
Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 While Nash equilibrium in extensive-form games is well understood, very little
2 is known about the properties of *extensive-form correlated equilibrium (EFCE)*,
3 both from a behavioral and from a computational point of view. In this setting, the
4 strategic behavior of players is complemented by an external device that privately
5 recommends moves to agents as the game progresses; players are free to deviate
6 at any time, but will then not receive future recommendations. Our contributions
7 are threefold. First, we show that an EFCE can be formulated as the solution to a
8 bilinear saddle-point problem. To showcase how this novel formulation can inspire
9 new algorithms to compute EFCEs, we propose a simple subgradient descent
10 method which exploits this formulation and structural properties of EFCEs. Our
11 method has better scalability than the prior approach based on linear programming.
12 Second, we propose two benchmark games, which we hope will serve as the basis
13 for future evaluation of EFCE solvers. These games were chosen so as to cover
14 two natural application domains for EFCE: conflict resolution via a mediator, and
15 bargaining and negotiation. Third, we document the qualitative behavior of EFCE
16 in our proposed games. We show that the social-welfare-maximizing equilibria
17 in these games are highly nontrivial and exhibit surprisingly subtle *sequential*
18 behavior that so far has not received attention in the literature.

19 1 Introduction

20 Nash equilibrium (NE) [Nash, 1950], the most seminal concept in non-cooperative game theory,
21 captures a multi-agent setting where each agent is selfishly motivated to maximize their own payoff.
22 The assumption underpinning NE is that the interaction is completely *decentralized*: the behavior of
23 each agent is not regulated by any external orchestrator. Contrasted with the other—often utopian—
24 extreme of a fully managed interaction, where an external dictator controls the behavior of each agent
25 so that the whole system moves to a desired state, the social welfare that can be achieved by NE is
26 generally lower, sometimes dramatically so [Koutsoupias and Papadimitriou, 1999; Roughgarden and
27 Tardos, 2002]. Yet, in many realistic interactions, some intermediate form of centralized control can
28 be achieved. In particular, in his landmark paper, Aumann [1974] proposed the concept of *correlated*
29 *equilibrium* (CE), where a mediator (the *correlation device*) can *recommend* behavior, but not *enforce*
30 *it*. In a CE, the correlation device is constructed so that the agents—which are still modeled as fully
31 rational and selfish just like in an NE—have no incentive to deviate from the private recommendation.
32 Allowing correlation of actions while ensuring selfishness makes CE a good candidate solution
33 concept in multi-agent and semi-competitive settings such as traffic control, load balancing [Ashlagi
34 *et al.*, 2008], and carbon abatement [Ray and Gupta, 2009], and it can lead to win-win outcomes.
35 In this paper, we study the natural extension of correlated equilibrium in *extensive-form* (i.e., sequen-
36 tial) games, known as *extensive-form correlated equilibrium (EFCE)* [Von Stengel and Forges, 2008].
37 Like CE, EFCE assumes that the strategic interaction is complemented by an external mediator;

38 however, in an EFCE the mediator only privately reveals the recommended next move to each *acting*
39 *player*, instead of revealing the whole plan of action throughout the game (i.e., recommended move
40 at *all* decision points) for each player at the beginning of the game. Furthermore, while each agent is
41 free to defect from the recommendation at any time, this comes at the cost of future recommendations.

42 While the properties of correlation in *normal-form* (i.e., non-sequential) games are well-studied, they
43 do not automatically transfer to the richer world of sequential interactions. It is known in the study of
44 NE that sequential interactions can pose different challenges, especially in settings where the agents
45 retain private information. Conceptually, the players can strategically adjust to dynamic observations
46 about the environment and their opponents as the game progresses. Despite tremendous interest and
47 progress in recent years for computing NE in sequential interactions with private information, with
48 significant milestones achieved in the game of Poker [Bowling *et al.*, 2015; Brown and Sandholm,
49 2017; Moravčík *et al.*, 2017] and other large, real-world domains, not much has been done to increase
50 our understanding of (extensive-form) correlated equilibria in these settings.

51 **Contributions** Our primary objective with this paper is to spark more interest in the community
52 towards a deeper understanding of the behavioral and computational aspects of EFCE.

- 53 • In Section 3 we show that an EFCE in a two-player general-sum game is the solution to a bilinear
54 saddle-point problem (BSPP). This conceptual reformulation complements the EFCE construction
55 by Von Stengel and Forges [2008], and allows for the development of new and efficient algorithms.
56 As a proof of concept, by using our reformulation we devise a variant of projected subgradient
57 descent which outperforms linear-programming(LP)-based algorithms proposed by Von Stengel
58 and Forges [2008] in large game instances.
- 59 • In Section 4 we propose two benchmark games; each game is parametric, so that these games can
60 scale in size as desired. The first game is a general-sum variant of the classic war game *Battleship*.
61 The second game is a simplified version of the *Sheriff of Nottingham* board game. These games
62 were chosen so as to cover two natural application domains for EFCE: conflict resolution via a
63 mediator, and bargaining and negotiation. We will release the source code for our parametric game
64 generators, so that the research community can benefit from our implementation work.
- 65 • By analyzing EFCE in our proposed benchmark games, we show that even if the mediator cannot
66 enforce behavior, it can induce significantly higher social welfare than NE and successfully deter
67 players from deviating in at least two (often connected) ways: (1) using certain sequences of actions
68 as ‘passcodes’ to verify that a player has not deviated: defecting leads to incomplete or wrong
69 passcodes which indicate deviation, and (2) inducing opponents to play punitive actions against
70 players that have deviated from the recommendation, if such a deviation is detected. Crucially,
71 both deterrents are unique to *sequential* interactions and do not apply to non-sequential games.
72 This corroborates the idea that the mediation of sequential interactions is a qualitatively different
73 problem than that of non-sequential games and further justifies the study of EFCE as an interesting
74 direction for the community. To our knowledge, these are the first experimental results and
75 observations on EFCE in the literature.

