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Rydberg mediated entanglement in a two-dimensional neutral atom qubit array
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We demonstrate high fidelity two-qubit Rydberg blockade and entanglement in a two-dimensional
qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for
trapping atomic qubits. Improved experimental methods have increased the observed Bell state
fidelity to FBell = 0.86(2). Accounting for errors in state preparation and measurement (SPAM)
we infer a fidelity of F−SPAM

Bell = 0.89. Including errors in single qubit operations we infer that the

Rydberg mediated CZ gate has a fidelity of F−SPAM
CZ

= 0.91. Comparison with a detailed error
model shows that further improvement in fidelity will require colder atoms and lasers with reduced
noise.

Achieving the promise of a computational advantage
for quantum machines is predicated on the development
of approaches that combine a large number of qubits with
a high fidelity universal gate set. A broad range of ex-
perimental platforms for quantum computing are being
developed[1] and very high fidelity two-qubit gates have
been implemented in trapped ion and superconducting
systems with small numbers of qubits: FBell ≥ 0.999 with
two trapped ions[2] and a phase gate fidelity FCZ

> 0.99
with five superconducting qubits[3]. As the number of
qubits in a quantum computer is scaled up, crosstalk and
undesired interactions may limit fidelity. Average Bell
state fidelities of FBell = 0.975 were obtained in an 11
qubit ion trap[4]. An approach based on qubits encoded
in hyperfine states of optically trapped neutral atoms
holds great promise for scaling the number of qubits with-
out limiting gate fidelities. The physical attribute that
enables scaling with low crosstalk is the separation by 12
orders of magnitude between the weak coupling strength
of neutral atom hyperfine qubits, and the strong interac-
tions of Rydberg excited atoms[5] that are used to real-
ize entangling gates[6]. We report here on experimental
progress in achieving high entanglement fidelity in a 2D
array of more than 100 qubits. The intrinsic gate fidelity
of FCZ

= 0.91 we report here, together with previously
demonstrated single qubit gates with F > 0.99[7, 8], and
atom rearrangement capabilities[9] suggest that neutral
atom arrays will soon be capable of advancing the state
of the art in gate based quantum computing.
A computationally universal set of quantum gates can

be built from one- and two-qubit operations. High fi-
delity one-qubit gates with fidelities determined by ran-
domized benchmarking exceeding 0.99 and crosstalk to
other sites less than 0.01 have been demonstrated in 2D[7]
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FIG. 1. (color online) Atomic qubit array. a) Averaged flu-
orescence image of 121 site array after ICA processing with
the control and target sites used for the presented data la-
beled. b) Loading histogram with inset showing state de-
tection inferred after blow away of atoms in f = 4. c)
Atom retention probability after measurement. Accounting
for all 121 sites the state detection error found from the over-
lap of Gaussians fitted to the |0〉 and |1〉 distributions was
mean= 0.014, median= 0.003. The atom retention probabil-
ity was mean= 96.9%, median= 97.9%.

and 3D[8] arrays of neutral atom qubits. However the fi-
delity of two-qubit entangling gates has been limited to
much lower values. The highest fidelity results from the
last few years for entanglement of pairs of neutral atoms
are 0.79[10], 0.81[11], 0.59[12], 0.81[13]. These fidelity
numbers are corrected for SPAM errors and in some cases
also atom loss. Recent progress with qubits encoded in
one hyperfine ground state and one Rydberg state has
demonstrated entanglement fidelity of 0.97[14], although
the use of Rydberg encoding limits the coherence time
to < 0.1 ms, which is much shorter than the seconds
of coherence time that have been achieved with qubits
encoded in hyperfine ground states[8, 15].
The experimental setup is an upgraded version of that

described in [10]. A two-dimensional array of Cs atoms
is prepared using a projected optical lattice with period
d = 3.1(1) µm (numbers in parentheses are uncertain-
ties in the last digit) and wavelength λ = 825 nm. (see
Fig.1). In contrast to our previous work with a Gaussian
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FIG. 2. (color online) Single site ground-Rydberg Rabi oscil-
lations at ΩR/2π = 2.5 MHz with negligible crosstalk to the
surrounding eight sites.

beam array[16], the array structure is defined by a square
grid of lines of light that are prepared using diffractive
optical elements[17]. Each unit cell provides 3D atom
confinement with the transverse localization due to the
repulsive walls of blue-detuned light, and axial confine-
ment perpendicular to the plane of the array provided by
diffractive spreading of the lines. We measure vacuum
limited lifetimes of ∼ 30 s, longitudinal coherence times
in the Cs clock states of T1 = 0.75 s and an average tem-
perature of Ta ≃ 15 µK. The atomic temperature implies
a limit on the clock state coherence time due to motional
variation of the trap light intensity of T ∗

2 = 1.6 ms.

