Sweep to the Secret: A Constant Propagation

Attack on Logic Locking

Abdulrahman Alaql, Domenic Forte, and Swarup Bhunia
Dept. of ECE, University of Florida, Gainesville, FL. 32608
alaql89Qufl.edu, {forte, bhunia}Qece.ufl.edu

Abstract—The development of hardware intellectual properties
(IPs) has faced many challenges due to malicious modifications
and piracy. One potential solution to protect IPs against these
attacks is to perform a key-based logic locking process that
disables the functionality and corrupts the output of the IP when
the incorrect key value is applied. However, many attacks on logic
locking have been introduced to break the locking mechanism
and obtain the key. In this paper, we present SWEEP, a constant
propagation attack that exploits the change in characteristics of
the IP when a single key-bit value is hard-coded. The attack
process starts with analyzing design features that are generated
from the synthesis tool and establishes a correlation between
these features and the correct key values. In order to perform
the attack, the logic locking tool needs to be available. The level
of accuracy of the extracted key mainly depends on the type of
logic locking approach used to obfuscate the IP. Our attack was
applied to ISCAS85, and MCNC benchmarks obfuscated using
various logic locking techniques and has obtained an average
accuracy of 92.09%.

I. INTRODUCTION

The integration of hardware intellectual property (IP) has
vastly grown in the past several years, which is being utilized
in different critical applications such as military, health-care,
and the Internet of things (IoT). Due to the globalization of the
semiconductor industry, many stages of the development cycle
are outsourced to third-party facilities, which may not always
be trusted. Hence, a rising concern regarding the security
of hardware IPs has emerged as estimates suggest that $250
billion each year is lost because of IP piracy and counterfeit
components [1]. The main objective for adversaries is to gain
design information in order to reverse engineer the IP and to
create counterfeits. The other goal is to inject these systems
with Trojans that may reduce the performance, deny service, or
leak sensitive data. To prevent these attacks, many techniques
have been considered, where different protection mechanisms
are used to secure the system in specific development cycles,
while others focus on preventing particular attacks.

One potential solution is to apply hardware logic locking,
which can be used to add a layer of protection against many
attacks on hardware IPs [2]. Hardware logic locking is a pre-
silicon measure that aims to control the functionality of the
system-under-attack and corrupt the outputs by adding logic
elements and/or dummy routing. The locking mechanism is
usually controlled by a key that is only known by the IP
owner and can be used to unlock the design and regain the
correct functionality. Logic locking is typically applied to the
gate-level netlist, which makes it suitable for a secure soft-IP
exchange since the IP is not going to function correctly unless
the key is obtained. On the other hand, several attacks on logic
locking have also emerged. Many of these attacks are able to
completely or partially unlock the functionality, to bypass the

978-1-7281-3544-1/19/$31.00 (©2019 IEEE

locking mechanism, or to extract the key using functional and
structural analysis [3][4][5][6][7].

Although the research for improved logic locking techniques
is critical, such techniques cannot be considered ‘strong’
unless no clear vulnerability is found. Hence there is an urgent
need for diverse and comprehensive attack/security assessment
tools. In this paper, we introduce SWEEP, a constant propaga-
tion attack on hardware logic locking that exploits the changes
that occur to the system during the synthesis process. The
attack performs the synthesis analysis to each key input by
optimizing the locked system when hard-coding both correct
and incorrect values for that key bit. The attack is scalable and
does not require an unlocked circuit (oracle), but having an
unlocked system is recommended to perform functional tests
and to verify the correctness of the extracted key. The proposed
approach performs the analysis on information provided by the
synthesis process in a generated report. The attack is designed
to be precise, meaning the correctly extracted key is identified
by value and location with high confidence, which reduces the
brute force effort to identify the key. It is difficult to prevent
such an attack due to the naivety and predictable patterns of
current logic locking techniques. Unlike many existing attacks
in the literature, SWEEP is designed to exploit the structural
effects of the locked circuit rather than performing functional
analysis, which exposes more vulnerabilities to techniques that
have always been considered strong. This paper makes the
following main contributions:

o Introduces SWEEP, a constant propagation attack that is
applicable to any IP type, size, and complexity.

o Provides a methodology for applying the attack by an-
alyzing the obfuscation tool and performing a weight
scoring process for each design feature.