76 2 Preliminaries

77 **Extensive-Form Games** Extensive-form games (EFGs) are sequential games that are played over
78 a rooted game tree. Each node in the tree belongs to a player and corresponds to a decision point
79 for that player. Outgoing edges from a node v correspond to actions that can be taken by the player
80 to which v belongs. Each terminal node in the game tree is associated with a tuple of payoffs that
81 the players receive should the game end in that state. To capture imperfect information, the set of
82 vertices of each player is partitioned into *information sets*. The vertices in a same information set
83 are indistinguishable to the player that owns those vertices. For example, in a game of Poker, a
84 player cannot distinguish between certain states that only differ in opponent’s private hand. As a
85 result, the strategy of the player (specifying which action to take) is defined on the information sets
86 instead of the vertices. For the purpose of this paper, we only consider *perfect-recall* EFGs. This
87 property means that each player does not forget any of their previous action, nor any private or public
88 observation that the player has made. The perfect-recall property can be formalized by requiring that
89 for any two vertices in a same information set, the paths from those vertices to the root of the game
90 tree contain the exact same sequence of actions for the acting player at the information set.

91 A pure normal-form strategy for Player i defines a choice of action for *every* information set that
92 belongs to i . A player can play a mixed strategy, i.e., sample from a distribution over their pure
93 normal-form strategies. However, this representation contains redundancies: some information sets

94 for Player i may become unreachable after the player makes certain decisions higher up in
 95 the tree. Omitting these redundancies leads to the notion of *reduced-normal-form* strategies, which
 96 are known to be strategically equivalent to normal-form strategies (e.g., [Shoham and Leyton-Brown,
 97 2009] for more details). Both the normal-form and the reduced-normal-form representation are
 98 exponentially large in the size of the game tree.

99 Here, we fix some notations. Let Z be the set of terminal states (or equivalently, outcomes) in the
 100 game and $u_i(z)$ be the utility obtained by player i if the game terminates at $z \in Z$. Let Π_i be the
 101 set of pure reduced-normal-form strategies for Player i . We define $\Pi_i(I)$, $\Pi_i(I, a)$ and $\Pi_i(z)$ to be
 102 the set of reduced-normal-form strategies that (a) can lead to information set I , (b) can lead to I and
 103 prescribes action a at information set I , and (c) can lead to the terminal state z , respectively. We
 104 denote by Σ_i the set of information set-action pairs (I, a) (also referred to as *sequences*), where I is
 105 an information set for Player i and a is an action at set I . For a given terminal state z let $\sigma_i(z)$ be the
 106 last (I, a) pair belonging to Player i encountered in the path from the root of the tree to z .

107 **Extensive-Form Correlated Equilibrium** Extensive-form correlated equilibrium (EFCE) is a
 108 solution concept for extensive-form games introduced by Von Stengel and Forges [2008].¹ Like
 109 in the traditional correlated equilibrium (CE), introduced by Aumann [1974], a *correlation device*
 110 selects private signals for the players before the game starts. These signals are sampled from a
 111 correlated distribution μ —a joint probability distribution over $\Pi_1 \times \Pi_2$ —and represent recommended
 112 player strategies. However, while in a CE the recommended moves for the whole game tree are
 113 privately revealed to the players when the game starts, in an EFCE the recommendations are revealed
 114 incrementally as the players progress in the game tree. In particular, a recommended move is only
 115 revealed when the player reaches the decision point in the game for which the recommendation is
 116 relevant. Moreover, if a player ever deviates from the recommended move, they will stop receiving
 117 recommendations. To concretely implement an EFCE, one places recommendations into ‘sealed
 118 envelopes’ which may only be opened at its respective information set. Sealed envelopes may
 119 be implemented using cryptographic techniques (see Dodis *et al.* [2000] for one such example).

120 In an EFCE, the players know less about the set of recommendations that were sampled by the
 121 correlation device. The benefits are twofold. First, the players can be more easily induced to play
 122 strategies that hurt them (but benefit the overall social welfare), as long as “on average” the players
 123 are indifferent as to whether or not to follow the recommendations: the set of EFCEs is a *superset*
 124 of that of CEs. Second, since the players observe less, the set of probability distributions for the
 125 correlation device for which no player has an incentive to deviate can be described succinctly in
 126 certain classes of games: Von Stengel and Forges [2008, Theorem 1.1] show that in two-player,
 127 perfect-recall extensive-form games with no chance moves, the set of EFCEs can be described by
 128 a system of linear equations and inequalities of polynomial size in the game description. On the
 129 other hand, the same result cannot hold in more general settings: Von Stengel and Forges [2008,
 130 Section 3.7] also show that in games with more than two players and/or chance moves, deciding
 131 the existence of an EFCE with social welfare greater than a given value is NP-hard. It is important
 132 to note that this last result only implies that the characterization of the set of *all* EFCEs cannot be
 133 of polynomial size in general (unless P = NP). However, the problem of finding *one* EFCE can be
 134 solved in polynomial time: Huang [2011] and Huang and von Stengel [2008] show how to adapt the
 135 *Ellipsoid Against Hope* algorithm [Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown,
 136 2015] to compute an EFCE in polynomial time in games with more than two players and/or with
 137 chance moves. Unfortunately, that algorithm is only theoretical, and known to not scale beyond
 138 extremely small instances [Leyton-Brown, 2019].