The array is prepared by combining four laser sources
with different frequencies such that the four beams defin-
ing each unit cell are separated by many MHz, but the
frequencies are repeated in neighboring cells. With this
configuration the structure and position of each trap-
ping site are insensitive to phases caused by variations
in optical path length which provides a very stable ar-
ray. However, Talbot interference still occurs leading
to additional trapping planes at axial separations of
L = 2(2d)2/λ = 93 µm. Detection of atoms in the array
is hampered by a diffuse background of scattering from
atoms in the additional Talbot planes. We effectively
reduce the background noise with regions of interest for
each trap site, that are determined using an indepen-
dent component analysis (ICA) algorithm[17], see Fig.
1. Alternatively the Talbot planes can be eliminated by
making each line a different frequency. We have imple-
mented this using acousto-optic deflectors to create the
lines and thereby generated arrays with up to 196 trap-
ping sites and an average of 110 trapped atoms. Details
of this approach will be given elsewhere[18].

The trapped Cs atoms are optically pumped into the
clock states which form a qubit basis of |0〉 = |6s1/2, f =
3,mf = 0〉 and |1〉 = |6s1/2, f = 4,mf = 0〉. State

|1〉 is resonantly coupled to the Rydberg state |R〉 =
|66s1/2,mj = −1/2〉 using a two-photon transition with
counterpropagating λ1 = 459 nm (σ+) and λ2 = 1038 nm
(σ−) laser beams which couple 6s1/2 → 7p1/2 → 66s1/2.
We detune by +680 MHz from the center of mass of the
7p1/2 state and use a magnetic bias field of 0.6 mT di-
rected along the quantization axis, which is collinear with
the beam k vectors, to separate the Rydberg mj = ±1/2
states. The choice of Rydberg principal quantum num-
ber is lower than in our previous demonstrations and is
desirable for minimizing perturbations from background
electric fields. With the small array period used here
there is sufficient blockade strength and state lifetime at
n = 66 that the resulting errors are minor contributions
to the overall error model (see Table I below).
The Rydberg excitation beams are focused to beam

waists (1/e2 intensity radii) of w1 = w2 = 3.0 µm which
are pointed to address desired sites in the array using
crossed acousto-optic modulators for each beam. Fig-
ure 2 shows ground to Rydberg Rabi oscillation data in
the array. The trap light is turned off during the Ry-
dberg pulse. Since the blue detuned array traps Ryd-
berg atoms when turned on again[19, 20] there is only
minimal mechanical loss of Rydberg states. In order to
detect Rydberg excitation we turn on a short 9.2 GHz
microwave pulse (duration 70 µs) to photoionize the Ry-
dberg atom. Rydberg detection efficiencies are typically
80-90%. The data was obtained using diode lasers that
are stabilized to high finesse optical resonators (∼ 5 kHz
linewidth) with ultralow expansion mirror spacers placed
in temperature controlled vacuum cans. The linewidths
of the lasers determined by beating two such lasers to-
gether were determined to be under 300 Hz. It has been
recognized that phase noise of diode lasers contributes to
decay of ground-Rydberg oscillations[21], with improved
performance achieved by resonator filtering[14]. Here we
demonstrate comparable performance, without any res-
onator filtering, but with careful tuning of the electronic
Pound-Drever-Hall lock parameters to reduce the ampli-
tude of servo bumps.
The nominal Rabi frequency at neighboring sites due

to Rydberg beam crosstalk is Ω′
R = e−d2/w2

1e−d2/w2
2ΩR =

0.12 ΩR, while the data shows no evidence of Rabi oscil-
lations at the other sites. We achieve reduced crosstalk
by using beam powers that give a nonzero differential
Stark shift of ∆′/2π = 2 MHz between ground and Ryd-
berg states which suppresses the oscillation amplitude to
(Ω′

R/∆
′)2 = 0.023.

A curve fit to the Rabi oscillations at the selected site
in Fig. 2 does not reveal a statistically significant decay
time. The radiative lifetime of the 66s state is 130 µs and
the motional dwell time of a Rydberg atom in a trap site
is ∼ 50 µs. Both time constants are much longer than
the observed 4 µs of coherent oscillations. However, the
ground-Rydberg phase coherence decays due to Doppler
sensitivity of the two-photon excitation according to[22]

〈eıφ〉 = e−t2/T 2
2,D with T2,D =

√

2MCs/kBTa/k2ν and
k2ν = 2π/λ1−2π/λ2. At Ta = 15 µK we find T2,D = 6 µs
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FIG. 3. (color online) Population in |1〉 after a) control and
b) target qubit Rydberg pulses. The Rabi frequencies for the
control and target pulses were ΩR/2π = 3.6 and 4.6 MHz
respectively and gap time = 300 ns.

which would seem to imply a noticeable decay of the Rabi
amplitude. This is not the case because the effective
coherence, or persistence time, of a driven oscillation is
much longer than that of a static superposition of states.

The original proposal for a Rydberg CZ gate[6] involves
a sequence of three pulses connecting ground and Ryd-
berg states: a π pulse on the control qubit, 2π on the tar-
get qubit, and π on the control qubit. It has been shown
by detailed analysis of the atomic structure of the heavy
alkalis that this pulse sequence is in principle capable of
creating entanglement with fidelity F > 0.998 [23]. Many
other Rydberg gate protocols have been proposed(see [24]
for an overview). Using shaped pulses F > 0.9999 at
gate times as short as 50 ns[25] appears possible. The
infidelity of our current implementation is dominated by
technical errors and finite atomic temperature, as op-
posed to intrinsic atomic structure parameters, and we
report here on improved performance of the original pro-
posal, leaving demonstration of alternative protocols for
future work.