« Demonstrates the attack on several popular types of logic
locking techniques and shows the accuracy results for
ISCAS85 and MCNC benchmarks.

The rest of the paper is organized as follows. Section II
provides a background of logic locking and relative tech-
niques and attacks. Section III talks about an overview of
the synthesis-based attack, and Section IV presents the attack
results. Section V discusses the significance of the attack as
well as its limitations, and Section VI provides the conclusion.

II. BACKGROUND
A. Threat Model

The goal for adversaries is to obtain critical design infor-
mation about the IP to reverse engineer or to maliciously
modify it. In this paper, our proposed attack is applied with
the following assumptions:

o The attacker has access to the locked gate-level netlist,
which can be obtained using invasive reverse engineering
techniques or from an untrusted foundry.

o The attacker has access to the obfuscation tool that is used
to perform the logic locking mechanism to the obtained
locked netlist.

« The attacker can identify all key inputs in the netlist.

Similar to encryption algorithms and tools, obfuscation
tools should be publicly available and easily accessible to
the end-user in order to consider them practical. Hence, the
assumption that attackers are able to obtain the obfuscation
tool is reasonable. Although the attacker needs to obtain the
full locked netlist, familiarity with the function is not required
to perform the attack. Additionally, the attack does not neces-
sarily require an unlocked system or a set of input/output pairs
(oracles). However, obtaining an unlocked system can help
perform additional attacks, such as brute-force or functional
hill-climbing [12].

B. Attacks on Logic Locking

1) Boolean Satisfiability (SAT) Attack: SAT attack is
applied to locked combinational circuits using a key-based
hardware obfuscation [4]. The attack algorithm applies a set
of inputs and key values to find a distinguishing input pattern
(DIP), which is defined as an input that changes the output
value when two or more different keys are used. A SAT
solver is then applied to eliminate key values associated with
that DIP, and this process iterates until the entire system
functionality is covered. The attack is only applicable to
combinational circuits or sequential circuits that have access to
scan-chains. Additionally, the SAT attack is not able to unlock
systems that contain SAT-hard functions, such as multipliers.

2) AppSAT Attack: AppSAT is a version of the SAT attack
that is developed to provide an approximated key instead of
searching for the correct one [5]. The key finding algorithm
may accept a key that provides correct functionality for
most tested input patterns. AppSAT can break obfuscation
techniques that focus on increasing the number of DIPs while
reducing the amount of output corruptibility.

3) KSA Attack: Key sensitization attack (KSA) requires the
locked netlist and an unlocked IC. By identifying key gates
that can block the effect of other key gates (muting gates),
the attacker may be able to find a pattern that sensitizes a
key input to the output [3]. The attack can then focus on
sensitizing the key values of those gates from an unlocked
IC. The attack is not scalable to extremely large and complex
systems, especially if the number of primary outputs is limited.

4) Desynthesis Attack: The desynthesis attack has been
introduced in [7] to exploit the changes caused by guessing a
key vector and applying the synthesis process. The guessed key
is then partially modified, and the analysis of the functional
and structural behavior is applied again. The attack does
not require an unlocked circuit, but the obfuscation tool is
needed to perform the analysis. Unlike our proposed attack,
the desynthesis attack focuses on the functional and structural
changes that occur when applying guessed vectors to the key
inputs, while our attack focuses on the features obtained from
the synthesis report. The other main difference is that the
desynthesis attack performs the analysis to the entire key
vector, while our attack performs the analysis to individual

key inputs, which gives high confidence to the extracted keys.
Compared to the desynthesis attack, our attack is also designed
to avoid wild guesses and places an ‘X’ symbol to keys that
are not being guessed, which can be used to perform further
attacks, such as reduced brute force.