139 3 Extensive-Form Correlated Equilibria as Bilinear Saddle-Point Problems

140 Our objective for this section is to cast the problem of finding an EFCE in a two-player game as a
 141 bilinear saddle-point problem, that is a problem of the form $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} x^\top A y$, where \mathcal{X} and \mathcal{Y}
 142 are compact convex sets. In the case of EFCE, \mathcal{X} and \mathcal{Y} are convex polytopes that belong to a space
 143 whose dimension is polynomial in the game tree size. This reformulation is meaningful:

- 144 • From a conceptual angle, it brings the problem of computing an EFCE closer to several other
 145 solution concepts in game theory that are known to be expressible as BSPP. In particular, the BSPP

¹Other CE-related solution concepts in sequential games include the agent-form correlated equilibrium (AFCE), where agents continue to receive recommendations even upon defection, and normal-form coarse CE (NFCCE). NFCCE does not allow for defections during the game, in fact, before the game starts, players must decide to commit to following *all* recommendations upfront (before receiving them), or elect to receive none.

146 formulation shows that an EFCE can be viewed as a NE in a two-player zero-sum game between a
 147 *deviator*, who is trying to decide how to best defect from recommendations, and a *mediator*, who
 148 is trying to come up with an incentive-compatible set of recommendations.

149 • From a geometric point of view, the BSPP formulation better captures the combinatorial structure
 150 of the problem: \mathcal{X} and \mathcal{Y} have a well-defined meaning in terms of the input game tree. This has
 151 algorithmic implications: for example, because of the structure of \mathcal{Y} (which will be detailed later),
 152 the inner maximization problem can be solved via a single bottom-up game-tree traversal.
 153 • From a computational standpoint, it opens the way to the plethora of optimization algorithms (both
 154 general-purpose and those specific to game theory) that have been developed to solve BSPPs.

155 Furthermore, it is easy to show that by dualizing the inner maximization problem in the BSPP
 156 formulation, one recovers the linear program introduced by Von Stengel and Forges [2008] (we show
 157 this in Appendix A). In this sense, our formulation subsumes the existing one.

158 **Triggers and Deviations** One effective way to reason about extensive-form correlated equilibria is
 159 via the notion of *trigger agents*, which was introduced (albeit used in a different context) in Gordon
 160 *et al.* [2008] and Dudik and Gordon [2009]:

161 **Definition 1.** Let $\hat{\sigma} := (\hat{I}, \hat{a}) \in \Sigma_i$ be a sequence for Player i , and let $\hat{\mu}$ be a distribution over $\Pi_i(\hat{I})$.
 162 A $(\hat{\sigma}, \hat{\mu})$ -trigger agent for Player i is a player that follows all recommendations given by the mediator
 163 unless they get recommended \hat{a} at \hat{I} ; in that case, the player ‘gets triggered’, stops following the
 164 recommendations and instead plays based on a pure strategy sampled from $\hat{\mu}$ until the game ends.

165 A correlated distribution μ is an EFCE if and only if any trigger agent for Player i can get utility at
 166 most equal to the utility that Player i earns by following the recommendations of the mediator at
 167 all decision points. In order to express the utility of the trigger agent, it is necessary to compute the
 168 probability of the game ending in each of the terminal states. As we show in Appendix B, this can be
 169 done concisely by partitioning the set of terminal nodes in the game tree into three different sets. In
 170 particular, let $Z_{\hat{I}, \hat{a}}$ be the set of terminal nodes whose path from the root of the tree contains taking
 171 action \hat{a} at \hat{I} and let $Z_{\hat{I}}$ be the set of terminal nodes whose path from the root passes through \hat{I} and
 172 are not in $Z_{\hat{I}, \hat{a}}$. We have

173 **Lemma 1.** Consider a $(\hat{\sigma}, \hat{\mu})$ -trigger agent for Player 1, where $\hat{\sigma} = (\hat{I}, \hat{a})$. The value of the
 174 trigger agent, defined as the expected difference between the utility of the trigger agent and the
 175 utility of an agent that always follows recommendations sampled from correlated distribution μ ,
 176 is computed as $v_{1, \hat{\sigma}}(\mu, \hat{\mu}) := \sum_{z \in Z_{\hat{I}}} u_1(z) \xi_1(\hat{\sigma}; z) y_{1, \hat{\sigma}}(z) - \sum_{z \in Z_{\hat{I}, \hat{a}}} u_1(z) \xi_1(\sigma_1(z); z)$, where
 177 $\xi_1(\hat{\sigma}; z) := \sum_{\pi_1 \in \Pi_1(\hat{\sigma})} \sum_{\pi_2 \in \Pi_2(z)} \mu(\pi_1, \pi_2)$ and $y_{1, \hat{\sigma}}(z) := \sum_{\hat{\pi}_1 \in \Pi_1(z)} \hat{\mu}(\hat{\pi}_1)$.

178 (A symmetric result holds for Player 2, with symbols $\xi_2(\hat{\sigma}; z)$ and $y_{2, \hat{\sigma}}(z)$.) It now seems natural to
 179 perform a change of variables, and pick distributions for the random variables $y_{1, \hat{\sigma}}(\cdot)$, $y_{2, \hat{\sigma}}(\cdot)$, $\xi_1(\cdot; \cdot)$
 180 and $\xi_2(\cdot; \cdot)$ instead of μ and $\hat{\mu}$. Since there are only a polynomial number (in the game tree size) of
 181 combinations of arguments for these new random variables, this approach allows one to remove the
 182 redundancy of realization-equivalent normal-form plans and focus on a significantly smaller search
 183 space. In fact, the definition of $\xi = (\xi_1, \xi_2)$ also appears in [Von Stengel and Forges, 2008], referred
 184 to as (sequence-form) *correlation plan*. In the case of the $y_{1, \hat{\sigma}}$ and $y_{2, \hat{\sigma}}$ random variables, it is clear
 185 that the change of variables is possible via the sequence form [von Stengel, 2002]; we let $Y_{i, \hat{\sigma}}$ be the
 186 sequence-form polytope of feasible values for the vector $y_{i, \hat{\sigma}}$. Hence, the only hurdle is characterizing
 187 the space spanned by ξ_1 and ξ_2 as μ varies across the probability simplex. In two-player perfect-recall
 188 games with no chance moves, this is exactly one of the merits of the landmark work by Von Stengel
 189 and Forges [2008]. In particular, the authors prove that in those games the space of feasible ξ can be
 190 captured by a polynomial number of linear constraints. In more general cases the same does not hold
 191 (see second half of Section 2), but we prove the following (Appendix C):

