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Abstract

While Nash equilibrium in extensive-form games is well understood, very little
is known about the properties of extensive-form correlated equilibrium (EFCE),
both from a behavioral and from a computational point of view. In this setting, the
strategic behavior of players is complemented by an external device that privately
recommends moves to agents as the game progresses; players are free to deviate
at any time, but will then not receive future recommendations. Our contributions
are threefold. First, we show that an EFCE can be formulated as the solution to a
bilinear saddle-point problem. To showcase how this novel formulation can inspire
new algorithms to compute EFCEs, we propose a simple subgradient descent
method which exploits this formulation and structural properties of EFCEs. Our
method has better scalability than the prior approach based on linear programming.
Second, we propose two benchmark games, which we hope will serve as the basis
for future evaluation of EFCE solvers. These games were chosen so as to cover
two natural application domains for EFCE: conflict resolution via a mediator, and
bargaining and negotiation. Third, we document the qualitative behavior of EFCE
in our proposed games. We show that the social-welfare-maximizing equilibria
in these games are highly nontrivial and exhibit surprisingly subtle sequential
behavior that so far has not received attention in the literature.

1 Introduction

Nash equilibrium (NE) [Nash, 1950], the most seminal concept in non-cooperative game theory,
captures a multi-agent setting where each agent is selfishly motivated to maximize their own payoff.
The assumption underpinning NE is that the interaction is completely decentralized: the behavior of
each agent is not regulated by any external orchestrator. Contrasted with the other—often utopian—
extreme of a fully managed interaction, where an external dictator controls the behavior of each agent
so that the whole system moves to a desired state, the social welfare that can be achieved by NE is
generally lower, sometimes dramatically so [Koutsoupias and Papadimitriou, 1999; Roughgarden and
Tardos, 2002]. Yet, in many realistic interactions, some intermediate form of centralized control can
be achieved. In particular, in his landmark paper, Aumann [1974] proposed the concept of correlated
equilibrium (CE), where a mediator (the correlation device) can recommend behavior, but not enforce
it. In a CE, the correlation device is constructed so that the agents—which are still modeled as fully
rational and selfish just like in an NE—have no incentive to deviate from the private recommendation.
Allowing correlation of actions while ensuring selfishness makes CE a good candidate solution
concept in multi-agent and semi-competitive settings such as traffic control, load balancing [Ashlagi
et al., 2008], and carbon abatement [Ray and Gupta, 2009], and it can lead to win-win outcomes.

In this paper, we study the natural extension of correlated equilibrium in extensive-form (i.e., sequen-
tial) games, known as extensive-form correlated equilibrium (EFCE) [Von Stengel and Forges, 2008].
Like CE, EFCE assumes that the strategic interaction is complemented by an external mediator;
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however, in an EFCE the mediator only privately reveals the recommended next move to each acting
player, instead of revealing the whole plan of action throughout the game (i.e., recommended move
at all decision points) for each player at the beginning of the game. Furthermore, while each agent is
free to defect from the recommendation at any time, this comes at the cost of future recommendations.

While the properties of correlation in normal-form (i.e., non-sequential) games are well-studied, they
do not automatically transfer to the richer world of sequential interactions. It is known in the study of
NE that sequential interactions can pose different challenges, especially in settings where the agents
retain private information. Conceptually, the players can strategically adjust to dynamic observations
about the environment and their opponents as the game progresses. Despite tremendous interest and
progress in recent years for computing NE in sequential interactions with private information, with
significant milestones achieved in the game of Poker [Bowling e? al., 2015; Brown and Sandholm,
2017; Moravcik et al., 2017] and other large, real-world domains, not much has been done to increase
our understanding of (extensive-form) correlated equilibria in these settings.