5) SAIL Attack: This machine-learning attack uses the
obfuscation tool and some training sets to extract design
properties that can lead to the extraction of key values [6].
SAIL is independent of the system type or size, and it does
not require an unlocked system. However, the attack is limited
to systems that are locked using XOR/XNOR techniques only,
as it is not able to handle MUX-based obfuscation techniques.

C. Comparison to Existing Attacks

Unlike the SAT attack, our proposed method is able to
extract the key from complex and SAT-hard functions that
the SAT attack may not be able to handle. The proposed
attack does not require an unlocked circuit, which widens
the scope of attack to designs in development stages as early
as the foundry, whereas most attacks are not viable unless
the unlocked function is deployed and available to attackers.
Additionally, the scalability of our approach makes it more
practical to apply compared to the KSA attack. Although the
proposed attack does not handle XOR/XNOR gates, it can be
complemented by SAIL (which focuses on XOR/XNOR based
obfuscation). A brief comparison between existing attacks and
our proposed one is shown in Table I.

TABLE I: A Summary of Attacks on Obfuscated Gate-level Netlists

Attack Obfuscation Tool | Oracles Required Differences

KSA [3] Not Required Yes Not Scalable

SAT* [4] Not Required Yes Cannot Handle Complex Functions™®
AppSAT~ [5] Not Required Yes Cannot Handle Complex Functions™®
Desynthesis [7] Required Recommended Not Scalable

SAIL [6] Required Recommended Only Attacks XOR/XNOR

(;r‘:pl;;:;l;) Required Recommended Does not Attack XOR/XNOR
* Such as multipliers and large arithmetic operations.

III. ATTACK OVERVIEW

SWEEP can be considered an attack on the obfuscation
technique used for logic locking, where a set of obfuscated
benchmarks with known key values are used to perform the
analysis (training). The basic idea of the attack is to assign
a key-value (logic 0 or logic 1) to one key input and to
synthesize the obfuscated design with that key embedded in
the circuit as a constant value. The synthesis report is then
analyzed for any design features that are correlated to the
correct key value. The attack algorithm can capture a number
of features that are directly or indirectly correlated to the
correct key value. These features are then analyzed for each
key-value, which can indicate the correct value of the analyzed
key input. The analysis of these features is done for each key
input individually by comparing them to the synthesis report
of the original obfuscated design. A feature scoring algorithm
is used to evaluate each design feature and assigns a signed
weighting value, which helps enhance the accuracy of SWEEP.
Fig. 1 shows an overview of the attack process.

A. Generation of Training Data Points

The first step of the introduced attack is to generate a
set of data points and sample circuits. Different popular
benchmark suites can be used to generate the required data

Training Phase

Obfuscation Tool
Obfuscate Training Data Set

lLoc ked Circuits

i Apply Constant Propagation

. n=0
Locked Netlist Make key[n]=0 <

¥

Synthesis Report for
H key[n]=0

Sweep and Synthesize

i and Design Feature Extraction
A

Design Features

Attack Phase v

Perform Key Correlation
Analysis

{Feature Weights

Training Data Set H >

¥
Make key[n]=1

¥

Sweep and Synthesize

Synthesis Report for
key[n]=1

llnilial Extracted Key

Extracted Key Perform Functional Verification

(SystL;:wkE?\?;tﬁttack, Perform SWEEP Attack < N

v

Perform Design Feature
Analysis

Design Features

Fig. 1: Process flow of the synthesis-based attack.

points. Additionally, the obfuscated system-under-attack can
be used as training data points, where an additional round of
obfuscation is applied to the locked design and used to perform
the analysis. After obtaining the locked netlists, the synthe-
sis report will then show a number of design features that
represent the performance, timing-limitations, and resource
allocation of the design. These features include (but are not
limited to) the amount of power consumption, latency of the
critical paths, the total area, gate counts, or the number of
binary decision diagram (BDD) branches.