192 **Lemma 2.** In a two-player game, as μ varies over the probability simplex, the joint vector of $\xi_1(\cdot; \cdot)$,
 193 $\xi_2(\cdot; \cdot)$ variables spans a convex polytope \mathcal{X} in \mathbb{R}^n , where n is at most quadratic in the game size.

194 **Saddle-Point Reformulation** According to Lemma 1, for each Player i and $(\hat{\sigma}, \hat{\mu})$ -trigger agent
 195 for them, the value of the trigger agent is a biaffine expression in the vectors $y_{i, \hat{\sigma}}$ and ξ_i , and can
 196 be written as $v_{i, \hat{\sigma}}(\xi_i, y_{i, \hat{\sigma}}) = \xi_i^\top A_{i, \hat{\sigma}} y_{i, \hat{\sigma}} - b_{i, \hat{\sigma}}^\top \xi_i$ for a suitable matrix $A_{i, \hat{\sigma}}$ and vector $b_{i, \hat{\sigma}}$, where
 197 the two terms in the difference correspond to the expected utility for deviating at $\hat{\sigma}$ according to the
 198 (sequence-form) strategy $y_{i, \hat{\sigma}}$ and the expected utility for not deviating at $\hat{\sigma}$. Given the correlation
 199 plan $\xi = (\xi_1, \xi_2) \in \mathcal{X}$, the maximum value of any deviation for any player can therefore be expressed

200 as $v^*(\xi) := \max_{\{\hat{\sigma}, y_{i,\hat{\sigma}}\}} v_{i,\hat{\sigma}}(\xi_i, y_{i,\hat{\sigma}}) = \max_{i \in \{1,2\}} \max_{\hat{\sigma} \in \Sigma_i} \max_{y_{i,\hat{\sigma}} \in Y_{i,\hat{\sigma}}} \{\xi_i^\top A_{i,\hat{\sigma}} y_{i,\hat{\sigma}} - b_{i,\hat{\sigma}}^\top \xi_i\}$.
 201 We can convert the maximization above into a continuous linear optimization problem by introducing
 202 the multipliers $\lambda_{i,\hat{\sigma}} \in [0, 1]$ (one per each Player $i \in \{1, 2\}$ and trigger $\hat{\sigma} \in \Sigma_i$), and write
 203 $v^*(\xi) = \max_{\{\lambda_{i,\hat{\sigma}}, z_{i,\hat{\sigma}}\}} \sum_i \sum_{\hat{\sigma}} \xi_i^\top A_{i,\hat{\sigma}} z_{i,\hat{\sigma}} - \lambda_{i,\hat{\sigma}} b_{i,\hat{\sigma}}^\top \xi_i$, where the maximization is subject to the
 204 linear constraints $[C_1] \sum_{i \in \{1,2\}} \sum_{\hat{\sigma} \in \Sigma_i} \lambda_{i,\hat{\sigma}} = 1$ and $[C_2] z_{i,\hat{\sigma}} \in \lambda_{i,\hat{\sigma}} Y_{i,\hat{\sigma}}$ for all $i \in \{1, 2\}, \hat{\sigma} \in \Sigma_i$.
 205 These linear constraints define a polytope \mathcal{Y} .

206 A correlation plan ξ is an EFCE if and only if $v_{i,\hat{\sigma}}(\xi, y_{i,\hat{\sigma}}) \leq 0$ for every trigger agent, i.e., $v^*(\xi) \leq 0$.
 207 Therefore, to find an EFCE, we can solve the optimization problem $\min_{\xi \in \mathcal{X}} v^*(\xi)$, which is a bilinear
 208 saddle point problem over the convex domains \mathcal{X} and \mathcal{Y} , both of which are convex polytopes that
 209 belong to \mathbb{R}^n , where n is at most quadratic in the input game size (Lemma 2). If an EFCE exists, the
 210 optimal value should be non-positive and the optimal solution is an EFCE (as it satisfies $v^*(\xi) \leq 0$).
 211 In fact, since EFCE's always exist (as EFCEs are supersets of CEs Von Stengel and Forges [2008]),
 212 and one can select triggers to be terminal sequences for Player 1, the optimal value of the BSPP
 213 is always 0. The BSPP can be interpreted as the NE of a zero-sum game between the *mediator*,
 214 who decides on a suitable correlation plan ξ and a *deviator* who selects the $y_{i,\hat{\sigma}}$'s to maximize each
 215 $v_{i,\hat{\sigma}}(\xi_i, y_{i,\hat{\sigma}})$. The value of this game is always 0. Finally, we can enforce a minimum lower bound τ
 216 on the sum of players' utility by introducing an additional variable $\lambda_{\text{sw}} \in [0, 1]$ and maximizing the
 217 new objective $v^*(\xi) + \lambda_{\text{sw}} \tau - \lambda_{\text{sw}} \sum_{z \in Z} u_1(z) \xi_1(z; z) - \lambda_{\text{sw}} \sum_{z \in Z} u_2(z) \xi_2(z; z)$ subject to $[C_2]$
 218 and the modified constraint $[C'_1] \sum_{i \in \{1,2\}} \sum_{\hat{\sigma} \in \Sigma_i} \lambda_{i,\hat{\sigma}} = 1 - \lambda_{\text{sw}}$.

