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Abstract

Increasing amounts of available data have led to a
heightened need for representing large-scale prob-
abilistic knowledge bases. One approach is to
use a probabilistic database, a model with strong
assumptions that allow for efficiently answering
many interesting queries. Recent work on open-
world probabilistic databases strengthens the se-
mantics of these probabilistic databases by discard-
ing the assumption that any information not present
in the data must be false. While intuitive, these
semantics are not sufficiently precise to give rea-
sonable answers to queries. We propose overcom-
ing these issues by using constraints to restrict this
open world. We provide an algorithm for one class
of queries, and establish a basic hardness result for
another. Finally, we propose an efficient and tight
approximation for a large class of queries.

1 Introduction

An ubiquitous pursuit in the study of knowledge base rep-
resentation is the search for a model that can represent un-
certainty while simultaneously answering interesting queries
efficiently. The key underlying challenge is that these goals
are at odds with each other. Modelling uncertainty requires
additional model complexity. At the same time, the ability to
answer meaningful queries usually demands restrictive model
assumptions. Both of these properties are at odds with the key
limiting factor of tractability: success in the first two goals is
not nearly as impactful if it is not achieved efficiently. Un-
fortunately, probabilistic reasoning is often computationally
hard, even on databases [Roth, 1996; Dalvi and Suciu, 2012].

One approach towards achieving this goal is to begin with
a simple model such a probabilistic database (PDB) [Suciu et
al., 2011; Van den Broeck and Suciu, 2017]. A PDB models
uncertainty, but is inherently simple and makes very strong
independence assumptions and closed-world assumptions al-
lowing for tractability on a very large class of queries [Dalvi
and Suciu, 2007, 2012]. However, PDBs can fall short un-
der non-ideal circumstances, as their semantics are brittle to
incomplete knowledge bases [Ceylan et al., 2016].

To bring PDBs closer to the desired goal, Ceylan et al.
[2016] propose open-world probabilistic databases (Open-

PDB), wherein the semantics of a PDB are strengthened to
relax the closed-world assumption. While OpenPDBs main-
tain a large class of tractable queries, their semantics are so
relaxed these queries lose their precision: they model further
uncertainty, but in exchange give less useful query answers.

In this work, we aim to overcome these querying chal-
lenges, while simultaneously maintaining the degree of un-
certainty modeled by OpenPDBs. To achieve this, we pro-
pose further strengthening the semantics of OpenPDBs by
constraining the mean probability allowed for a relation.
These constraints work at the schematic level, meaning no
additional per-item information is required. They are practi-
cally motivated by knowledge of summary statistics, of how
many tuples we expect to be true. A theoretical analysis
shows that, despite their simplicity, such constraints funda-
mentally change the difficulty landscape of queries, leading
us to propose a general-purpose approximation scheme.

The rest of the paper is organized as follows: Section 2
provides necessary background on relational logic and PDBs,
as well as an introduction to OpenPDBs. Section 3 motivates
and introduces our construction for constraining OpenPDBs.
Section 4 analyses exact solutions subject to these constraints,
providing a class of tractable queries along with an algorithm.
It also shows that the problem is in general hard, even in some
cases where standard PDB queries are tractable. Section 5
investigates an efficient and provably bounded approximation
scheme. Section 6 discusses our findings, and summarizes
interesting directions that we leave as open problems.

2 Background

This section provides background and motivation for proba-
bilistic databases and their open-world counterparts. Notation
and definitions are adapted from Ceylan et al. [2016].

2.1 Relational Logic and Databases

We now describe necessary background from function-free
finite-domain first-order logic. An atom R(x1, x2, ..., xn)
consists of a predicate R of arity n, together with n argu-
ments. These arguments can either be constants or variables.
A ground atom is an atom that contains no variables. A for-
mula is a series of atoms combined with conjunctions (∧)
or disjunctions (∨), and with quantifiers ∀, ∃. A substitution
Q[x/t] replaces all occurences of x by t in a formula Q.



Scientist

Einstein
Erdős
von Neumann

CoAuthor

Einstein Erdős
Erdős von Neumann

Figure 1: Example relational database. Notice that the first row of
the right table corresponds to the atom CoAuthor(Einstein, Erdős).

Scientist p

Einstein 0.8
Erdős 0.8
von Neumann 0.9
Shakespeare 0.2

CoAuthor p

Einstein Erdős 0.8
Erdős von Neumann 0.9
von Neumann Einstein 0.5

Figure 2: Example probabilistic database. Tuples are now of the
form 〈t : p〉 where p is the probability of the tuple t being present.