Contributions Our primary objective with this paper is to spark more interest in the community
towards a deeper understanding of the behavioral and computational aspects of EFCE.

e In Section 3 we show that an EFCE in a two-player general-sum game is the solution to a bilinear
saddle-point problem (BSPP). This conceptual reformulation complements the EFCE construction
by Von Stengel and Forges [2008], and allows for the development of new and efficient algorithms.
As a proof of concept, by using our reformulation we devise a variant of projected subgradient
descent which outperforms linear-programming(LP)-based algorithms proposed by Von Stengel
and Forges [2008] in large game instances.

e In Section 4 we propose two benchmark games; each game is parametric, so that these games can
scale in size as desired. The first game is a general-sum variant of the classic war game Battleship.
The second game is a simplified version of the Sheriff of Nottingham board game. These games
were chosen so as to cover two natural application domains for EFCE: conflict resolution via a
mediator, and bargaining and negotiation. We will release the source code for our parametric game
generators, so that the research community can benefit from our implementation work.

e By analyzing EFCE in our proposed benchmark games, we show that even if the mediator cannot
enforce behavior, it can induce significantly higher social welfare than NE and successfully deter
players from deviating in at least two (often connected) ways: (1) using certain sequences of actions
as ‘passcodes’ to verify that a player has not deviated: defecting leads to incomplete or wrong
passcodes which indicate deviation, and (2) inducing opponents to play punitive actions against
players that have deviated from the recommendation, if such a deviation is detected. Crucially,
both deterrents are unique to sequential interactions and do not apply to non-sequential games.
This corroborates the idea that the mediation of sequential interactions is a qualitatively different
problem than that of non-sequential games and further justifies the study of EFCE as an interesting
direction for the community. To our knowledge, these are the first experimental results and
observations on EFCE in the literature.

2 Preliminaries

Extensive-Form Games Extensive-form games (EFGs) are sequential games that are played over
a rooted game tree. Each node in the tree belongs to a player and corresponds to a decision point
for that player. Outgoing edges from a node v correspond to actions that can be taken by the player
to which v belongs. Each terminal node in the game tree is associated with a tuple of payoffs that
the players receive should the game end in that state. To capture imperfect information, the set of
vertices of each player is partitioned into information sets. The vertices in a same information set
are indistinguishable to the player that owns those vertices. For example, in a game of Poker, a
player cannot distinguish between certain states that only differ in opponent’s private hand. As a
result, the strategy of the player (specifying which action to take) is defined on the information sets
instead of the vertices. For the purpose of this paper, we only consider perfect-recall EFGs. This
property means that each player does not forget any of their previous action, nor any private or public
observation that the player has made. The perfect-recall property can be formalized by requiring that
for any two vertices in a same information set, the paths from those vertices to the root of the game
tree contain the exact same sequence of actions for the acting player at the information set.

A pure normal-form strategy for Player ¢ defines a choice of action for every information set that
belongs to ¢. A player can play a mixed strategy, i.e., sample from a distribution over their pure
normal-form strategies. However, this representation contains redundancies: some information sets
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for Player ¢« may become unreachable reachable after the player makes certain decisions higher up in
the tree. Omitting these redundancies leads to the notion of reduced-normal-form strategies, which
are known to be strategically equivalent to normal-form strategies (e.g., [Shoham and Leyton-Brown,
2009] for more details). Both the normal-form and the reduced-normal-form representation are
exponentially large in the size of the game tree.

Here, we fix some notations. Let Z be the set of terminal states (or equivalently, outcomes) in the
game and u;(z) be the utility obtained by player ¢ if the game terminates at z € Z. Let II; be the
set of pure reduced-normal-form strategies for Player . We define II,(T), I1;(I, a) and IT;(2) to be
the set of reduced-normal-form strategies that (a) can lead to information set I, (b) can lead to I and
prescribes action a at information set I, and (c) can lead to the terminal state z, respectively. We
denote by X; the set of information set-action pairs (I, a) (also referred to as sequences), where I is
an information set for Player ¢ and « is an action at set . For a given terminal state z let o;(z) be the
last (I, a) pair belonging to Player ¢ encountered in the path from the root of the tree to z.