219 **Computing an EFCE using Subgradient Descent** Von Stengel and Forges [2008] show that a
 220 (SW-maximizing) EFCE of a two-player game without chance may be expressed as the solution of
 221 an LP and solved using generic methods such as the simplex algorithm or interior-point methods.
 222 However, this does not scale to large games as these methods require to store and invert large matrices.
 223 Here, we showcase the benefits of exploiting the combinatorial structure of the BSPP formulation by
 224 proposing a simple algorithm based on subgradient descent; in Section 5 we show that this method
 225 scales better than commercial state-of-the-art LP solver in large games.

226 For brevity, we only provide a sketch of our algorithm, which computes a (not necessarily SW-
 227 maximizing) EFCE. Conceptually, since the function $v^*(\xi)$ is convex, we may perform subgradient
 228 descent on ξ . This is convenient, because the subgradients $\partial/\partial\xi v^*(\xi)$ may be readily expressed as
 229 $A_{i^*, \hat{\sigma}^*} y_{i^*, \hat{\sigma}^*}^* - b_{i^*, \hat{\sigma}^*}$, where $(i^*, \hat{\sigma}^*, y_{i^*, \hat{\sigma}^*}^*)$ is a triplet which maximizes the objective $v^*(\xi)$; this can
 230 be computed by traversing the tree. Unfortunately, maintaining feasibility (that is, $\xi \in \mathcal{X}$) is trickier,
 231 because projecting onto \mathcal{X} is challenging, even in games without chance, where ξ can be expressed
 232 by a polynomial number of constraints [Von Stengel and Forges, 2008]. To overcome this, we show
 233 that in games with no chance \mathcal{X} can be expressed as the intersection of convex polytopes $\mathcal{X}_1, \mathcal{X}_2$ and
 234 non-negative orthant. Projection on \mathcal{X}_1 and \mathcal{X}_2 *individually* can be efficiently done, in parallel, by
 235 precomputing a sparse Cholesky factor of the constraints that define \mathcal{X}_1 and \mathcal{X}_2 : we prove that a
 236 sparse (polynomial) factorization always exists, and implemented a custom parallel algorithm that
 237 computes the factorization by exploiting the structure of the game tree. This allows for the use of a
 238 recent algorithm by Wang and Bertsekas [2013], where gradient steps are interlaced with projections
 239 onto $\mathcal{X}_1, \mathcal{X}_2$, and the non-negative orthant in a cyclical manner. See Appendix D.

240 4 Introducing the First Benchmarks for EFCE

241 In this section we introduce the first two benchmark games for EFCE. These games are naturally
 242 parametric so that they can scale in size as desired and hence used to evaluate different EFCE solvers.
 243 In addition, we show that the EFCE in these games are interesting behaviorally: the correlation plan
 244 in social-welfare-maximizing EFCE is highly nontrivial and even seemingly counter-intuitive. We
 245 believe some of these induced behaviors may prove practical in real-world scenarios and hope our
 246 analysis can spark an interest in EFCEs and other equilibria in sequential settings.

247 4.1 Battleship: Conflict Resolution via a Mediator

248 In this section we introduce our first proposed benchmark game to illustrate the power of correlation
 249 in extensive-form games. Our game is a general-sum variant of the classic game *Battleship*. Each
 250 player takes turns to secretly place a set of ships \mathcal{S} (of varying sizes and value) on separate grids of
 251 size $H \times W$. After placement, players take turns firing at their opponent—ships which have been hit
 252 at all the tiles they lie on are considered destroyed. The game continues until either one player has
 253 lost all of their ships, or each player has completed r shots. At the end of the game, the payoff of

254 each player is computed as the sum of the values of the opponent's ships that were destroyed, minus
 255 γ times the value of ships which they lost, where $\gamma \geq 1$ is called the *loss multiplier* of the game. The
 256 *social welfare* (SW) of the game is the sum of utilities to all players.

257 In order to illustrate a few interesting feature of social-welfare-maximizing EFCE in this game, we
 258 will focus on the instance of the game with a board of size 3×1 , in which each player commands
 259 just 1 ship of value and length 1, there are 2 rounds of shooting per player, and the loss multiplier is
 260 $\gamma = 2$. In this game, the social-welfare-maximizing *Nash* equilibrium is such that each player places
 261 their ship and shoots uniformly at random. This way, the probability that Player 1 and 2 will end the
 262 game by destroying the opponent's ship is $5/9$ and $1/3$ respectively (Player 1 has an advantage since
 263 they act first). The probability that both players will end the game with their ships unharmed is a
 264 meagre $1/9$. Correspondingly, the maximum SW reached by any NE of the game is $-8/9$.

265 In the EFCE model, it is possible to induce the players to end the game with a peaceful outcome—that
 266 is, no damage to either ship—with probability $5/18$, 2.5 times of the probability in NE, resulting in a
 267 much-higher SW of $-13/18$. Before we continue with more details as to how the mediator (correlation
 268 device) is able to achieve this result in the case where $\gamma = 2$, we remark that the benefit of EFCE
 269 is even higher when the loss multiplier γ increases: Figure 1 (left) shows, as a function of γ , the
 270 probability with which Player 1 and 2 terminate the game by sinking their opponent's ship, if they
 271 play according to the SW-maximizing EFCE. For all values of γ , the SW-maximizing NE remains the
 272 same while with a mediator, the probability of reaching a peaceful outcome increases as γ increases,
 273 and asymptotically gets closer to $1/3$ and the gap between the expected utility of the two players
 274 vanishes. This is remarkable, considering Player 1's advantage for acting first.