B. Constant Propagation and Feature Extraction

In this stage, the generated training data sets are modified by
hard-coding each key input with the correct and the incorrect
key value. In each instance, the attacker performs a round of
synthesis and extracts design features from the generated syn-
thesis report. Different synthesis and optimization parameters
and library modifications can be used to enhance the sensitivity
of the extracted features and make them easily observable. We
have also observed that limiting the synthesis tool to only use
an And-Inverter Graph (AIG) representation of the attacked IP
has been observed to provide refined values for each feature.
AIGs are semi-canonical as they remove any dependence (or
decorrelation) caused by technology mapping algorithms. The
synthesis reports are generated, where each key input has two
associated synthesis reports (a report for logic 0 and another
for logic 1). For each feature, two reported values are extracted
(called F,er0[n] and Fpe[n]) with corresponding key location
n. Eqn. 1 and 2 outline how the feature values are calculated
when the key value is zero and one, respectively, and Eqn. 3
is the difference (delta) between the two values:

] o FREF - erro[n]

Veeroln] = o (1)
F B Fone

Vone [TL] = REFTF[H] 2

AV[n] = Viero[n] — Vone[n] 3)

Where Frgr is the feature value for the reference obfuscated
netlist, F.epo[n] and Fy,.[n] are the feature values when

KEY[n] = 0 and KEY[n] = 1 respectively AV[n] is the
difference between the two values. When considering multiple
features, a “feature matrix” that contains the deltas for each
key location (column) and each feature type (row) is generated,
Eqn. 4 shows how the feature matrix is expressed:

AVii AVip AVis AV,
AVar AVay AVag AVay,

AVip =) . .))
AVii AVie AVig AVin

where k is the number of features and n is the number of
key-bits. The feature matrix is a concatenation of data sets of
all used benchmarks generated by the obfuscation tool.

C. Feature Weighting Algorithm

This algorithm takes the generated feature matrix and its
corresponding key values and generates the optimum weights
that evaluate the correlation between every feature and the
correct key. The basic function of the weighting process is
shown in Algorithm 1.

For each feature, the process in Algorithm 1 compares the
sign of delta values (AV') with its corresponding key value.
In other words, if the delta sign for most feature values is
positive when KEY = 1 and negative when KEY = 0, then
the overall weight W for that feature is positive. Similarly, if
the sign for most delta values is negative when KEY = 1 and
positive when KEY = 0, then the overall weight is going to
be negative. The value of the weight depends on how many
delta value signs are consistent with either a positive or a
negative weighting score. Features that almost have an equal
amount of positive and negative scores indicate that they are
not correlated with the correct key value, and will be assigned
with a low weighting value.

D. Perform the SWEEP Attack

In this stage, the obfuscated netlist of the system-under-
attack is used to extract its design features. By applying the
same constant propagation technique used for the training data
set, a feature matrix for the locked design is generated. Key
locations used in this stage correspond to the locked netlist

Algorithm 1 Key-Feature Correlation

: procedure PRODUCING FEATURE WEIGHTS
: Input: AV},: Feature matrix
: Input: KEY[n]: Correct key vector
for j =1to k
: positive_score = 0, negative_score = (0
fori=1ton
if AVj; >0 and KEY[i] =1 then
: positive_score = positive_score + 1
else if AV, < 0 and KEY[i] =
positive_score = positive_score + 1
10: else if AV;; > 0 and KEY[i] =
negative_score = negative_score + 1
11: else if AV, < 0 and KEY[i] =
negative_score = negative_score + 1
12: end if
13: end for
14: W[jl =
15: end for
16: Output: W [k]: Feature weights

o I S

0 then
0 then

1 then

[positive_score — negative_score]/n

under attack. An overall sum of all features for each key
location is calculated using Eqn. 5:

AV'[n Z Vi x W[t] (5)
where AV’[n] is the weighted feature delta for key location
n, k is the number of extracted features. This vector is used
to perform the SWEEP attack. The key extraction process is
explained in Algorithm 2:

Algorithm 2 Weighted Feature Values Comparison

procedure COMPARING FEATURE VALUES

Input: AV'[n]: Weighted feature values

Input: m: Acceptable margin

fori=1ton

if |AV'[n]| < m then
Extracted_keyl[i] + X

6: else if AV'[n] > 0 then
Extracted_keyli] + 1

7: else if AV'[n] < 0 then
Extracted_Keyli] + 0

8: end if

9: end for

10: Output: Extracted_key: Extracted key

BN T

The inputs to Algorithm 2 are the weighted delta values
AV’'[n], and the acceptable margin m. This margin is an
adjustable parameter that prevents key guesses for values that
are close to each other, which will reduce the chance of
performing a wild guess. Increasing this margin improves
how precise key extraction is at the cost of fewer keys being
successfully extracted out of the total key vector. The symbol
‘X’ indicates that the attack was not able to make a safe
decision for that key input due to the absolute value of AV'[n]
being less than the specified margin m. The output of the
algorithm is the extracted key vector.

E. High-Order Locking

Up until now, we have assumed that the obfuscation tech-
nique uses a two-choice locking mechanism, such as a MUX2,
which reroutes the signal to either fan-in A or fan-in B.
However, many locking techniques utilize a higher-order of
route selection, such as MUX4, MUXS, etc. In that case,
SWEEP is designed to structurally analyze the circuit and to
obtain “key clusters”, which are analyzed at the same time. For
example, if the locking mechanism uses MUXS, that means
three key inputs control each key-gate, and the attack will be
performed on a set of 3-bit key clusters. For every key cluster,
we generate all possible key values and extract a vector of
features for that cluster. Instead of using V¢.o[n] and Ve [n]
from Eqn. 1 and 2, we use the minimum and maximum values
of V;[g] for the obtained vector of features, where g is the total
number of key clusters in the design, and ¢ corresponds to all
possible key values in one cluster (a cluster of n-bit keys has
i of 0 to 2™ —1).

The weighting process in Algorithm 1 will be modified to
evaluate minimum_score and maximum_score instead of
positive_score and negative_score. In other words, instead
of comparing the delta of features generated by applying
the two possible values for a single key-input, we apply
all possible values (0 to 7) and capture the set of design
features for each key entry. We then repeat this process
for each cluster. For example, a 3-bit key cluster has 8
possible values with each possible key value produces its
own set of features V;[g]. Out of the 8 possible values,
we focus on the two critical feature values, the minimum
min{V;[g]} and the maximum maxz{V;[g]}. We also examined
whether their corresponding key values match the ones of
the original key. To identify the key value associated with
min{V;[g]} and maxz{V;[g]}, we use the argument of the
minima and maxima (argmin and argmax), which locates
the position of minimum and maximum values of a function.
Hence, KEY inlg] = argmin;{Vi[g]} and KEY ..[g] =
argmax;{V;[g]}. To obtain the weights, minimum_score
is incremented if the correct key cluster matches KEY ,,;n,

Algorithm 3 High-Order Feature Values Comparison

1: procedure COMPARING KEY CLUSTER VALUES
2: Input: V;[g]: Feature matrix

3: Input: Wk]: Feature weights

4: Input: m: Acceptable margin
5
6
7

cfor j=1tok
cforh=1tog
if W[j] =0 then
Extracted_key[j, h] <
8 else if maz{V;h]} mm{V[1} < m then
Extracted_key[j, h] + X
9: else if W[j] > 0 then
Extracted_keylj, h] + argmaz;{V;[g]}
10: else if W [j] < O then
Extracted_keyl[j, h] + argmin;{V;[g]}
11: end if
12: end for
13: end for
14: Output: Extracted_key[k]: Extracted key vector

and maxzimum_score is incremented if KEY ,,,,, matches the
correct key. Wk] are the weights obtained in the training
phase, where k is the number of features. For the feature
comparison process, Algorithm 3 is used:

The output of Algorithm 3 is a set of extracted key values,
where each feature k has its own Extracted_key[k]. The over-
all extracted key can be obtained by performing a weighted
majority voting on all extracted key vectors.

FE. Perform Functional Verification

After the attack is performed, there is a chance that some
guessed key bits have a value of X. In that case, all key bits
that are assigned with X are attacked using brute-force or
functional hill-climbing attack [12].