Extensive-Form Correlated Equilibrium Extensive-form correlated equilibrium (EFCE) is a
solution concept for extensive-form games introduced by Von Stengel and Forges [2008]." Like
in the traditional correlated equilibrium (CE), introduced by Aumann [1974], a correlation device
selects private signals for the players before the game starts. These signals are sampled from a
correlated distribution y—a joint probability distribution over 1I; x IIs—and represent recommended
player strategies. However, while in a CE the recommended moves for the whole game tree are
privately revealed to the players when the game starts, in an EFCE the recommendations are revealed
incrementally as the players progress in the game tree. In particular, a recommended move is only
revealed when the player reaches the decision point in the game for which the recommendation is
relevant. Moreover, if a player ever deviates from the recommended move, they will stop receiving
recommendations. To concretely implement an EFCE, one places recommendations into ‘sealed
envelopes’ which may only be opened at its respective information set. Sealed envelopes may
implemented using cryptographic techniques (see Dodis et al. [2000] for one such example).

In an EFCE, the players know less about the set of recommendations that were sampled by the
correlation device. The benefits are twofold. First, the players can be more easily induced to play
strategies that hurt them (but benefit the overall social welfare), as long as “on average” the players
are indifferent as to whether or not to follow the recommendations: the set of EFCEs is a superset
of that of CEs. Second, since the players observe less, the set of probability distributions for the
correlation device for which no player has an incentive to deviate can be described succinctly in
certain classes of games: Von Stengel and Forges [2008, Theorem 1.1] show that in two-player,
perfect-recall extensive-form games with no chance moves, the set of EFCEs can be described by
a system of linear equations and inequalities of polynomial size in the game description. On the
other hand, the same result cannot hold in more general settings: Von Stengel and Forges [2008,
Section 3.7] also show that in games with more than two players and/or chance moves, deciding
the existence of an EFCE with social welfare greater than a given value is NP-hard. It is important
to note that this last result only implies that the characterization of the set of all EFCEs cannot be
of polynomial size in general (unless P = NP). However, the problem of finding one EFCE can be
solved in polynomial time: Huang [2011] and Huang and von Stengel [2008] show how to adapt the
Ellipsoid Against Hope algorithm [Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown,
2015] to compute an EFCE in polynomial time in games with more than two players and/or with
chance moves. Unfortunately, that algorithm is only theoretical, and known to not scale beyond
extremely small instances [Leyton-Brown, 2019].

3 Extensive-Form Correlated Equilibria as Bilinear Saddle-Point Problems

Our objective for this section is to cast the problem of finding an EFCE in a two-player game as a

bilinear saddle-point problem, that is a problem of the form min, ¢y max,cy x'Ay, where X and )

are compact convex sets. In the case of EFCE, X and ) are convex polytopes that belong to a space

whose dimension is polynomial in the game tree size. This reformulation is meaningful:

e From a conceptual angle, it brings the problem of computing an EFCE closer to several other
solution concepts in game theory that are known to be expressible as BSPP. In particular, the BSPP

!'Other CE-related solution concepts in sequential games include the agent-form correlated equilibrium
(AFCE), where agents continue to receive recommendations even upon defection, and normal-form coarse CE
(NFCCE). NFCCE does not allow for defections during the game, in fact, before the game starts, players must
decide to commit to following all recommendations upfront (before receiving them), or elect to receive none.
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formulation shows that an EFCE can be viewed as a NE in a two-player zero-sum game between a
deviator, who is trying to decide how to best defect from recommendations, and a mediator, who
is trying to come up with an incentive-compatible set of recommendations.

e From a geometric point of view, the BSPP formulation better captures the combinatorial structure
of the problem: X and ) have a well-defined meaning in terms of the input game tree. This has
algorithmic implications: for example, because of the structure of ) (which will be detailed later),
the inner maximization problem can be solved via a single bottom-up game-tree traversal.

e From a computational standpoint, it opens the way to the plethora of optimization algorithms (both
general-purpose and those specific to game theory) that have been developed to solve BSPPs.

Furthermore, it is easy to show that by dualizing the inner maximization problem in the BSPP
formulation, one recovers the linear program introduced by Von Stengel and Forges [2008] (we show
this in Appendix A). In this sense, our formulation subsumes the existing one.

Triggers and Deviations One effective way to reason about extensive-form correlated equilibria is
via the notion of trigger agents, which was introduced (albeit used in a different context) in Gordon
et al. [2008] and Dudik and Gordon [2009]:

Definition 1. Let 6 := (f ,a) € 3; be a sequence for Player i, and let [i be a distribution over Hl(IA ).
A (6, [i)-trigger agent for Player i is a player that follows all recommendations given by the mediator

unless they get recommended a at I; in that case, the player ‘gets triggered’, stops following the
recommendations and instead plays based on a pure strategy sampled from [i until the game ends.

