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Abstract. In the present work, a hybrid beam element based on exact kinematics is devel-
oped, accounting for arbitrarily large displacements and rotations, as well as shear deformable
cross sections. At selected quadrature points, fiber discretization of the cross sections facili-
tates efficient computation of the stress resultants for any uniaxial material law. The numerical
approximation is carried out through the lens of nonlinear programming, where the enengy
functional of the system is treated as the objective function and the exact strain-displacement
relations form the set of kinematic constraints. The only interpolated field is curvature, whereas
the centerline axial and shear strains, along with the displacement measures at the element
edges, are determined by enforcing compatibility through the use of any preferable constrained
optimization algorithm. The solution satisfying the necessary optimality conditions is deter-
mined by the stationary point of the Lagrangian. A set of numerical examples demonstrates the
accuracy and performance of the proposed element against analytical or approximate solutions
available in the literature.
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1 INTRODUCTION

Problems frequently encountered by the engineering community over the last decades were
concerned with structural systems whose response involved large displacements, rotations and
strains on one hand, and inelastic behavior on the other. Such problems, in cases where the
subject matter involved rod-like structures, necessitated the advancement of the classical Euler-
Bernoulli theory, where displacements, rotations and strains were typically kept in the small
range.

In the geometrically nonlinear case, the deformed geometry of the beam can be drastically
different from the undeformed one, resulting in a rather involved description of beam kinemat-
ics. In general, there are two approaches in describing the kinematics of beams. The first one is
the so-called continuum-based approach [1], which is employed for the derivation of the classi-
cal beam theory [2] and where all vectorial components are obtained from the three-dimensional
theory of solids, with additional assumptions imposed on cross-section kinematics. The second
approach, which is followed in this work, is concerned with the description of a material curve
- an assemblage of material points representing the beam centroid - embedded in E? (or E? in
the 3D case). The analysis of the curve by means of differential geometry of curves leads to
the notion of intrinsic parameterization or one-dimensional formulation of beams, where spa-
tial quantities can be expressed as functions of only one parameter. In the study of beams, this
parameter is taken to be the arc-length of the beam. This in turn leads to the so-called arc-
length parameterization of the beam with respect to a reference configuration. This approach
was adopted in early works by Reissner [3, 4] and, next, Simo [5], Simo and Vu-Quoc [6] and
can be traced back to Kirchhoff and his treatment of inextensible elastic rods. In these formu-
lations, often termed as geometrically exact, the thickness of the rod is taken into consideration
by attaching two vectors at each point on the material curve that would translate and rotate with
the points, thus defining the properties of curvature and torsion at these points.

Approaches where strain measures are recast as primary field variables are often termed
strain or deformation-based and were explored by Planinc et al. [7] for the planar case of
the geometrically exact beam in order to properly account for the effect of local instabilites
on the tangent stiffness matrix due to plastification, when global stability considerations are
also present. It was later extended to the 2D dynamic case by Gams et al. [8] and to the
three-dimensional case by Zupan and Saje [9] as a means to cope with the strain objectivity
issue arising from the interpolation of the rotation vector [10]. Interpolation of strain measures
is also encountered in mixed formulations, where more than one fields are interpolated and
the underlying functional is augmented by additional terms to be satisfied in the weak sense
[11]. Several other works with geometrically exact formulations in various settings can be
found in the literature. Approaches based on mixed, hybrid, flexibility- and displacement-based
considerations can be indicatively seen in [12, 13, 14, 15].

The present work is an extension of the geometrically exact hybrid formulation presented
in [16] in order to account for the effect of shear deformation at the section level. As opposed
to deriving the system equations from the Galerkin form after appropriate discretization, in the
aforementioned work the problem is originally recast in a nonlinear programming framework,
where the total potential energy functional (TPE) is augmented via Lagrange multipliers that
enforce satisfaction of the exact kinematic conditions. The resulting functional is then approx-
imated by employing a Gauss-Legendre quadrature rule, which yields the objective function
to be minimized. Another interesting feature of this particular approach is that the primary
variables in the element interior contributing to the elastic strain energy are the generalized
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strain measures of the centroid, which are sought at quadrature points. Displacement mea-
sures, namely, the translations along the coordinate axes and the rotation of the cross sections,
occur only at the nodes of the element and are associated with the external work. Kinematic
consistency between the rotational measures of displacement and strain is enforced by using a
Lagrange interpolation scheme to approximate the curvatures over the entire element domain.
We should note that quadrature points coincide with the Lagrange interpolation points. In the
remainder a succinct presentation of the formulation is presented, along with numerical investi-
gations based on benchmark nonlinear problems studied in the literature, verifying the accuracy
and efficiency of the suggested approach.