A relational vocabulary σ is comprised of a set of pred-
icates R and a domain D. Using the Herbrand semantics
[Hinrichs and Genesereth, 2006], the Herbrand base of σ is
the set of all ground atoms possible given R and D. A σ-
interpretation ω is then an assignment of truth values to every
element of the Herbrand base of σ. We say that ω models a
formula Q whenever ω satisfies Q. This is denoted by ω |= Q.

A reasonable starting point for the target knowledge base
to construct would be to use a traditional relational database.
Using the standard model-theoretic view [Abiteboul et al.,
1995], a relational database for a vocabulary σ is a σ-
interpretation ω. Less formally, a relational database consists
of a series of relations, each of which corresponds to a pred-
icate. Each relation consists of a series of rows, also called
tuples, each of which corresponds to an atom of the predicate
being true. Any atom not appearing as a row in the relation
is considered to be false, following the closed-world assump-
tion [Reiter, 1981]. Figure 1 shows an example database.

2.2 Probabilistic Databases

Despite the success of relational databases, their determinis-
tic nature leads to a few shortcomings. A common way to
gather a large knowledge base is to apply some sort of sta-
tistical model [Carlson et al., 2010; Suchanek et al., 2007;
Peters et al., 2014; Dong et al., 2014] which returns a proba-
bility value for potential tuples. Adapting the output of such
a model to a relational database involves thresholding on the
probability value, discarding valuable information along the
way. A probabilistic database (PDB) circumvents this prob-
lem by assigning each tuple a probability.

Definition 1. A (tuple-independent) probabilistic database P
for a vocabulary σ is a finite set of tuples of the form 〈t : p〉
where t is a σ-atom and p ∈ [0, 1]. Furthermore, each t can
appear at most once.

Given such a collection of tuples and their probabilities,
we are now going to define a distribution over relational
databases. The semantics of this distribution are given by
treating each tuple as an independent random variable.

Definition 2. A probabilistic database P for vocabulary σ

induces a probability distribution over σ-interpretations ω:

PP(ω) =
∏

t∈ω

PP(t)
∏

t/∈ω

(1− PP(t))

where PP(t) =

{

p if 〈t : p〉 ∈ P

0 otherwise

Notice this last statement is again making the closed-world
assumption: any tuple that we have no information about is
assigned probability zero. Figure 2 shows an example PDB.

Probabilistic Queries In relational databases, the funda-
mental task we are interested in solving is how to answer
queries. The same is true for probabilistic databases, with
the only difference being that we are now interested in proba-
bilities over queries. In particular, we are interested in queries
that are fully quantified - also known as Boolean queries. On
a relational database, this corresponds to a query that has an
answer of True or False.

For example, on the database given in Figure 1, we might
ask if there is a scientist who is a coauthor:

Q1 = ∃x.∃y.S(x) ∧ CoA(x, y)

If we instead asked this query of the probabilistic database
in Figure 2, we would be computing the probability by sum-
ming over the worlds in which the query is true:

P (Q1) =
∑

ω|=Q1

PP(ω)

Queries of this form that are a conjunction of atoms are
called conjunctive queries. They are commonly shortened as:

Q1 = S(x),CoA(x, y).

A disjunction of conjunctive queries is known as a union of
conjunctive queries (UCQ). UCQs have been shown to live in
a dichotomy of efficient evaluation [Dalvi and Suciu, 2012]:
computing the probability of a UCQ is either polynomial in
the size of the database, or it is #P -hard. This property can
be checked through the syntax of a query, and we say that a
UCQ is safe if it admits efficient evaluation. In the literature
of probabilistic databases [Suciu et al., 2011; Dalvi and Su-
ciu, 2012], as well as throughout the rest of this paper, UCQs
are the primary query object studied.

Efficient Query Evaluation For probabilistic databases to
be useful, we need to be able to effeciently compute the prob-
abilities of queries: we now describe how to do this. Algo-
rithm 1 does this in polynomial time for all queries that can
be computed efficiently (known as safe queries). We now ex-
plain the steps in further detail.

We begin with the assumption that Q has been processed
to not contain any constant symbols, and that all variables
appear in the same order in repeated predicate occurences in
Q. These preprocessing steps are known as shattering and
ranking respectively, and can be done efficiently [Dalvi and
Suciu, 2012].