A correlated distribution p is an EFCE if and only if any trigger agent for Player ¢ can get utility at
most equal to the utility that Player ¢ earns by following the recommendations of the mediator at
all decision points. In order to express the utility of the trigger agent, it is necessary to compute the
probability of the game ending in each of the terminal states. As we show in Appendix B, this can be
done concisely by partitioning the set of terminal nodes in the game tree into three different sets. In
particular, let Z; , be the set of terminal nodes whose path from the root of the tree contains taking

action a at [ and let Z 7 be the set of terminal nodes whose path from the root passes through I and
are not in Z; ,. We have

Lemma 1. Consider a (6, [1)-trigger agent for Player 1, where 6 = (f ,G). The value of the
trigger agent, defined as the expected difference between the utility of the trigger agent and the
utility of an agent that always follows recommendations sampled from correlated distribution [,

is computed as vi s (i, [1) = Zzezf u1(2)61(6; 2)y1.6(2) — Zzer . u1(2)&1(01(2); 2), where
1(032) == Zmeﬂl(&) Zmeng(z) (e, m2) and y1,5(z) = Eﬁ—lenl(z) (7).

(A symmetric result holds for Player 2, with symbols £2(6; z) and y2 5(2).) It now seems natural to
perform a change of variables, and pick distributions for the random variables y; 5(-), y2,5(-), &1(+; )
and &5 (-; -) instead of y and fi. Since there are only a polynomial number (in the game tree size) of
combinations of arguments for these new random variables, this approach allows one to remove the
redundancy of realization-equivalent normal-form plans and focus on a significantly smaller search
space. In fact, the definition of £ = ({7, £2) also appears in [Von Stengel and Forges, 2008], referred
to as (sequence-form) correlation plan. In the case of the y; s and y» s random variables, it is clear
that the change of variables is possible via the sequence form [von Stengel, 2002]; we let Y; 5 be the
sequence-form polytope of feasible values for the vector y; 5. Hence, the only hurdle is characterizing
the space spanned by &; and &» as u varies across the probability simplex. In two-player perfect-recall
games with no chance moves, this is exactly one of the merits of the landmark work by Von Stengel
and Forges [2008]. In particular, the authors prove that in those games the space of feasible £ can be
captured by a polynomial number of linear constraints. In more general cases the same does not hold
(see second half of Section 2), but we prove the following (Appendix C):

Lemma 2. In a two-player game, as p varies over the probability simplex, the joint vector of & (- -),
&a(+;+) variables spans a convex polytope X in R™, where n is at most quadratic in the game size.

Saddle-Point Reformulation According to Lemma 1, for each Player ¢ and (&, ji)-trigger agent
for them, the value of the trigger agent is a biaffine expression in the vectors y; s and &;, and can
be written as v; 5(&;,¥i6) = fiTAi,&yiﬁ — b;':&& for a suitable matrix A; ;s and vector b; 5, where
the two terms in the difference correspond to the expected utility for deviating at 6 according to the
(sequence-form) strategy ¥; s and the expected utility for not deviating at 6. Given the correlation
plan £ = (£1,&2) € X, the maximum value of any deviation for any player can therefore be expressed
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as v* () 1= maxyi sy, .3 Vio (Eir Yis) = MaXieq1,0) MaXsex, Maxy, ev, {& Aisvio — b 56}
We can convert the maximization above into a continuous linear optimization problem by introducing
the multipliers A\; 5 € [0,1] (one per each Player i € {1,2} and trigger & € 3;), and write
v*(€) = maxqy, ;21 D D T Aiszis — )\iﬁbz&gi, where the maximization is subject to the
linear constraints [C}] Zi€{1,2} Z&E& Mig=1land [Ca] z;6 € N 5Y; 5 foralli € {1,2},6 € X,.
These linear constraints define a polytope ).