One of the technical errors that has been improved
on is the loss of Rydberg atoms after the π − gap − π
pulses on the control qubit or the 2π pulse on the target
qubit. These losses dominated the error budget in most
earlier experiments[10, 26, 27]. With improvements to
laser noise, optical beam quality, and alignment we have
reduced population losses to 2% as shown in Fig. 3. In
order to minimize excitation of Rydberg hyperfine states
with mf 6= 0 we align the k vectors of the 459 and 1038
nm beams to be anti-parallel and set the background
magnetic fields and polarization of the 459 nm beam to
be accurately σ+ relative to a quantization axis along k.
This is done by preparing the state |4, 4〉 and minimizing
the scattering rate due to the 459 nm light. In addition
for the data in Figs. 3 - 5 the beam waists were reduced
slightly compared to those used for the data in Fig. 2
to w1 = 2.25 µm and w2 = 2.5 µm in order to minimize
crosstalk between sites.

The next step in tuning the gate sequence is to verify
the qubit phase induced by a 2π Rydberg pulse. We do
this using a Ramsey sequence of π/2 - gap - π/2 pulses on
the qubit states and insert a 2π |1〉−|R〉 pulse on the tar-
get qubit inside the gap as shown in Fig. 4. Performing
this sequence with and without first exciting the control
qubit to |R〉 with a π pulse gives an “eye” diagram that
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FIG. 4. (color online) Eye diagram for target qubit with
blockade and no-blockade curves of amplitude 0.91(6) and
0.85(3). The inset shows the target pulse sequence. The CZ

gate was operated at θ = 0.95 radians.

ideally consists of blockade and no-blockade curves that
are π out of phase with each other. In the experiment
these curves have a relative phase that is not equal to π
due to Stark shifts of the qubit states induced by the Ry-
dberg excitation beams[10]. To compensate for this we
slightly detune the Rydberg pulse on the target to give
the opposite phase Ramsey curves seen in the figure.

The observed amplitude of the blockade and no-
blockade curves in Fig. 4 is 0.91(6) and 0.85(3). To
prepare a maximally entangled Bell state with the CZ

gate the input state is (|00〉+ |10〉+ |01〉+ |11〉)/2. The
|0〉 state is not Rydberg coupled and is not affected by
the gate sequence therefore |00〉 experiences no error,
|10〉 corresponds to Fig. 3a), |01〉 corresponds to the
no-blockade eye diagram curve, and |11〉 the blockaded
eye diagram curve. It follows that the data in Fig. 3, 4
imply a limit on the fidelity of the output Bell state of
Fmax = (1 + 0.98 + 0.89 + 0.88)/4 = 0.94. The observed
FBell is lower than Fmax by an additional 0.08 which we
attribute to the error channels discussed below in con-
nection wtih Table I.

To prepare a Bell state we start with control and tar-
get qubits in |c〉 = |1〉, |t〉 = |1〉. We then perform the
pulse sequence shown in Fig.5 which puts the control
qubit in a superposition of |0〉 and |1〉 and implements a
CNOT gate consisting of a target π/2 rotation, the CZ

Rydberg pulses, and a target π/2 rotation at angle θ.
The populations of the two-qubit output state are mea-
sured, and the coherence is determined from the ampli-
tude of parity oscillations due to a π/2 rotation at vari-
able angle φ[10]. The resulting data shown in Fig. 5 gives
(P00 + P11)/2 = 0.47(2), parity amplitude C = 0.391(6),
and FBell = 0.47 + 0.39 = 0.86(2).

The observed Bell fidelity can be understood from the
error sources enumerated in Table I. The errors are di-
vided into three categories: a) errors due to atomic pa-
rameters and finite temperature, b) errors in the sin-
gle qubit operations used for the CNOT gate and par-
ity measurement, and c) SPAM errors. Calculations and
measurements supporting the error model are provided
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TABLE I. Error budget for Rydberg CZ gate and Bell state preparation using parameters from the Bell state experiment.
The listed error values are for two atoms averaged over the four computational basis states. Supporting calculations and
measurements for the error values are provided in the supplementary material[28].

quantity error fidelity estimate

a) atomic parameters & finite temperature effects
a.1) ground-Rydberg Doppler dephasing (calculated) 0.013
a.2) Rydberg radiative lifetime (calculated) 0.004
a.3) Rydberg motional dwell time (calculated) 0.014
a.4) scattering 7p1/2 (calculated) 0.004
a.5) blockade leakage (calculated) 0.001
a.6) atom position in Rydberg beams (calculated) 0.035
a.7) laser noise (estimated) 0.02

total 0.092 F−SPAM
CZ

= 0.908

b) single qubit errors
b.1) initial and parity global µwave pulses (measured) 0.008
b.2) Stark µwave pulse (measured) 0.012

total 0.020 F−SPAM
Bell = 0.888

c) SPAM errors
c.1) atom preparation (measured) 0.01
c.2) optical pumping (estimated) 0.01
c.3) state measurement (measured) 3.0× 10−4

total 0.020 FBell = 0.868
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FIG. 5. (color online) Bell state preparation: a) pulse se-
quence, b) populations, c) parity oscillation. The Rydberg
pulses had lengths of tπ = 150 ns, t2π = 220 ns, tgap =
300 ns. The effective ground-Rydberg superposition time is
tgR = tπ/2+tgap+t2π+tgap+tπ/2 = 0.98 µs. The microwave
pulses are global (duration 35 µs) for the initial and parity
pulses and global pulses combined with a 459 nm Stark pulse
(duration 70 µs) for the site selected rotation.