IV. SECURITY ANALYSIS

The proposed attack has been applied to multiple obfusca-
tion techniques using ISCAS85 benchmarks and the combina-
tional circuits from the MCNC benchmark set. In this section,
we demonstrate the security analysis results when applying
the attack to the following obfuscation techniques:

o« TOC (MUX-Based): MUX?2 key-gates are inserted with
dummy functions selected to maximize the Hamming
distance between correct and the incorrect outputs [9].

o IOLTS: Key gates are inserted to locations with low
controllability [10].

e SARLock: Comparators are added to mitigate the SAT
attack by masking the output value [11].

« Random: MUX key-gates are inserted in random loca-
tions, and the dummy routes are also selected at random.
For this locking technique, two variants have been gen-
erated, MUX?2 and MUX4 key-gates.

A. Evaluation Metrics

The security analysis results include the accuracy and the
precision metrics. We define accuracy as the percentage of
correctly extracted key values out of the entire key size, and the
precision as the percentage of correct keys while considering
X as correct guesses. They are shown in Eqns. 6 and 7:

KEYCOT‘T’CC
L % 100% (6)

ACC'LLT(ZCy = thl
ota.

KEYcorrect + KEYX
KEYtotal

Precision = x 100% @)

where KEY .orrect 1S the number of key bits that are correctly
extracted, KEY;y4; is the total number of bits in the original
key, and KEY x is the total number of Xs in the that are
generated by SWEEP. For example, let us consider the correct
key value of a locked design to be "00110”, and SWEEP ex-
tracted ”00X10”. Then the accuracy is 80%, and the precision
is 100%. Whereas if the extracted key is ”00010”, then the
accuracy is 80%, and the precision is 80%. We focused on
the precision metric as it shows the level of confidence that
SWEEP provides when a key value is extracted.

B. Selecting Margin Values

The proposed framework for the attack provides an ad-
justable parameter m that controls the margin when comparing
weighted feature values. Choosing this parameter makes the
attacker consider the tradeoff between the precision of the
attack and the accuracy. Due to the varying nature of circuits
used for data set generation, the precision values for some
benchmarks did not reach 100% unless the margin value is
extremely high. In other words, to achieve 100% precision
for the entire feature matrix, the overall margin value had to
be very high, which means the overall accuracy would drop
dramatically. To overcome this issue, we created a two-stage
process that obtains two margin values. The first value migg
is the one that provides a 100% precision, this margin will be
used as the initial step that will highlight extracted keys with
high confidence. The second margin mgg is set to maintain the
an overall precision of at least 90%, which is used to extract
more key values at the cost of risking some incorrect guesses.

C. Key Extraction Results

After performing SWEEP on the selected benchmarks, a
set of accuracy and precision values are obtained for every
obfuscation scheme. Each benchmark has been obfuscated four
times to generate variants with an overhead allowance of 5%,
10%, 25%, and 50%; the results use a weighted average based
on the number of key-bits in every variant. The results in
Table II present the accuracy and precision as well as the
CPU runtime. The average accuracy results for each technique
suggests that most of the key values are correctly extracted.
It is worth noting that depending on the locking mechanism,
some techniques are more vulnerable to SWEEP than others.
The nature of the design can also affect the accuracy of the
attack, where designs with more convoluted structures and
large pipelines (such as multipliers) exhibit a larger change
in design features when the incorrect key value is applied.

V. DISCUSSION
A. Key Value Correlation to Design Features

The correlation of the key to each design feature extracted
from the synthesis report differs for each locking scheme. For
example, the MUX-based TOC locking technique is designed
to maximize the Hamming distance between the correct and
the incorrect route, applying the incorrect key value will
always result in a large area reduction, the number of edges,
power consumption, and the gate count. This reduction occurs
when the incorrect route is selected, which leaves the correct
node unconnected, and is hence removed when sweeping the
circuit. Similarly, the random insertion technique is also shown
to have the same vulnerability. On the other hand, timing
characteristics are usually less correlated to the key values
when performing the locking by selecting less observable and
controllable nodes (such as in IOLTS). These nodes are usually
placed in non-critical paths and do not cause a significant
change in the data arrival delay.