A correlation plan £ is an EFCE if an only if v; 5 (£, v:,5) < 0 for every trigger agent, i.e., v*(§) < 0.
Therefore, to find an EFCE, we can solve the optimization problem minge x v*(€), which is a bilinear
saddle point problem over the convex domains X and )/, both of which are convex polytopes that
belong to R™, where n is at most quadratic in the input game size (Lemma 2). If an EFCE exists, the
optimal value should be non-positive and the optimal solution is an EFCE (as it satisfies v*(£) < 0).
In fact, since EFCE’s always exist (as EFCEs are supersets of CEs Von Stengel and Forges [2008]),
and one can select triggers to be terminal sequences for Player 1, the optimal value of the BSPP
is always 0. The BSPP can be interpreted as the NE of a zero-sum game between the mediator,
who decides on a suitable correlation plan £ and a deviator who selects the y; ;s to maximize each
;.6 (&i, i, ). The value of this game is always 0. Finally, we can enforce a minimum lower bound 7
on the sum of players’ utility by introducing an additional variable Ay, € [0, 1] and maximizing the
new objective v* (&) 4+ AT — Asw D,z 41(2)€1(25 2) — Aw D,z u2(2)€2(2; 2) subject to [Cy]
and the modified constraint [C1] 3, (1 0y Dsexm,Aie = 1 — Aw-

Computing an EFCE using Subgradient Descent  Von Stengel and Forges [2008] show that a
(SW-maximizing) EFCE of a two-player game without chance may be expressed as the solution of
an LP and solved using generic methods such as the simplex algorithm or interior-point methods.
However, this does not scale to large games as these methods require to store and invert large matrices.
Here, we showcase the benefits of exploiting the combinatorial structure of the BSPP formulation by
proposing a simple algorithm based on subgradient descent; in Section 5 we show that this method
scales better than commercial state-of-the-art LP solver in large games.

For brevity, we only provide a sketch of our algorithm, which computes a (not necessarily SW-
maximizing) EFCE. Conceptually, since the function v*(£) is convex, we may perform subgradient
descent on &. This is convenient, because the subgradients 9/0¢ v*(£) may be readily expressed as
A+ 5+ 5« —bix 5+, where (i*, 6%, yj. ;.) is a triplet which maximizes the objective v*(€); this can
be computed by traversing the tree. Unfortunately, maintaining feasibility (that is, £ € X) is trickier,
because projecting onto &’ is challenging, even in games without chance, where £ can be expressed
by a polynomial number of constraints [Von Stengel and Forges, 2008]. To overcome this, we show
that in games with no chance X can be expressed as the intersection of convex polytopes &1, X5 and
non-negative orthant. Projection on & and X5 individually can be efficiently done, in parallel, by
precomputing a sparse Cholesky factor of the constraints that define X} and X5: we prove that a
sparse (polynomial) factorization always exists, and implemented a custom parallel algorithm that
computes the factorization by exploiting the structure of the game tree. This allows for the use of a
recent algorithm by Wang and Bertsekas [2013], where gradient steps are interlaced with projections
onto Xj, X5, and the non-negative orthant in a cyclical manner. See Appendix D.

4 Introducing the First Benchmarks for EFCE

In this section we introduce the first two benchmark games for EFCE. These games are naturally
parametric so that they can scale in size as desired and hence used to evaluate different EFCE solvers.
In addition, we show that the EFCE in these games are interesting behaviorally: the correlation plan
in social-welfare-maximizing EFCE is highly nontrivial and even seemingly counter-intuitive. We
believe some of these induced behaviors may prove practical in real-world scenarios and hope our
analysis can spark an interest in EFCEs and other equilibria in sequential settings.

4.1 Battleship: Conflict Resolution via a Mediator

In this section we introduce our first proposed benchmark game to illustrate the power of correlation
in extensive-form games. Our game is a general-sum variant of the classic game Battleship. Each
player takes turns to secretly place a set of ships S (of varying sizes and value) on separate grids of
size H x W. After placement, players take turns firing at their opponent—ships which have been hit
at all the tiles they lie on are considered destroyed. The game continues until either one player has
lost all of their ships, or each player has completed r shots. At the end of the game, the payoff of
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each player is computed as the sum of the values of the opponent’s ships that were destroyed, minus
~ times the value of ships which they lost, where v > 1 is called the loss multiplier of the game. The
social welfare (SW) of the game is the sum of utilities to all players.