in the supplementary material[28]. We emphasize that
this analysis is heuristic and is based on assigning es-
timated error values to physically distinct error mecha-
nisms. Since the errors are not independent we have com-
bined them linearly. Combining the errors in quadrature
gives error estimates roughly twice smaller that do not
agree well with measured data, both as regards the Bell
state, and as regards measurements of fidelities for indi-
vidual qubit operations. Including all errors we arrive at
the value in the last line of Table I which is consistent

with the observed FBell = 0.86(2). Accounting for SPAM
errors gives a corrected Bell fidelity F−SPAM

Bell = 0.89. Ac-
counting for single qubit errors that go into the CNOT
gate and parity measurements we arrive at a SPAM cor-
rected value for the Rydberg CZ gate of F−SPAM

CZ
= 0.91.

It is apparent from the Table that the dominant CZ

gate error sources are due to finite temperature which
leads to atomic motion and dephasing, and atomic posi-
tion variations in the optical traps. In addition laser in-
tensity and phase noise contribute to the gate error at the
few percent level. The atomic structure errors that arise
from the finite radiative lifetime of excited states and
finite blockade strength contribute less than 1% to the
error budget. These observations support the potential
for the Rydberg interaction to mediate gates that have
fidelity compatible with fault tolerant error correction
after further technical improvements for reduced atom
temperature and laser noise reduction.

In summary we have demonstrated a two-qubit Ryd-
berg CZ gate with intrinsic fidelity after correcting for
SPAM and single qubit errors of F−SPAM

CZ
= 0.91. The

gate was used to prepare Bell states with observed fi-
delity of FBell = 0.86(2) and SPAM corrected fidelity of

F−SPAM
Bell = 0.89. These fidelities were obtained with a

2D qubit array and using a tightly focused control beam
geometry that is compatible with site specific gate oper-
ations across the array.

During the completion of our manuscript we became
aware of related work demonstrating parallel operation
of Rydberg gates[29].

We acknowledge support from NSF PHY-1720220, the
ARL-CDQI, DOE award de-sc0019465, and ColdQuanta,
Inc. .

http://arxiv.org/abs/de-sc/0019465


5

[1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, and J. L. O’Brien, “Quantum computers,”
Nature 464, 45 (2010).

[2] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol,
and D. M. Lucas, “High-fidelity quantum logic gates us-
ing trapped-ion hyperfine qubits,” Phys. Rev. Lett. 117,
060504 (2016); J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan,
R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill,
D. Leibfried, and D. J. Wineland, “High-fidelity uni-

versal gate set for 9Be
+

ion qubits,” ibid. 117, 060505
(2016).

[3] R. Barends, J. Kelly, A.Megrant, A. Veitia,
D.Sank, E. Jeffrey, T. C.White, J. Mutus, A. G.
Fowler, B.Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, C. Neill, P. OMalley, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cle-
land, and J. M. Martinis, “Superconducting quantum
circuits at the surface code threshold for fault tolerance,”
Nature 508, 500 (2014).

[4] K. Wright, K. M. Beck, S. Debnath, J. M. Amini,
Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti,
M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi,
J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon,
M. Williams, A. M. Ducore, A. Blinov, S. M. Kreike-
meier, V. Chaplin, M. Keesan, C. Monroe, and
J. Kim, “Benchmarking an 11-qubit quantum computer,”
arXiv:1903.08181 (2019).

[5] M. Saffman, T. G. Walker, and K. Mølmer, “Quantum
information with Rydberg atoms,” Rev. Mod. Phys. 82,
2313 (2010).

[6] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté,
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SUPPLEMENTARY MATERIAL FOR
RYDBERG MEDIATED ENTANGLEMENT IN A
TWO-DIMENSIONAL NEUTRAL ATOM QUBIT

ARRAY

In this supplementary material we reproduce Table I
from the main text and provide explanations, additional
measurements, and underlying calculations that support
the error model. The error modeling largely follows ear-
lier analyses[5, 23, 26, 30–32] supplemented by new mate-
rial concerning atom position variations with respect to
the Rydberg beam envelopes and the influence of laser
phase noise on gate fidelity.