2 KINEMATICS AND TOTAL POTENTIAL ENERGY

We now proceed with the derivation of the kinematic equations that serve as constraints for
the optimization problem. Let us consider two dimensional Euclidian space E? and a fixed
Cartesian coordinate system (X;, X») with unit basis vectors {E;}, @ = 1, 2 and a material
curve of length L which represents the centroid of the beam embedded in that space. We
will assume that the beam is initially straight, aligned with the coordinate axis X; and in an
unstressed state. We also define the arc-length parameterization of the material curve s € I =
[0, L] — r € R? where s is the distance of a material point on the line of centroids in
the reference configuration. The position vector of any material point on the centroid in any
configuration can be written as:

r(s) = (s + u(s))Er + w(s)Ez (D

where u and w are the displacements of the material point along the coordinate axes X; and X5
respectively.
Beam Kinematics

According to [3] the strain-displacement relations, assuming small axial strain of the beam
centroid, are:

u'=(1+¢€)cosp—ysing —1 2)
w' = (1+ €)sin¢ + ycos @ 3)
¢ =k 4)

where €, v and « are the axial, shear and bending strains of the line of centroids respectively,
¢ is the tangent angle to the material curve in the current configuration and derivatives with
respect to the s are denoted by ( )’. Integrating (2)-(4) over [ yields:

u(L)—u(O):/O (14+€)cos¢p —ysingds — L
w(L)—w(O):/O (1+€)sing + ycos o ds (5)
o) = 0(0) = [ s

The integral form of the kinematic equations in (5) is utilized to impose the constraints on the
nonlinear program.
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Total Potential Energy

The total potential energy functional of the beam under a set of point loads P = [Py P,]7, with
P; the point loads at the element edge nodes, can be expressed in the reference configuration
as:

L
Il(e, 7, K, d) :/ W (e, v, k) ds —PTd (6)
0

where W is the strain energy per unit length of the beam centroid. The displacement degrees of
freedoms at the two edge nodes are collectively represented in vector d as:

d=[d dy dy dy d5 dg]" (7

with:
dl - U(O), d2 - w(0)7 d3 = ¢(0>7
dy =u(L), ds = w(L), dg = ¢(L)

The stress resultants on a section are associated with the strain energy as follows:

oW ow oW

N=%c » 9=%, » M=% ®)

Oe

The stress resultants defined in (8) can be numerically computed using appropriate fiber dis-
cretization at the cross section level. Thereby, any nonlinear constitutive law may be incorpo-
rated in beam element formulations to capture the effects of distributed elastoplastic behavior
or damage [17, 18, 19].

3 NONLINEAR PROGRAMMING PROBLEM STATEMENT

In this section we formulate the equations pertaining to the description of our hybrid element as
a nonlinear program.

Element Objective Function

The discrete form of the TPE in (6) is given by applying Gauss-Legendre quadrature to approx-
imate the integral for one element:

n

Fx)=>_ aW(e, v, w) —P'd )

i=1

where c; are the weights of the quadrature, n the number of quadrature points and x, d and y;
are defined as:

x=[yl y¥ ...y d7]" (10)

withy; = [& i /iz'}T

Element Constrains

The first set of constraints derived from the approximation of kinematic relations (5) is given
as:
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d4 — d1 — Z?:l Cz[(l + 62') COS ¢z — Y sin 9252] + L
ChL=| ds—da— Y7 ci[(1+€)sing; +vcosgy] | =0 (11)
dg — d3 — Z?:l CiKj

In accordance with [16] we then interpolate the curvature field with Lagrange polynomials in
order to obtain the rotations ¢; at the quadrature points:

¢ =ds+ Y _ Ok, (12)
j=1
2 n
g % ... % 1 & ... &t
©=L|: : -~ |G G=]|: : -~ (13)
e e n—1

where { = 7 and G is the Vandermonde matrix.

Notice that the first two equations of (11) are nonlinear equality constraints, while the third,
along with the n equations of (12) are linear equality constraints. It is convenient to recast all
constraints in one vector as follows:

A
Ceq
Cey = =0 (14)
B
Ceq
where

¢1—ds — D5 Ouk;
B .
Ceq = : (15)
Gn — dy — 31 Onjk;

Element Lagrangian Function

We now introduce a vector A of the Lagrange multipliers and augment the TPE (6), constructing
the Lagrangian of the optimization problem as:
Fx X)) =D eWl(e, v, ki) —PTd+A"C,, (16)

=1

Stationary points are provided by satisfying Karush-Kuhn-Tucker [20] optimality conditions for
the Lagrangian function of (16).

4 NUMERICAL EXAMPLES

In the following examples we examine the performance of the proposed formulation and com-
pare it with other well-known works in the literature. We first explore the accuracy when the
shear stiffness is reduced and then we test against different loading cases. For each example,
only one element with five quadrature points is used.
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Table 1: Cantilever with constant transverse load at free end.

w U

GA, Numerical Analytical Present Numerical Analytical Present
5-10%0 0.30172077 0.301720774 0.30172432 0.05643324 0.056433236 0.05643126
5-102 0.31781387 0.317813874 0.31781567 0.06131566 0.061315658 0.06131317
510! 0.46541330 0.465413303 0.46541543 0.10328492 0.103284917 0.10328294
1-102 1.16709588 1.167095878 1.16709542 0.25213661 0.252136606 0.25213357
5-109 2.10408747 2.104087473 2.10409063 0.37612140 0.376121399 0.37612451

Problem data: FA = 10?!, EI = 10, L = 1. Numerical data in [21], analytical in [22].
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Figure 1: Timoshenko compared to Bernoulli solutions for different levels of slenderness.

