship and the probability of
Player 2 sinking Player 1 coincide. (Right) Example of a playthrough of Battleship assuming both players are
recommended to place their ship in the same position a. Edge labels represents the probability of an action being
recommended. Squares and hexagons denote actions taken by Players 1 and 2 respectively. Blue and red nodes
represent cases where Players 1 and 2 sink their opponent, respectively. The Shoot action is abbreviated ‘Sh.’.

We now resume our analysis of the SW-maximizing EFCE in the instance where γ = 2. In a nutshell,275

the correlation plan is constructed in a way that players are recommended to deliberately miss, and276

deviations from this are punished by the mediator, who reveals to the opponent the ship location277

that was recommended to the deviating player. First, the mediator recommends the players a ship278

placement that is sampled uniformly at random and independently for each players. This results in 9279

possible scenarios (one per possible ship placement) in the game, each occurring with probability280

1/9. Due to the symmetric nature of ship placements, only two scenarios are relevant: whether the281

two players are recommended to place their ship in the same spot, or in different spots. Figure 1282

(right) shows the probability of each recommendation from the mediator in the former case, assuming283

that the players do not deviate. The latter case is symmetric (see Appendix E for details). Now, we284

explain the first of the two methods in which the mediator compels non-violent behavior. We focus285

on the first shot made by Player 1 (i.e., the root in Figure 3). The mediator suggests that Player 1286

shoot at the Player 2’s ship with a low 2/27 probability, and deliberately miss with high probability.287

One may wonder how it is possible for this behavior to be incentive-compatible (that is, what are288

the incentives that compel Player 1 into not defecting), since the player may choose to randomly289

fire in any of the 2 locations that were not recommended, and get almost 1/2 chance of winning the290

game immediately. The key is that if Player 1 does so and does not hit the opponent’s ship, then291

the mediator can punish him by recommending that Player 2 shoot in the position where Player 1’s292
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was recommended to place their ship. Since players value their ships more than destroying their293

opponents, the player is incentivized to avoid such a situation by accepting the recommendation294

to (most probably) miss. We see the first example of deterrent used by the EFCE mediator: the295

mediator is inducing the opponent to play punitive actions against players that have deviated from the296

recommendation, if ever that deviation can be detected from the player.A similar situation arises in297

the first move of Player 2, where Player 2 is recommended to deliberately miss, hitting each of the 2298

empty spots with probability 1/2. A more detailed analysis is available in Appendix E.299

4.2 Sheriff: Bargaining and Negotiation300

Our second proposed benchmark is a simplified version of the Sheriff of Nottingham board game.301

The game models the interaction of two players: the Smuggler—who is trying to smuggle illegal302

items in their cargo—and the Sheriff —who is trying to stop the Smuggler. At the beginning of the303

game, the Smuggler secretly loads his cargo with n ∈ {0, . . . , nmax} illegal items. At the end of the304

game, the Sheriff decides whether to inspect the cargo. If the Sheriff chooses to inspect the cargo305

and finds illegal goods, the Smuggler must pay a fine worth p · n to the Sheriff. On the other hand,306

the Sheriff has to compensate the Smuggler with a utility s if no illegal goods are found. Finally,307

if the Sheriff decides not to inspect the cargo, the Smuggler’s utility is v · n whereas the Sheriff’s308

utility is 0. The game is made interesting by two additional elements (which are also present in309

the board game): bribery and bargaining. After the Smuggler has loaded the cargo and before the310

Sheriff chooses whether or not to inspect, they engage in r rounds of bargaining. At each round311

i = 1, . . . , r, the Smuggler tries to tempt the Sheriff into not inspecting the cargo by proposing a312

bribe bi ∈ {0, . . . bmax}, and the Sheriff responds whether or not they would accept the proposed313

bribe. Only the proposal and response from round r will be executed and have an impact on the final314

payoffs—that is, all but the r-th round of bargaining are non-consequential and their purpose is for315

the two players to settle on a suitable bribe amount. If the Sheriff accepts bribe br, then the Smuggler316

gets p · n− br, while the Sheriff gets br. See Appendix F for a formal description of the game.317

We now point out some interesting behavior of EFCE in this game. We refer to the game instance318

where v = 5, p = 1, s = 1, nmax = 10, bmax = 2, r = 2 as the baseline instance.319

Effect of v, p and s. First, we show what happens in the baseline instance when the item value v,320

item penalty p, and Sheriff compensation (penalty) s are varied in isolation over a continuous range321

of values. The results are shown in Figure 2. In terms of general trends, the effect of the parameter322

to the Smuggler is fairly consistent with intuition: the Smuggler benefits from a higher item value323

as well as from higher sheriff penalties, and suffers when the penalty for smuggling is increased.324

However, the finer details are much more nuanced. For one, the effect of changing the parameters325

not only is non-monotonic, but also discontinuous. This behavior has never been documented and326

we find it rather counterintuitive. More counterintuitive observations can be found in Appendix F.327

Effect of nmax, bmax, and r. Here, we try to empirically understand the impact of n and b on the SW
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Figure 2: Utility of players with varying v, p and s for the SW-maximizing EFCE. We verified that these plots
are not the result of equilibrium selection issues.