SM-I. ATOMIC PARAMETERS AND FINITE
TEMPERATURE EFFECTS

Before proceeding with the individual errors we note
that error averaging over the computational basis states,
which is appropriate for characterizing the Rydberg CZ

fidelity, is the same as the error for the specific input state
that is used to prepare a Bell state. Therefore we do not
need to distinguish between error estimates for the CZ

gate and error estimates for preparing a Bell state.
To clarify this statement suppose the four computa-

tional basis states |ij〉 have associated CZ gate errors
ǫij . The gate error averaged over the computational ba-
sis states is then ǫCZ

= (ǫ00 + ǫ01 + ǫ10 + ǫ11)/4. When
preparing the Bell state the two-qubit state that is in-
put to the CZ operation is (|00〉 + |01〉+ |10〉+ |11〉)/2.
The Bell state error probability due to the CZ errors is
therefore ǫBell = ǫ00/4 + ǫ01/4 + ǫ10/4 + ǫ11/4 = ǫCZ

.
An implicit assumption that justifies equivalence of er-
rors is that there are no correlations between different
error channels.

a.1 Ground-Rydberg Doppler dephasing

Rydberg excitation is performed with counterprop-
agating beams of different wavelengths so there is a
wavenumber mismatch k2ν = 2π/λ1 − 2π/λ2. This leads
to a stochastic phase for atoms that are Rydberg ex-
cited, spend a time tgR in the Rydberg state, and then
de-excited. This was originally pointed out in [27], al-
though our analysis[22, 31] gives a smaller prediction for
the magnitude of the phase error.
The average stochastic phase term can be expressed

as 〈eıφ〉 = e−t2gR/T 2
2,D with T2,D =

√

2MCs/kBTa/k2ν .
At the measured atomic temperature of Ta = 15 µK we
find T2,D = 6 µs. This effect limits the Bell fidelity to
Fmax
Bell = (1 + 〈eıφ〉)/2 = 0.987 using tgR = 0.98 µs. Our

measurement of the ground-Rydberg coherence decay us-
ing a Ramsey experiment reveals a shorter coherence
time of T2,gR = 4 µs which would imply Fmax

Bell = 0.971.
We do not use this value in the error table because the
difference between T2,D and T2,gR is assumed due to other

error mechanisms, including Rydberg radiative lifetime,
atom position variations, and laser noise, that are sepa-
rately included in the table.

a.2 Rydberg radiative lifetime

The lifetime of the Cs 66s state in a room tempera-
ture bath is calculated to be [33] τ = 130 µs giving a
spontaneous emission error for the gate of ǫ = e−t/τ/4.
The relevant time is that of the gate integrated Rydberg
population which is 0 for state |00〉, tπ for state |01〉,
tgR for state |10〉, and tgR for state |11〉 giving a total of
t = 2tgR+tπ = 2.11 µs. The error is then ǫ = 0.004 which
is small even for the relatively low excitation n = 66 state
used here.

a.3 Rydberg motional dwell time

During the Rydberg excitation pulses the trap light is
turned off. If the atom moves outside of the trapping re-
gion before the trap light is turned on again it will be lost,
leading to an error. We estimate this error in terms of an
effective motional lifetime which is the minimum distance
the atom has to move to be lost (d/2) divided by the aver-

age thermal velocity v =
√

kBTa/M. The atom motion is
three dimensional, but the distance for trap loss is much
longer in the axial direction, so we approximate this effect
by setting the loss time to τmotion = (d/2)/(

√
2v). With

d = 3.1 µm and Ta = 15 µK we find τmotion = 36 µs. The
error is the same as for a.2 with τ replaced by τmotion giv-
ing ǫ = 0.014.

a.4 Scattering from 7p1/2

Two-photon excitation is via the 7p1/2 state which has
a radiative lifetime of τ7p = 155 ns. The one-photon
detuning is ∆/2π = 680 MHz. The probability of spon-
taneous emission in a π pulse when the one-photon Rabi
frequencies are equal is Pse =

π
2

1
τ7p∆

. Here we are neglect-

ing corrections due to the hyperfine structure of the 7p1/2
state. The full expressions, including those corrections,
can be found in [10].
Averaging over the input states we find the error

ǫ =
1

4
[0. (|00〉)

+ 2
π

2

1

τ7p∆
(|01〉)

+ 2
π

2

1

τ7p∆
(|10〉)

+ 2
π

2

1

τ7p∆
+

π

2

1

τ7p∆

]

(|11〉)

=
7π

8

1

τ7p∆
= 0.004.
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TABLE SM-I. Error budget for Rydberg CZ gate and Bell state preparation using parameters from the Bell state experiment.
The listed error values are for two atoms averaged over the four computational basis states. This is the same as Table I in the
main text.

quantity error fidelity estimate

a) atomic parameters & finite temperature effects
a.1) ground-Rydberg Doppler dephasing (calculated) 0.013
a.2) Rydberg radiative lifetime (calculated) 0.004
a.3) Rydberg motional dwell time (calculated) 0.014
a.4) scattering 7p1/2 (calculated) 0.004
a.5) blockade leakage (calculated) 0.001
a.6) atom position in Rydberg beams (calculated) 0.035
a.7) laser noise (estimated) 0.02

total 0.092 F−SPAM
CZ

= 0.908

b) single qubit errors
b.1) initial and parity global µwave pulses (measured) 0.008
b.2) Stark µwave pulse (measured) 0.012

total 0.020 F−SPAM
Bell = 0.888

c) SPAM errors
c.1) atom preparation (measured) 0.01
c.2) optical pumping (estimated) 0.01
c.3) state measurement (measured) 3.0× 10−4

total 0.020 FBell = 0.868

In the contribution from the |11〉 state we include half of
the blockaded excitation of the target atom since excita-
tion by the first 459 nm photon is not blockaded.