Example 1 - Effect of shear deformation in cantilever deflection

In this example we explore the effect of shear flexibility on the tip deflection of a cantilever. A
constant point transverse force P = 10 units is applied at the free end and, then, several analyses
are performed by varying the shear stiffness coefficient, G A;. Numerical and analytical results
obtained by Batista in [21] and [22], respectively, are compared with the present formulation
and are illustrated in Table 1.

Fig. 1 demonstrates the effect shear deformations have when not neglected, compared to the
Bernoulli solutions, by varying the ratio L/h, with h being the height of the cross section and L
the length of the beam. The applied load is F', v is the Poisson’s ratio and wp is the deflection
when shear flexibility is neglected. As can be seen from the results, when L = 2h, transverse

6
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displacements due to shear deformation are increased by rougly 13%.

Example 2 - Cantilever with transverse point load at its tip

This problem has been analyzed in [23, 24], whereas Mattiasson [25] provided solutions by
solving the elliptic integrals of the problem of large deflections of beams. Moreover, the prob-
lem was also examined in [26] using a co-rotational transformation for the Timoshenko beam,
whereas Nanakorn [27] used 3 elements and a total tagrangian formulation.
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Figure 2: Cantilever with point transverse load at its free end.

Table 2: Cantilever with transverse load at its free end.

w/L u/L
PL?/EI Mattiasson  Present Mattiasson Present
2.0 0.49346  0.49347 0.16064 0.16063
4.0 0.66996  0.67001 0.32894 0.32892
6.0 0.74457  0.74465 0.43459 0.43457
8.0 0.78498  0.78509 0.50483 0.50481
10.0 0.81061  0.81073 0.55500 0.55498

Problem data: FI = 1000 Ib/in?, L = 100in, P = 11b, N = 20 steps.
Results in Mattiasson [25].
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Figure 2 illustrates the performance of the element when compared against the analytical and
numerical solutions - mentioned above - and Table 2 demonstrates the accuracy up to six deci-
mal points when compared to the analytical solutions for a sample of loading levels. The dotted
line indicates the linear response.

Example 3 - Cantilever with point moment at its free end

This example tests the capabilities of our developed model capturing the response of an inex-
tensional beam subjected to a point moment, forcing a curl into a complete circle. As men-
tioned previously, in all examples we only used one element with five quadrature points for our
analysis. Bathe and Bolourchi [28] using five and twenty elements and an updated lagrangian
procedure showed accuracy up to 90 degrees. In subsequent works, Simo & Vu-Quoc [6] (five
elements), Rankin & Brogan [29] (ten elements) and Crisfield [30] (five elements) duplicated
the exact solution. In the second and third works a corotational formulation was employed.
The mechanical and geometric properties for this problem are / = 0.01042in*, L = 100in,
A = 0.5in%, E = 1.2 x 10*psi.

In Fig. 3 our solution is compared with the one using twenty elements. As mentioned earlier,
with the element proposed by Bathe & Bolourchi [28], which is based on large-displacement
and large-rotation assumptions, the response starts to diverge from the exact solution at an angle
of 90 degrees rotation, irrespectively of the mesh density. Our proposed formulation is instead
able to capture the response for the whole loading scenario (360 degrees), as can be seen from
the line that represents the normalized displacement ¢ /27.
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Figure 3: Cantilever with point moment at its free end.
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Example 4 - Cantilever beam with eccentric compressive point load

We consider a cantilever beam of length L = 100, cross section thickness b = 1 and elastic
modulus ' = 12, with the load parameter A\ = P/ P,, is increased up to 4.0. The critical load
for the cantilever is P.. = 0.2572E1/L?. Wood & Zienkiewicz [31] used five continuum-based
elements that allow for shear deformation and employed a total Lagrangian formulation. The
results are illustrated in Fig. 4. Analytical solutions to the problem, provided in [23, 32] where
it is assumed no axial or shear deformation occurs, show negligible discrepancy compared to
the ones proposed here and in [31]. It should be noted that the eccentricity is ¢ = b/2. The
configurations for each load step for Examples 2,3 and 4 are depicted in Fig. 5, from left to
right.
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P,
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Normalized load

1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 4: Cantilever with eccentric axial load at its free end.
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Figure 5: Configurations at each step for examples 2, 3 and 4 (left to right).
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S CONCLUSIONS

An extension to the geometrically exact hybrid element derived in [16] is presented herein that
accounts for shear deformations. The system of equilibrium equations is originally derived
within a nonlinear programming framework, where the total potential energy functional is dis-
cretized and then augmented by the exact kinematic constraints of the physical problem, also
in discretized form, and solved by determining the stationary point of the Lagrangian. The
suggested nonlinear programming hybrid formulation is capable of capturing the response of
the benchmark problems with accuracy, using only one element, which is a desirable feature
for framed structure applications. Ongoing work explores a variety of different approaches as
far as the optimization algorithms are concerned, which is something the proposed formulation
supports and enables, the extension of the material yield rule to account for the interaction of
shear and axial stresses, as well as the extension to spatial and dynamic formulations.
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