In order to illustrate a few interesting feature of social-welfare-maximizing EFCE in this game, we
will focus on the instance of the game with a board of size 3 x 1, in which each player commands
just 1 ship of value and length 1, there are 2 rounds of shooting per player, and the loss multiplier is
~v = 2. In this game, the social-welfare-maximizing Nash equilibrium is such that each player places
their ship and shoots uniformly at random. This way, the probability that Player 1 and 2 will end the
game by destroying the opponent’s ship is 5/9 and 1/3 respectively (Player 1 has an advantage since
they act first). The probability that both players will end the game with their ships unharmed is a
meagre !/9. Correspondingly, the maximum SW reached by any NE of the game is —8/9.

In the EFCE model, it is possible to induce the players to end the game with a peaceful outcome—that
is, no damage to either ship—with probability 5/18, 2.5 times of the probability in NE, resulting in a
much-higher SW of —13/18. Before we continue with more details as to how the mediator (correlation
device) is able to achieve this result in the case where v = 2, we remark that the benefit of EFCE
is even higher when the loss multiplier v increases: Figure 1 (left) shows, as a function of ~, the
probability with which Player 1 and 2 terminate the game by sinking their opponent’s ship, if they
play according to the SW-maximizing EFCE. For all values of -, the SW-maximizing NE remains the
same while with a mediator, the probability of reaching a peaceful outcome increases as - increases,
and asymptotically gets closer to /3 and the gap between the expected utility of the two players
vanishes. This is remarkable, considering Player 1’s advantage for acting first.
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Figure 1: (Left) Probabilities of players sinking their opponent when the players play according to the SW-
maximizing EFCE. For v > 2, the probability of the game ending with no sunken ship and the probability of
Player 2 sinking Player 1 coincide. (Right) Example of a playthrough of Battleship assuming both players are
recommended to place their ship in the same position a. Edge labels represents the probability of an action being
recommended. Squares and hexagons denote actions taken by Players 1 and 2 respectively. Blue and red nodes
represent cases where Players 1 and 2 sink their opponent, respectively. The Shoot action is abbreviated ‘Sh.’.

b
3 45

We now resume our analysis of the SW-maximizing EFCE in the instance where v = 2. In a nutshell,
the correlation plan is constructed in a way that players are recommended to deliberately miss, and
deviations from this are punished by the mediator, who reveals to the opponent the ship location
that was recommended to the deviating player. First, the mediator recommends the players a ship
placement that is sampled uniformly at random and independently for each players. This results in 9
possible scenarios (one per possible ship placement) in the game, each occurring with probability
1/9. Due to the symmetric nature of ship placements, only two scenarios are relevant: whether the
two players are recommended to place their ship in the same spot, or in different spots. Figure 1
(right) shows the probability of each recommendation from the mediator in the former case, assuming
that the players do not deviate. The latter case is symmetric (see Appendix E for details). Now, we
explain the first of the two methods in which the mediator compels non-violent behavior. We focus
on the first shot made by Player 1 (i.e., the root in Figure 3). The mediator suggests that Player 1
shoot at the Player 2’s ship with a low 2/27 probability, and deliberately miss with high probability.
One may wonder how it is possible for this behavior to be incentive-compatible (that is, what are
the incentives that compel Player 1 into not defecting), since the player may choose to randomly
fire in any of the 2 locations that were not recommended, and get almost 1/2 chance of winning the
game immediately. The key is that if Player 1 does so and does not hit the opponent’s ship, then
the mediator can punish him by recommending that Player 2 shoot in the position where Player 1’s
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was recommended to place their ship. Since players value their ships more than destroying their
opponents, the player is incentivized to avoid such a situation by accepting the recommendation
to (most probably) miss. We see the first example of deterrent used by the EFCE mediator: the
mediator is inducing the opponent to play punitive actions against players that have deviated from the
recommendation, if ever that deviation can be detected from the player.A similar situation arises in
the first move of Player 2, where Player 2 is recommended to deliberately miss, hitting each of the 2
empty spots with probability 1/2. A more detailed analysis is available in Appendix E.