328

maximizing equilibrium. As before we set v = 5, p = 1, s = 1 and vary n and r simultaneously329

while keeping bmax constant. The results are shown in Table 1.330

The most striking observation is that increasing the capacity of the cargo nmax may decrease social331

welfare. For example, consider the case when bmax = 2, nmax = 2, r = 1 (shown in blue in Table 1,332

right) where the payoffs are (8.0, 2.0). This achieves the maximum attainable social welfare by333

smuggling nmax = 2 items and having the Sheriff accept a bribe of 2. When nmax is increased to334
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5 (red entry in the table), the payoffs to both players drop significantly, and even more so when335

nmax increases further. While counter-intuitive, this behavior is consistent in that the Smuggler may336

not benefit from loading 3 items every time he was recommended to load 2; the Sheriff reacts by337

inspecting more, leading to lower payoffs for both players. That behavior is avoided by increasing338

the number of rounds r: by increasing to r = 2 (entry shown in purple), the behavior disappears339

and we revert to achieving a social welfare of 10 just like in the instance with nmax = 2, r = 1.340

With sufficient bargaining steps, the Smuggler, with the aid of the mediator, is able to convince341

the Sheriff that they have complied with the recommendation by the mediator. This is because the342

mediator spends the first r − 1 bribes to give a ‘passcode’ to the Smuggler so that the Sheriff can343

verify compliance—if an ‘unexpected’ bribe is suggested, then the Smuggler must have deviated, and344

the Sheriff will inspect the cargo as punishment. With more rounds, it is less likely that the Smuggler345

will guess the correct passcode by chance. See also Appendix F.346

5 Experimental Evaluation347

nmax r = 1 r = 2 r = 3

1 (3.00, 2.00) (3.00, 2.00) (3.00, 2.00)
2 (8.00, 2.00) (8.00, 2.00) (8.00, 2.00)
5 (2.28, 1.26) (8.00, 2.00) (8.00, 2.00)
10 (1.76, 0.93) (7.26, 1.82) (8.00, 2.00)

Table 1: Payoffs for (Smuggler, Sheriff) in the
SW-maximizing EFCE.

We show that even our proof-of-concept algorithm based348

on the BSSP formulation and subgradient descent, intro-349

duced in Section 3, is able to beat LP-based approaches350

using the commercial solver Gurobi [Gurobi Optimiza-351

tion, 2018] in large games. This confirms known re-352

sults about the scalability of methods for computing NE,353

where in the recent years first-order methods have af-354

firmed themselves as the only algorithms that are able to355

handle large games.356

We experimented on Battleship over a range of parameters while fixing γ = 2. All experiments were357

run on a cluster with 64 cores and 500GB of memory. For our method, we tuned step sizes based on358

multiples of 10. In Table 2, we report execution times when all constraints (feasibility and deviation)359

are violated by no greater than 10−1, 10−2 and 10−3. Our method outperforms the LP-based approach360

for larger games. However, while we outperform the LP-based approach for accuracies up to 10−3,361

Gurobi spends most of its time reordering variables and preprocessing, their solution improves more362

rapidly for higher levels of precision; this is expected of a gradient-based method like ours. On very363

large games with more than 100 million variables, both our method and Gurobi fail—in Gurobi’s364

case, it was due to a lack of memory while in our case, each iteration required nearly an hour which365

was prohibitive. The main bottleneck in our method was the projection onto X1 and X2. We also366

experimented on the Sheriff game and obtained similar findings (Appendix I).367

(H,W ) r
Ship #Actions #Relevant Time (LP) Time (ours)

length Pl 1 Pl 2 seq. pairs 10−1 10−2 10−3 10−1 10−2 10−3

(2, 2) 3 1 741 917 35241 2s 2s 2s 1s 2s 3s
(3, 2) 3 1 15k 47k 3.89M 3m 6s 3m 17s 3m 24s 8s 34s 52s
(3, 2) 4 1 145k 306k 26.4M 42m 39s 42m 44s 43m 2m 48s 14m 1s 23m 24s
(3, 2) 4 2 970k 2.27M 111M —- out of memory† —- —- did not achieve ‡ —-

Table 2: #Seq. pairs is the dimension of ξ under the compact representation of Von Stengel and Forges [2008].
For LPs, we report the fastest of Barrier, Primal and Dual Simplex, and 3 different formulations (Appendix H). †

Gurobi went out of memory and was killed by the system after ∼ 3000 seconds during the variable ordering
phase. ‡ Our method requires 1 hour per iteration and did not achieve the required accuracy after 6 hours.

6 Conclusions368

In this paper, we have proposed two parameterized benchmark games in which EFCE exhibits inter-369

esting behaviors. We have analyzed those behaviors both qualitatively and quantitatively, and isolated370

two ways through which a mediator is able to compel the agents to follow the recommendations. We371

also provide an alternative saddle-point formulation of EFCE and demonstrate its merit with a simple372

subgradient method which outperforms standard LP based methods. We hope that our analysis will373

bring attention to some of the computational and practical uses of EFCE, and that our benchmark374

games will be useful to evaluate future algorithms for computing EFCE in large games.375
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