a.5 Blockade leakage

Due to less than infinite blockade strength there is fi-
nite rotation of the blockaded state. The average error
is [5] ǫ = Ω2

R/8B
2. The calculated blockade strength for

Cs 66s at a distance of R =
√
2d is B/2π = 45 MHz

which gives ǫ = 0.001. Measurements of the blockade
showed less than 0.02 leakage which is consistent with
SPAM estiamtes given below.

a.6 Atom position in Rydberg beams

All the reported measurement results are averaged over
multiple realizations and for each realization the atomic
position is slightly different. Averaging over atomic po-
sitions leads to decay of coherent oscillations, an effect
that was studied numerically in [32]. Here we calculate
the expected errors and their uncertainties for π and 2π
pulses. This contribution to the error budget, as well as
the contribution from laser noise in the following section,
has larger uncertainty then the other errors due to lack of

precise knowledge of the optical parameters of the array.
In particular the width and shape of the lines defining
the trapping sites affect the atomic localization but are
only known approximately.
The position distribution of a trapped atom at finite

temperature can be modeled as a Gaussian with radial
and axial localization parameters σ, σz and normalized
distribution

ρ(r) =
1

(2π)3/2σ2σz
e−(x2+y2)/(2σ2)e−z2/(2σ2

z).

The Rydberg beam field amplitudes relative to their val-
ues at the center of the beam are

fj(r) =
e−(x2+y2)/w2

j (z)

√

1 + z2/L2
Rj

.

Here w2
j (z) = w2

j (1 + z2/L2
Rj

) are the z dependent beam

waists, LRj
= πw2

j /λj are the Rayleigh lengths, and j =
1, 2. We assume that the Rydberg beams are aligned
with the origin of the atom distribution. If ΩR is the
two-photon Rabi frequency at the center of the beams
then the position dependent Rabi frequency is ΩR(r) =
ΩRf1(r)f2(r).
Consider a 2π pulse of length t with the initial state

|i〉. The average observed probability for the atom to be
in |1〉 after the pulse is

〈P|i〉(t)〉 =
∫

dr ρ(r)

{

cos2
[

ΩRt

2
f(r)

]

+
∆2(r)

Ω2
R(r) + ∆2(r)

sin2
[

ΩRt

2
f(r)

]}

. (1)

This expression includes the position dependent two- photon detuning ∆(r) = ∆0 +∆1f
2
1 (r) + ∆2f

2
2 (r). Here
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∆0 is a constant detuning and ∆1,∆2 are Stark shift co-
efficients that depend on the beam intensities and detun-
ings relative to the intermediate 7p1/2 state. Choosing
∆0 = −(∆1 +∆2) ensures that an atom at trap center is
resonantly excited.
The variance of the population error is

(δP )
2
=

〈

[

P|i〉(t)− Ptar

]2
〉

= P 2
tar +

〈

[

P|i〉(t)
]2
〉

− 2Ptar〈P|i〉(t)〉. (2)

The pulse time t can be adjusted to minimize the dif-
ference between the observed average 〈P|i〉(t)〉 and the
target population Ptar. For a 2π pulse Ptar = 1 but,
at finite temperature, there is no pulse time for which
〈P|i〉(t)〉 = Ptar. Nevertheless the time can be adjusted
to minimize the difference between the target population
and the observed average. For a 2π pulse Ptar = 1 and

(δP )
2
= 1 +

〈

[

P|i〉(t)
]2
〉

− 2〈P|i〉(t)〉. (3)

Similar expressions govern the phase response. The
amplitude of the initial state after a pulse of length t is

c(r, t) = cos

[

√

Ω2
R(r) + ∆2(r)t/2

]

− i
∆(r)

√

Ω2
R(r) + ∆2(r)

sin

[

√

Ω2
R(r) + ∆2(r)t/2

]

(4)

The phase of the wavefunction is

φ = − tan−1

[

∆(r)
√

Ω2
R(r) + ∆2

R(r)
tan

[

√

Ω2
R(r) + ∆2(r)

2
t

]]

.

(5)
Expressing ΩR(r) and ∆(r) in terms of f1, f2 and inte-
grating over ρ(r) as for the population distribution we
calculate the phase error and uncertainty.
Perturbative analysis of the population variance in 2D

for σ ≪ w shows that (δP )2 ∼ (σ/w)8 so the stan-
dard deviation or uncertainty in the population scales as
(σ/w)4. This scaling highlights the sensitivity to finite
beam size and the importance of low temperatures and
tight localization of the atom. Sensitivity to variations
in the local Rabi frequency and detunings can be min-
imized using adiabatic gate protocols (see, for example,
[34]), but we have not done so here.
To determine the errors from atom position varia-

tions in 3D we have relied on numerical solutions of
Eqs. (1-5). The atom localization parameters σ, σz were
determined[18] using Ta = 15 µK, trap depth 285 µK,
d = 3.1 µm, and line width wline = d/3.08 = 1.0 µm to
be σ = 0.27 µm, σz = 1.47 µm. The value of the line
width that was used was increased by 7% from the value
in the optical train to account for aperturing of the array
light pattern on the objective lens aperture which caused
broadening of the line.
With these parameters we find the results shown in