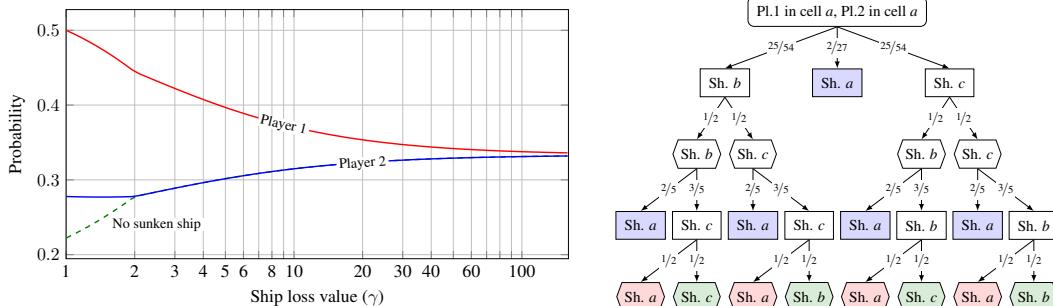


Figure 1: (Left) Probabilities of players sinking their opponent when the players play according to the SW-maximizing EFCE. For $\gamma \geq 2$, the probability of the game ending with no sunken ship and the probability of Player 2 sinking Player 1 coincide. (Right) Example of a playthrough of Battleship assuming both players are recommended to place their ship in the same position a . Edge labels represents the probability of an action being recommended. Squares and hexagons denote actions taken by Players 1 and 2 respectively. Blue and red nodes represent cases where Players 1 and 2 sink their opponent, respectively. The *Shoot* action is abbreviated 'Sh.'

275 We now resume our analysis of the SW-maximizing EFCE in the instance where $\gamma = 2$. In a nutshell,
 276 the correlation plan is constructed in a way that players are recommended to deliberately miss, and
 277 deviations from this are punished by the mediator, who reveals to the opponent the ship location
 278 that was *recommended* to the deviating player. First, the mediator recommends the players a ship
 279 placement that is sampled uniformly at random and independently for each players. This results in 9
 280 possible scenarios (one per possible ship placement) in the game, each occurring with probability
 281 $1/9$. Due to the symmetric nature of ship placements, only two scenarios are relevant: whether the
 282 two players are recommended to place their ship in the same spot, or in different spots. Figure 1
 283 (right) shows the probability of each recommendation from the mediator in the former case, assuming
 284 that the players do not deviate. The latter case is symmetric (see Appendix E for details). Now, we
 285 explain the first of the two methods in which the mediator compels non-violent behavior. We focus
 286 on the first shot made by Player 1 (i.e., the root in Figure 3). The mediator suggests that Player 1
 287 shoot at the Player 2's ship with a low $2/27$ probability, and deliberately miss with high probability.
 288 One may wonder how it is possible for this behavior to be incentive-compatible (that is, what are
 289 the incentives that compel Player 1 into not defecting), since the player may choose to randomly
 290 fire in any of the 2 locations that were *not* recommended, and get almost $1/2$ chance of winning the
 291 game immediately. The key is that if Player 1 does so and does not hit the opponent's ship, then
 292 the mediator can punish him by recommending that Player 2 shoot in the position where Player 1's

293 was recommended to place their ship. Since players value their ships more than destroying their
 294 opponents, the player is incentivized to avoid such a situation by accepting the recommendation
 295 to (most probably) miss. We see the first example of deterrent used by the EFCE mediator: the
 296 mediator is inducing the opponent to play punitive actions against players that have deviated from the
 297 recommendation, if ever that deviation can be detected from the player. A similar situation arises in
 298 the first move of Player 2, where Player 2 is recommended to *deliberately* miss, hitting each of the 2
 299 empty spots with probability $1/2$. A more detailed analysis is available in Appendix E.

300 4.2 Sheriff: Bargaining and Negotiation

301 Our second proposed benchmark is a simplified version of the *Sheriff of Nottingham* board game.
 302 The game models the interaction of two players: the *Smuggler*—who is trying to smuggle illegal
 303 items in their cargo—and the *Sheriff*—who is trying to stop the Smuggler. At the beginning of the
 304 game, the Smuggler secretly loads his cargo with $n \in \{0, \dots, n_{\max}\}$ illegal items. At the end of the
 305 game, the Sheriff decides whether to inspect the cargo. If the Sheriff chooses to inspect the cargo
 306 and finds illegal goods, the Smuggler must pay a fine worth $p \cdot n$ to the Sheriff. On the other hand,
 307 the Sheriff has to compensate the Smuggler with a utility s if no illegal goods are found. Finally,
 308 if the Sheriff decides not to inspect the cargo, the Smuggler's utility is $v \cdot n$ whereas the Sheriff's
 309 utility is 0. The game is made interesting by two additional elements (which are also present in
 310 the board game): *bribery* and *bargaining*. After the Smuggler has loaded the cargo and before the
 311 Sheriff chooses whether or not to inspect, they engage in r rounds of bargaining. At each round
 312 $i = 1, \dots, r$, the Smuggler tries to tempt the Sheriff into not inspecting the cargo by proposing a
 313 bribe $b_i \in \{0, \dots, b_{\max}\}$, and the Sheriff responds whether or not they would accept the proposed
 314 bribe. Only the proposal and response from round r will be executed and have an impact on the final
 315 payoffs—that is, all but the r -th round of bargaining are non-consequential and their purpose is for
 316 the two players to settle on a suitable bribe amount. If the Sheriff accepts bribe b_r , then the Smuggler
 317 gets $p \cdot n - b_r$, while the Sheriff gets b_r . See Appendix F for a formal description of the game.