4.2 Sheriff: Bargaining and Negotiation

Our second proposed benchmark is a simplified version of the Sheriff of Nottingham board game.
The game models the interaction of two players: the Smuggler—who is trying to smuggle illegal
items in their cargo—and the Sheriff—who is trying to stop the Smuggler. At the beginning of the
game, the Smuggler secretly loads his cargo with n € {0, ..., nn. } illegal items. At the end of the
game, the Sheriff decides whether to inspect the cargo. If the Sheriff chooses to inspect the cargo
and finds illegal goods, the Smuggler must pay a fine worth p - n to the Sheriff. On the other hand,
the Sheriff has to compensate the Smuggler with a utility s if no illegal goods are found. Finally,
if the Sheriff decides not to inspect the cargo, the Smuggler’s utility is v - n whereas the Sherift’s
utility is 0. The game is made interesting by two additional elements (which are also present in
the board game): bribery and bargaining. After the Smuggler has loaded the cargo and before the
Sheriff chooses whether or not to inspect, they engage in r rounds of bargaining. At each round
i =1,...,r, the Smuggler tries to tempt the Sheriff into not inspecting the cargo by proposing a
bribe b; € {0,...bmax}, and the Sheriff responds whether or not they would accept the proposed
bribe. Only the proposal and response from round r will be executed and have an impact on the final
payoffs—that is, all but the r-th round of bargaining are non-consequential and their purpose is for
the two players to settle on a suitable bribe amount. If the Sheriff accepts bribe b,., then the Smuggler
gets p - n — b,, while the Sheriff gets b,.. See Appendix F for a formal description of the game.

We now point out some interesting behavior of EFCE in this game. We refer to the game instance
where v =5,p=1,5 = 1, npax = 10, bmax = 2,7 = 2 as the baseline instance.

Effect of v, p and s. First, we show what happens in the baseline instance when the item value v,
item penalty p, and Sheriff compensation (penalty) s are varied in isolation over a continuous range
of values. The results are shown in Figure 2. In terms of general trends, the effect of the parameter
to the Smuggler is fairly consistent with intuition: the Smuggler benefits from a higher item value
as well as from higher sheriff penalties, and suffers when the penalty for smuggling is increased.
However, the finer details are much more nuanced. For one, the effect of changing the parameters
not only is non-monotonic, but also discontinuous. This behavior has never been documented and
we find it rather counterintuitive. More counterintuitive observations can be found in Appendix F.
Effect of npyax, bmax, and 7. Here, we try to empirically understand the impact of n and b on the SW

Sheriff game with varying
illegal item penalty

Sheriff game with varying
illegal item value
T — T 3 F T T T T E| SRR — T

Smuggler

Sheriff game with varying sheriff penalty
(upon inspection of a cargo with no illegal items)

10' £
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10!
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& £
:.—; - Sheriff [ Sheriff
2o E 100 Smuggler 100 E
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100 10! 102 1 2 3 4 5 10! 102
Illegal item value (v) Ilegal item penalty (p) Sheriff penalty (s)

Figure 2: Utility of players with varying v, p and s for the SW-maximizing EFCE. We verified that these plots
are not the result of equilibrium selection issues.

maximizing equilibrium. As before we setv = 5,p = 1,s = 1 and vary n and r simultaneously
while keeping bnax constant. The results are shown in Table 1.