Fig. SM-1. We see that the phase error as quantified
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FIG. SM-1. Numerical solutions for the population and phase
errors due to atom position variations after a 2π ground-
Rydberg pulse. a) Population error with ± one standard
deviation shown by the light blue shading. b) Phase error
with 〈φ〉 shown by the solid blue line, 〈1 − cos(φ)〉 shown
by the dashed orange line, and the standard deviation shown
by the light blue shading. The vertical dashed lines show
the expected value of σ for our trap parameters. Param-
eters: w1 = 2.25 µm, w2 = 2.5 µm, ΩR/2π = 4.5 MHz,
∆1/2π = −2.7 MHz, ∆2/2π = 6.4 MHz, ∆0 = −(∆1 +∆2).

by 〈1 − cos(φ)〉 is negligible. The expected population
error is 0.04 but with a large uncertainty. Averaging
over the input states we have a contribution to the gate
error budget of ǫ = 3 × 0.042/4 = 0.032. The factor
of 3 comes from the 2π pulse of state |01〉 and π− gap
−π pulses for states |10〉 and |11〉 which we count as 2π
pulses, neglecting any additional contribution from atom
motion in the gap time.
The π rydberg pulse on the control atom also con-

tributes an additional error since less than 100% popu-
lation transfer from ground to Rydberg state implies a
corresponding failure probability for blockade of the tar-
get qubit in the |11〉 state. The probability of populating
the Rydberg state after a π pulse is

〈P|R〉(t)〉 =
∫

dr ρ(r)
Ω2

R(r)

Ω2
R(r) + ∆2(r)

sin2
[

ΩRt

2
f(r)

]

.(6)

The calculated population error for a π pulse using
Eq. (6) is shown in Fig. SM-2. The error contribution
is ǫ = 0.014/4 = 0.0034 which we have combined with
the 2π error of 0.032 to give a total of 0.035 due to atom
position variations.
We emphasize that our confidence in this error esti-

mate is lower than for other entries in the error model,
due to lack of precise knowledge of trap parameters and
atom localization. Furthermore these errors will be larger
if the Rydberg beams are misaligned relative to the trap
centers. There is also a correlation with the Rydberg
atom motion (a.3) whereby a Rydberg excited atom will
move and see a different beam amplitude under deexci-
tation. We have not included such effects in the analysis.

a.7 Laser noise

Laser noise due to intensity and phase fluctuations de-
grades the fidelity of coherent pulses. In addition to in-
tensity noise that causes undesired Stark shifts, analo-
gous to the effects of atom motion, phase noise arising
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FIG. SM-2. Numerical solutions for the population error due
to atom position variations after a π ground-Rydberg pulse
with ± one standard deviation shown by the light blue shad-
ing. The vertical dashed lines show the expected value of σ.
All other parameters the same as in Fig. SM-1.

from servo bumps has been shown to noticeably degrade
Rabi oscillations[21]. The pulse errors can be signifi-
cantly reduced by resonator filtering[14]. While we have
demonstrated persistent coherence of ground-Rydberg
oscillations in Fig. 2 without resonator filtering, it is also
the case that significant day to day variations in Rabi os-
cillation amplitude were observed that could not always
be directly correlated with the observable amplitude of
servo bumps on the lasers.
Simulations we have performed by modeling servo

bump noise as a superposition of frequency components
with random phases confirm that the pulse errors are
largest when the servo bump offset frequency is compara-
ble to ΩR. For integrated servo bump power of −20 dBr
relative to the carrier we find population errors up to
0.04, and for −30 dBr errors up to 0.002. Temperature
and current drifts in laser diodes result in changes in the
laser mode structure and noise levels that also affect the
experimental results, even without changes to lock pa-
rameters. This error is therefore difficult to quantify, but
is certainly present since we have observed large changes
in pulse errors with minor changes to the locking elec-
tronics parameters. A reasonable estiamte for this error
is in between the −20 dBr and −30 dBr values given
above. We have placed this error at 0.02 in the error
model, but there are relatively large uncertainties.

a.8 Additional errors

There are two additional sources of error that are not
included in the Table but will be relevant for future,
higher fidelity gate demonstrations.
The first is the magnetic sensitivity of Rydberg states.

Rydberg excitation is performed at a bias field of 0.6 mT
which is well in the Paschen-Back limit for the Cs 66s1/2
state. Therefore the mj = −1/2 state has a magnetic

sensitivity of approximately 14. GHz/T. The experiment
is operated with synchronization to the 60 Hz AC power
line to minimize magnetic noise. Although we have not
carefully characterized magnetic noise at the location of
the atoms, on the basis of measured atomic temperature
and coherence times we estimate that the characteristic
magnetic noise amplitude is not larger than 10−6 T. This
implies a stochastic phase accumulation over the effective
Rydberg excitation duration of a CZ gate, which is tgR =
0.98 µs, of

δφ = 0.98 (µs)× 14. (GHz/T)× 10−6 (T)

= 0.014 (rad). (7)

Averaging over input states this contribution should be
multiplied by 1/2 giving ǫ = 0.007 which is negligible
compared to other errors.