318 We now point out some interesting behavior of EFCE in this game. We refer to the game instance
 319 where $v = 5, p = 1, s = 1, n_{\max} = 10, b_{\max} = 2, r = 2$ as the *baseline* instance.

320 **Effect of v, p and s .** First, we show what happens in the baseline instance when the item value v ,
 321 item penalty p , and Sheriff compensation (penalty) s are varied in isolation over a continuous range
 322 of values. The results are shown in Figure 2. In terms of general trends, the effect of the parameter
 323 to the Smuggler is fairly consistent with intuition: the Smuggler benefits from a higher item value
 324 as well as from higher sheriff penalties, and suffers when the penalty for smuggling is increased.
 325 However, the finer details are much more nuanced. For one, the effect of changing the parameters
 326 not only is non-monotonic, but also discontinuous. This behavior has never been documented and
 327 we find it rather counterintuitive. More counterintuitive observations can be found in Appendix F.
Effect of n_{\max} , b_{\max} , and r . Here, we try to empirically understand the impact of n and b on the SW

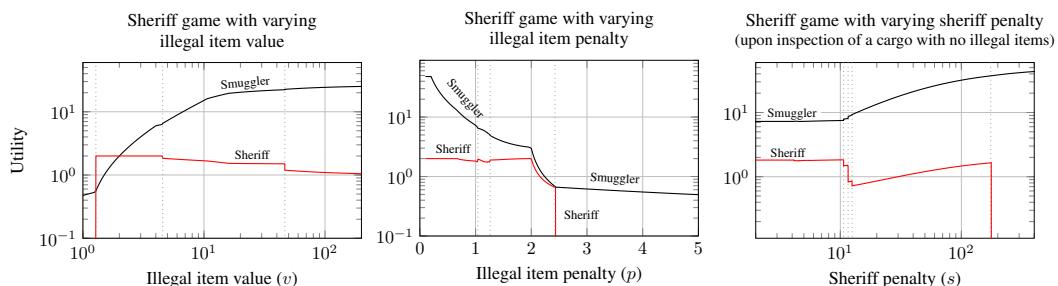


Figure 2: Utility of players with varying v, p and s for the SW-maximizing EFCE. We verified that these plots
 are not the result of equilibrium selection issues.

328 maximizing equilibrium. As before we set $v = 5, p = 1, s = 1$ and vary n and r simultaneously
 329 while keeping b_{\max} constant. The results are shown in Table 1.

330 The most striking observation is that increasing the capacity of the cargo n_{\max} may *decrease* social
 331 welfare. For example, consider the case when $b_{\max} = 2, n_{\max} = 2, r = 1$ (shown in blue in Table 1,
 332 right) where the payoffs are $(8.0, 2.0)$. This achieves the maximum attainable social welfare by
 333 smuggling $n_{\max} = 2$ items and having the Sheriff accept a bribe of 2. When n_{\max} is increased to

335 5 (red entry in the table), the payoffs to *both* players drop significantly, and even more so when
 336 n_{\max} increases further. While counter-intuitive, this behavior is consistent in that the Smuggler may
 337 not benefit from loading 3 items every time he was recommended to load 2; the Sheriff reacts by
 338 inspecting more, leading to lower payoffs for both players. That behavior is avoided by increasing
 339 the number of rounds r : by increasing to $r = 2$ (entry shown in purple), the behavior disappears
 340 and we revert to achieving a social welfare of 10 just like in the instance with $n_{\max} = 2, r = 1$.
 341 With sufficient bargaining steps, the Smuggler, with the aid of the mediator, is able to convince
 342 the Sheriff that they have complied with the recommendation by the mediator. This is because the
 343 mediator spends the first $r - 1$ bribes to give a ‘passcode’ to the Smuggler so that the Sheriff can
 344 verify compliance—if an ‘unexpected’ bribe is suggested, then the Smuggler must have deviated, and
 345 the Sheriff will inspect the cargo as punishment. With more rounds, it is less likely that the Smuggler
 346 will guess the correct passcode by chance. See also Appendix F.

347 5 Experimental Evaluation

348 We show that even our proof-of-concept algorithm based
 349 on the BSSP formulation and subgradient descent, intro-
 350 duced in Section 3, is able to beat LP-based approaches
 351 using the commercial solver Gurobi [Gurobi Optimiza-
 352 tion, 2018] in large games. This confirms known re-
 353 sults about the scalability of methods for computing NE,
 354 where in the recent years first-order methods have af-
 355 firmed themselves as the only algorithms that are able to
 356 handle large games.

357 We experimented on *Battleship* over a range of parameters while fixing $\gamma = 2$. All experiments were
 358 run on a cluster with 64 cores and 500GB of memory. For our method, we tuned step sizes based on
 359 multiples of 10. In Table 2, we report execution times when all constraints (feasibility and deviation)
 360 are violated by no greater than $10^{-1}, 10^{-2}$ and 10^{-3} . Our method outperforms the LP-based approach
 361 for larger games. However, while we outperform the LP-based approach for accuracies up to 10^{-3} ,
 362 Gurobi spends most of its time reordering variables and preprocessing, their solution improves more
 363 rapidly for higher levels of precision; this is expected of a gradient-based method like ours. On very
 364 large games with more than 100 million variables, both our method and Gurobi fail—in Gurobi’s
 365 case, it was due to a lack of memory while in our case, each iteration required nearly an hour which
 366 was prohibitive. The main bottleneck in our method was the projection onto \mathcal{X}_1 and \mathcal{X}_2 . We also
 367 experimented on the Sheriff game and obtained similar findings (Appendix I).

n_{\max}	$r = 1$	$r = 2$	$r = 3$
1	(3.00, 2.00)	(3.00, 2.00)	(3.00, 2.00)
2	(8.00 , 2.00)	(8.00, 2.00)	(8.00, 2.00)
5	(2.28 , 1.26)	(8.00 , 2.00)	(8.00, 2.00)
10	(1.76, 0.93)	(7.26, 1.82)	(8.00, 2.00)

Table 1: Payoffs for (Smuggler, Sheriff) in the SW-maximizing EFCE.