B. Runtime and Scalability

Table II clearly demonstrates that no matter how large the
system-under-attack is, the run time is almost unaffected. Even
designs that are complex for other types of attacks (such as
SAT) will not increase the complexity of SWEEP. However, in

TABLE II: Accuracy and Precision Results for SWEEP for Different Locking Techniques

Benchmark TOC IOLTS SARLock Random (MUX2) Random (MUX4)
Acc. Pres. Run Time (s) Acc. Pres. Run Time(s) Acc. Pres. Run Time(s) Acc. Pres. Run Time(s) Acc. Pres. Run Time(s)

c432 63.84 97.60 0.93 100 100 0.21 100 100 0.34 90.62 9375 022 100 100 0.27
c499 5479 98.67 0.92 100 100 0.22 100 100 0.33 96.87 96.87 0.16 90.62 96.8 0.28
c880 64.66 91.68 0.96 100 100 0.19 100 100 0.32 100 100 0.17 87.50 100 0.29
c1355 63.51 9525 0.84 100 100 0.19 100 100 0.32 93.75 93.75 0.23 100 100 0.31
c1908 7274 87.65 0.79 100 100 0.21 100 100 0.38 96.87 96.87 0.20 87.50 100 0.28
c2670 65.23 90.50 1.02 100 100 0.20 100 100 0.36 93.75 93.75 023 93.75 100 0.27
¢3540 72.15 90.39 0.97 100 100 0.18 100 100 0.35 93.75 93.75 023 100 100 0.29
c5315 75.36 86.75 0.92 100 100 0.23 100 100 0.36 100 100 021 87.50 100 0.31
6288* 87.26 91.27 0.77 100 100 0.20 100 100 0.35 90.62 92.18 0.22 87.50 96.87 0.29
c7552 78.39 90.29 0.84 100 100 0.20 100 100 0.31 96.87 98.43 0.19 93.75 100 0.33
apex2 7140 91.54 0.89 100 100 0.23 100 100 0.34 96.87 98.43 023 90.62 100 0.31
apex4 90.17 90.47 0.73 100 100 0.20 100 100 0.36 100 100 0.19 87.50 100 0.3
dalu 83.70 97.65 0.81 100 100 0.23 100 100 0.35 90.32 90.32 0.21 93.75 100 0.32
des 86.86 96.34 0.72 100 100 0.19 100 100 0.30 96.87 96.87 0.18 100 100 0.28
ex1010 90.39 99.10 0.75 100 100 0.23 100 100 0.33 78.12 78.12 0.21 75 93.75 0.27
ex5 76.17 96.34 0.71 100 100 0.19 100 100 0.34 87.50 87.50 0.19 96.87 96.87 0.29
i4 7029 9581 0.72 100 100 0.17 100 100 0.30 100 100 0.17 100 100 0.31
i7 79.31 99.04 0.75 100 100 0.15 100 100 0.31 90.62 90.62 0.18 96.87 96.87 0.29
i8 8297 96.79 0.81 100 100 0.19 100 100 0.33 96.87 96.87 0.17 93.75 100 0.29
i9 7398 9584 0.72 100 100 0.21 100 100 0.35 78.12 78.12 023 93.75 93.75 0.3
k2 82.84 98.86 0.65 99.88 99.88 0.20 100 100 0.34 99.88 96.87 0.15 65.62 96.87 0.29
seq 86.86 98.59 0.71 100 100 0.20 100 100 0.34 90.32 90.32 0.24 71.87 90.62 0.31
Average 76.3 94.38 0.81 99.99 99.99 0.20 100 100 0.33 93.57 9379 0.20 90.62 98.29 0.29

* The highlighted benchmark is a 32-bit-multiplier that SAT attack is not able to break.

order to extract the features from the generated training data
set, a large number of training data sets have been generated
and attacked. The run time for the entire process is around
7 hours using an Intel Xeon 4-core 2.80GHz processor and
32GB of RAM.