An additional potential source of error is the high sen-
sitivity of Rydberg atoms to dc and ac electric fields. We
have previously observed strong sensitivity of specific Ry-
dberg states to background microwave fields when there
are resonant transitions driven by cell phones or wi-fi net-
works. For the 66s1/2 state the lowest frequency transi-
tion to a n′p state is at 12.5 GHz and the lowest frequency
two-photon transition is 27. GHz for coupling to a n′s
state and 11.7 GHz for coupling to a n′d state. These
frequencies are far from any wireless network bands and
not expected to cause significant perturbations.

There is also sensitivity to time varying dc fields that
are of concern up to a few MHz in frequency, correspond-
ing to the bandwidth of the Rydberg pulses. The exper-
iments are performed in glass cells with eight internal
electrodes for field cancellation. The cells are manufac-
tured by ColdQuanta, Inc. . The atomic array is 1 cm
from the inside of the cell windows. Voltages generated
by a low noise dc supply are used to cancel the back-
ground dc field as measured by Rydberg spectroscopy.
When the field is minimized there is a quadratic maxi-
mum of the Rydberg energy and a zero derivative with
respect to field strength which minimizes the Rydberg
state sensitivity to fluctuations. The fields are checked
every few months and significant changes relevant to the
zero field condition have not been observed. We can-
not presently exclude fluctuating fields that may cause
Rydberg dephasing, but since we are unable to make a
reliable estimate of the magnitude of this effect we have
left it out of the error table.

SM-II. SINGLE QUBIT ERRORS

Single qubit rotations are performed with microwaves
and focused Stark shifting lasers. These operations give
additional errors that contribute to the infidelity of the
Bell state and a CNOT gate but are separate from the
fidelity of the Rydberg CZ gate.
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b.1 Global microwave pulses

The observed amplitude of microwave π pulses con-
necting the clock states is 0.988(4) for the control site and
0.985(4) for the target site is dependent on microwave
power stability, frequency stability, phase noise, qubit co-
herence and SPAM errors. Subtracting the SPAM errors
described below from the observed amplitudes we assign
an error of 0.002 to a microwave π pulse. Since there are
four such pulses in the Bell state protocol the total error
is 0.008.

b.2 Local Stark shifted microwave pulses

To perform a local x-axis rotation gate with mi-
crowaves we use the decomposition

Rx(θ) = Ry(π/2)Rz(θ)Ry(−π/2).

The Ry operations are global microwave pulses and the
Rz is a local Stark shifting pulse which we apply with the
459 nm Rydberg beam. A site which receives no Stark
pulse only experiences two microwave rotations that can-
cel. The local gate in the Bell state preparation sequence
is Rθ(π/2) about an angle θ in the azimuthal plane. This
requires phase shifting the Ry pulses which was accom-
plished with a computer controlled signal generator.

The error for this operation is larger than for the global
gates due to noise of the focused laser beam. We estimate
this error to be 0.01 based on measured pulse amplitudes.
Adding a 0.002 error for the non-addressed site gives an
error for the Bell state protocol of 0.012.

SM-III. SPAM ERRORS

c.1 Atom preparation in traps

Atom preparation errors are due to retention loss dur-
ing measurement to verify an atom is present. Mean and
median values across the array are given in Fig. 1 in the

main text. The measured loss for control and target sites
was 0.005 for each site giving a 0.01 error.
This loss is partly due to measurement induced loss

and partly due to background collisions at finite vacuum
pressure. Our measured vacuum limited trap lifetime is
about 30 s which implies a loss of 0.003 for a 100 ms dura-
tion double measurement. This loss contribution can be
made negligible with faster measurements and improved
vacuum conditions.

c.2 Optical pumping

The optical pumping error is difficult to disentangle
from the atom preparation error since both contribute to
a finite amplitude of microwave pulses. One measure of
the pumping infidelity is the ratio of pumping to depump-
ing times for preparation ofmf = 0 clock states. We have
observed this ratio as low as 1/200 corresponding to an
error of 0.005 per atom.

c.3 State measurement

State measurement errors were estimated by making
Gaussian fits to the observed count distributions for
atoms present and not present after pushing out atoms in
f = 4 and defining the measurement error as the overlap
of the distributions. The mean and median errors across
the array are given in Fig. 1 in the main text. For the
specific sites and measurement times used for the Bell
state experiments we obtained lower measurement errors
of 5×10−5 for the control site and 1×10−4 for the target
site. We have used the average value of these errors in
the table.
There is an additional error from blowing away atoms

in f = 4, which may be less than 100% successful, may
depump atoms to f = 3 instead of removing them from
the trap, and may also cause loss of atoms in f = 3 with
very low probability. On the basis of related studies with
non-destructive state measurements[35] we estimate the
errors from blow away are not larger than the overlap
error derived from fitting the count disrtibutions. We
have accordingly doubled the error estimate in the table
to 3.0× 10−4.