(H, W)	r	Ship length	#Actions	#Relevant seq. pairs	Time (LP)			Time (ours)			
					10^{-1}	10^{-2}	10^{-3}	10^{-1}	10^{-2}	10^{-3}	
(2, 2)	3	1	741	917	35241	2s	2s	2s	1s	2s	3s
(3, 2)	3	1	15k	47k	3.89M	3m 6s	3m 17s	3m 24s	8s	34s	52s
(3, 2)	4	1	145k	306k	26.4M	42m 39s	42m 44s	43m	2m 48s	14m 1s	23m 24s
(3, 2)	4	2	970k	2.27M	111M	— out of memory [†]	—	—	— did not achieve [‡] —	—	—

Table 2: #Seq. pairs is the dimension of ξ under the compact representation of Von Stengel and Forges [2008].[†] For LPs, we report the fastest of Barrier, Primal and Dual Simplex, and 3 different formulations (Appendix H).[‡] Gurobi went out of memory and was killed by the system after ~ 3000 seconds during the variable ordering phase. [‡] Our method requires 1 hour per iteration and did not achieve the required accuracy after 6 hours.

368 6 Conclusions

369 In this paper, we have proposed two parameterized benchmark games in which EFCE exhibits inter-
 370 esting behaviors. We have analyzed those behaviors both qualitatively and quantitatively, and isolated
 371 two ways through which a mediator is able to compel the agents to follow the recommendations. We
 372 also provide an alternative saddle-point formulation of EFCE and demonstrate its merit with a simple
 373 subgradient method which outperforms standard LP based methods. We hope that our analysis will
 374 bring attention to some of the computational and practical uses of EFCE, and that our benchmark
 375 games will be useful to evaluate future algorithms for computing EFCE in large games.

376 **References**

377 378 Itai Ashlagi, Dov Monderer, and Moshe Tennenholtz. On the value of correlation. *Journal of Artificial Intelligence Research*, 33:575–613, 2008.

379 380 Robert Aumann. Subjectivity and correlation in randomized strategies. *Journal of Mathematical Economics*, 1:67–96, 1974.

381 382 Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em poker is solved. *Science*, 2015.

383 384 Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. *Science*, Dec. 2017.

385 386 Vincent P Crawford and Joel Sobel. Strategic information transmission. *Econometrica: Journal of the Econometric Society*, pages 1431–1451, 1982.

387 388 Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a game theoretic problem. In *Annual International Cryptology Conference*, pages 112–130. Springer, 2000.

389 390 Miroslav Dudík and Geoffrey J Gordon. A sampling-based approach to computing equilibria in succinct extensive-form games. In *UAI*, pages 151–160. AUAI Press, 2009.

391 392 393 Geoffrey J Gordon, Amy Greenwald, and Casey Marks. No-regret learning in convex games. In *Proceedings of the 25th international conference on Machine learning*, pages 360–367. ACM, 2008.

394 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

395 396 397 Wan Huang and Bernhard von Stengel. Computing an extensive-form correlated equilibrium in polynomial time. In *International Workshop On Internet And Network Economics (WINE)*, pages 506–513. Springer, 2008.

398 399 Wan Huang. *Equilibrium computation for extensive games*. PhD thesis, London School of Economics and Political Science, January 2011.

400 401 Albert Xin Jiang and Kevin Leyton-Brown. Polynomial-time computation of exact correlated equilibrium in compact games. *Games and Economic Behavior*, 91:347–359, 2015.

402 403 Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In *Symposium on Theoretical Aspects in Computer Science*, 1999.

404 Kevin Leyton-Brown. Personal communication, 2019.

405 406 407 Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. *Science*, 2017.

408 409 John Nash. Equilibrium points in n-person games. *Proceedings of the National Academy of Sciences*, 36:48–49, 1950.

410 411 Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-player games. *Journal of the ACM*, 55(3):14, 2008.

412 Indrajit Ray and Sonali Sen Gupta. Technical Report, 2009.

413 414 Tim Roughgarden and Éva Tardos. How bad is selfish routing? *Journal of the ACM (JACM)*, 49(2):236–259, 2002.

415 416 Yoav Shoham and Kevin Leyton-Brown. *Multiagent systems: Algorithmic, game-theoretic, and logical foundations*. Cambridge University Press, 2009.

417 418 Bernhard Von Stengel and Françoise Forges. Extensive-form correlated equilibrium: Definition and computational complexity. *Mathematics of Operations Research*, 33(4):1002–1022, 2008.

419 Bernhard von Stengel. Efficient computation of behavior strategies. *Games and Economic Behavior*,
420 1996.

421 Bernhard von Stengel. Computing equilibria for two-person games. In Robert Aumann and Sergiu
422 Hart, editors, *Handbook of game theory*, volume 3. North Holland, Amsterdam, The Netherlands,
423 2002.

424 Mengdi Wang and Dimitri P Bertsekas. Incremental constraint projection-proximal methods for
425 nonsmooth convex optimization. *SIAM J. Optim.(to appear)*, 2013.