C. Accuracy vs. Precision

To better understand the relationship between accuracy and
precision, a simple analysis has been performed in Fig. 2,
which visualizes the results when a number of attacked locking
techniques when adjusting the acceptable margin m value.

Accuracy and Precision vs. Margin

100

90

80

~
=]

@
=]

Accuracy (TOC)
Precision (TOC)

40| = = ~Accuracy (IOLTS)
= = = Precision (IOLTS)

Percentage (%)
@
S

(
(
—v— Accuracy (SARLOCK)
30 | —s—precision (SARLOCK)
Accuracy (MUX2)
(
(
(

Precision (MUX2)
Accuracy (MUX4)
Precision (MUX4)
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Margin (%)

Fig. 2: Accuracy and Precision vs. Margin.

Fig 2 clearly indicates that as precision gets higher, the
key extraction accuracy falls sharply. The applied locking
technique, and the type of locked IP, play a major role in
the relation between accuracy and precision. When fixing the
value of accuracy, higher precision values indicate that the
used locking technique is highly breakable by SWEEP, while
a lower accuracy value suggests that only a partial-key can be
extracted using our attack.

VI. CONCLUSION

In this paper, we have presented SWEEP, a constant propa-
gation attack on logic locking that exploits the behavior of the
system’s performance when key values are hard-coded to the
obfuscated system and re-synthesized. The proposed method-
ology starts with evaluating design features and weights them

based on their correlation to the correct key values. Different
analytical approaches can be applied, from a simple area
comparison to the analysis of multiple features produced by
assigning a value to each key location. The results specifies
how many keys are correctly extracted, where the value and
the location of these keys are accurately determined. This way,
even a low accuracy result would still reduce the key-space
dramatically. Future work should focus on the extraction of
more design features in order to improve the accuracy of the
attack, performing the attack sequential locking techniques,
and finding a countermeasure that eliminates the correlation
between correct key values and design features.

VII. ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation grants: 1603483, and 1651701.

REFERENCES

OECD, “The Economic Impact of Counterfeiting and Piracy,” in Organ-

isation for Economic Co-operation and Development, 2007.

R. S. Chakraborty, and S. Bhunia, “Hardware Protection and Authentica-

tion through Netlist Level Obfuscation,” in /ICCAD, pp. 674-677. 2008.

M. Yasin, J. J. V. Rajendran, O. Sinanoglu, and R. Karri., “On improving

the security of logic locking,” in IEEE Trans. on CAD of Integrated

Circuits and Systems, 1411-1424, 2016.

P. Subramanyan, S. Ray and S. Malik, “Evaluating the Security of Logic

Encryption Algorithms,” in HOST, pp. 137-143, 2015.

K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan and Y. Jin, “AppSAT:

Approximately deobfuscating integrated circuits,” in IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), 2017.

P. Chakraborty, J. Cruz, and S. Bhunia “SAIL: Machine Learning Guided

Structural Analysis Attack on Hardware Obfuscation,” in Asian Hardware

Oriented Security and Trust Symposium (AsianHOST), 2018.

M. Massad, J. Zhang, S. Garg and M.V. Tripunitara, “Logic locking for

secure outsourced chip fabrication: A new attack and provably secure

defense mechanism,” in arXiv preprint arXiv:1703.10187, 2017.

J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of

Integrated Circuits, in 2008 Design, Automation and Test in Europe, 2008.

J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu,

and R. Karri. Fault Analysis-Based Logic Encryption. IEEE Transactions

on Computers, 64(2), Feb 2015.

[10] S. Dupuis, P. Ba, G. Di Natale, M. Flottes and B. Rouzeyre, “A novel
hardware logic encryption technique for thwarting illegal overproduction
and Hardware Trojans,” in IOLTS, pp. 49-54, 2014.

[11] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SAR-
Lock: SAT attack resistant logic locking,” IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 236-241, 2016.

[12] S. M. Plaza and I. L. Markov, “Solving the Third-Shift Problem in

IC Piracy With Test-Aware Logic Locking,” in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2015.

(1]
(2]
(3]

(4]
[5]

(6]

(71

(8]
[9]