The most striking observation is that increasing the capacity of the cargo nn,x may decrease social
welfare. For example, consider the case when by, = 2, nmax = 2,7 = 1 (shown in blue in Table 1,
right) where the payoffs are (8.0,2.0). This achieves the maximum attainable social welfare by
smuggling ny.x = 2 items and having the Sheriff accept a bribe of 2. When np,y is increased to
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5 (red entry in the table), the payoffs to both players drop significantly, and even more so when
Tmax increases further. While counter-intuitive, this behavior is consistent in that the Smuggler may
not benefit from loading 3 items every time he was recommended to load 2; the Sheriff reacts by
inspecting more, leading to lower payoffs for both players. That behavior is avoided by increasing
the number of rounds r: by increasing to » = 2 (entry shown in purple), the behavior disappears
and we revert to achieving a social welfare of 10 just like in the instance with np,x = 2,7 = 1.
With sufficient bargaining steps, the Smuggler, with the aid of the mediator, is able to convince
the Sheriff that they have complied with the recommendation by the mediator. This is because the
mediator spends the first » — 1 bribes to give a ‘passcode’ to the Smuggler so that the Sheriff can
verify compliance—if an ‘unexpected’ bribe is suggested, then the Smuggler must have deviated, and
the Sheriff will inspect the cargo as punishment. With more rounds, it is less likely that the Smuggler
will guess the correct passcode by chance. See also Appendix F.

5 Experimental Evaluation

We show that even our proof-of-concept algorithm based

on the BSSP formulation and subgradient descent, intro- " | 7 =1 r=2 r=3
duced in Section 3, is able to beat LP-based approaches 1 ](3.00,2.00) (3.00,2.00) (3.00,2.00)
. . . . .. 2 1(8.00,2.00) (8.00,2.00) (8.00,2.00)
using the commercial solver Gurobi [Gurobi Optimiza- 5 |(2.28.1.26) (8.00,2.00) (8.00.2.00)
tion, 2018] in large games. This confirms known re- 10 |(1.76,0.93) (7.26,1.82) (8.00,2.00)

sults about the scalability of methods for computing NE, .
where in the recent years first-order methods have af- Table I: Payoffs for (Smuggler, Sheriff) in the
firmed themselves as the only algorithms that are able to S VV-maximizing EFCE.

handle large games.

We experimented on Battleship over a range of parameters while fixing v = 2. All experiments were
run on a cluster with 64 cores and 500GB of memory. For our method, we tuned step sizes based on
multiples of 10. In Table 2, we report execution times when all constraints (feasibility and deviation)
are violated by no greater than 10!, 10~2 and 10~3. Our method outperforms the LP-based approach
for larger games. However, while we outperform the LP-based approach for accuracies up to 1073,
Gurobi spends most of its time reordering variables and preprocessing, their solution improves more
rapidly for higher levels of precision; this is expected of a gradient-based method like ours. On very
large games with more than 100 million variables, both our method and Gurobi fail—in Gurobi’s
case, it was due to a lack of memory while in our case, each iteration required nearly an hour which
was prohibitive. The main bottleneck in our method was the projection onto A} and X,. We also
experimented on the Sheriff game and obtained similar findings (Appendix I).

(H,W) 7 Ship #Actions #Relevz.mt Time (LP) Time (ours)
’ length | PI1 P12  seq. pairs | 107! 102 1072 | 107! 1072 1073
2,2) 3 1 741 917 35241 2s 2s 2s 1s 2s 3s
3,2) 3 1 15k 47k 3.89M 3m6s 3m17s 3m 24s 8s 34s 52s
3,2) 4 1 145k 306k 264M |42m39s 42m44s  43m |2m48s 14m 1s 23m 24s
(3,2 4 2 |970k 227M 111M —- out of memoryt —- — did not achieve ¥ —-

Table 2: #Seq. pairs is the dimension of £ under the compact representation of Von Stengel and Forges [2008].
For LPs, we report the fastest of Barrier, Primal and Dual Simplex, and 3 different formulations (Appendix H). '
Gurobi went out of memory and was killed by the system after ~ 3000 seconds during the variable ordering
phase. ¥ Our method requires 1 hour per iteration and did not achieve the required accuracy after 6 hours.

6 Conclusions

In this paper, we have proposed two parameterized benchmark games in which EFCE exhibits inter-
esting behaviors. We have analyzed those behaviors both qualitatively and quantitatively, and isolated
two ways through which a mediator is able to compel the agents to follow the recommendations. We
also provide an alternative saddle-point formulation of EFCE and demonstrate its merit with a simple
subgradient method which outperforms standard LP based methods. We hope that our analysis will
bring attention to some of the computational and practical uses of EFCE, and that our benchmark
games will be useful to evaluate future algorithms for computing EFCE in large games.
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