Step 0 covers the base case where Q is simple a tuple, so
it looks it up in P . Step 1 attemps to rewrite the UCQ into
a conjunction of UCQs to find decomposable parts. For ex-
ample, the UCQ (R(x)∧ S(y, z))∨ (S(x, y)∧ T (x)) can be



Algorithm 1 Lift
R(Q,P), abbreviated by L(Q)

Require: UCQ Q , prob. database P with constants T .
Ensure: The probability PP(Q)

1: Step 0 Base of Recursion

2: if Q is a single ground atom t
3: if 〈t : p〉 ∈ P return p else return 0

4: Step 1 Rewriting of Query

5: Convert Q to conjunction of UCQ: Q∧=Q1∧· · ·∧Qm

6: Step 2 Decomposable Conjunction

7: if m > 1 and Q∧ = Q1 ∧ Q2 where Q1 ⊥ Q2

8: return L(Q1) · L(Q2)

9: Step 3 Inclusion-Exclusion

10: if m > 1 but Q∧ has no independent Qi

11: (Do Cancellations First)
12: return

∑

s⊆[m](−1)|s|+1 · L
(
∨

i∈s Qi

)

13: Step 4 Decomposable Disjunction

14: if Q = Q1 ∨ Q2 where Q1 ⊥ Q2

15: return 1− (1− L(Q1)) · (1− L(Q2))

16: Step 5 Decomposable Existential Quantifier

17: if Q has a separator variable x
18: return 1−

∏

c∈T (1− L(Q[x/c]))

19: Step 6 Fail (the query is #P-hard)

written as the conjunction of (R(x)) ∨ (S(x, y) ∧ T (x)) and
(S(y, z)) ∨ (S(x, y) ∧ T (x)). When multiple conjuncts are
found this way, there are two options. If they are symboli-
cally independent (share no symbols, denoted ⊥), then Step 2
applies independence and recurse. Otherwise, Step 3 recurses
using the inclusion-exclusion principle, performing cancella-
tions first to maintain efficiency [Dalvi and Suciu, 2012]. If
there is only a single UCQ after rewriting, Step 4 tries to split
it into independent parts, applying independence and recurs-
ing if anything is found.

Next, Step 5 searches for a separator variable, one which
appears in every atom in Q. If x is a separator variable for
Q, and a, b are different constants in the domain of x, this
means that Q[x/a] and Q[x/b] are independent. This inde-
pendence is again recursively exploited. Finally, if Step 6 is
reached, then the algorithm has failed and the query cannot
be computed efficiently [Dalvi and Suciu, 2012].

2.3 Open-World Probabilistic Databases

In the context of automatically constructing a knowledge
base, as is done in for example NELL [Carlson et al., 2010]
or Google’s Knowledge Vault [Dong et al., 2014], making the
closed-world assumption is conceptually unreasonable. Con-
versely, it is also not feasible to include all possible tuples and
their probabilities in the knowledge base. The resulting dif-
ficulty is that there are an enormous number of probabilistic
facts that can be scraped from the internet, and by definition
these tools will keep only those with the very highest prob-
ability. As a result, knowledge bases like NELL [Carlson et
al., 2010], PaleoDeepDive [Peters et al., 2014], and YAGO
[Suchanek et al., 2007] consist almost entirely of probabili-
ties above 0.95.

This tells us that the knowledge base we are looking at is
fundamentally incomplete. In response to this problem, Cey-
lan et al. [2016] propose the notion of a completion for a prob-
abilistic database.

Definition 3. A λ-completion of a probabilistic database P is
another probabilistic database obtained as follows. For each
atom t that does not appear in P , we add tuple 〈t : p〉 to P for
some p ∈ [0, λ].

Then, we can define the open world of possible databases
in terms of the set of distributions induced by all completions.

Definition 4. An open-world probabilistic database (Open-
PDB) is a pair G = (P, λ), where P is a probabilistic
database and λ ∈ [0, 1]. G induces a set of probability dis-
tributions KG such that a distribution P belongs to KG iff P is
induced by some λ-completion of probabilistic database P .

Open-World Queries OpenPDBs specify a set of proba-
bility distributions rather than a single one, meaning that a
given query produces a set of possible probabilities rather
than a single one. We focus on computing the minimum and
maximum possible probability values that can be achieved by
completing the database.

Definition 5. The probability interval of a Boolean query Q

in OpenPDB G is KG(Q) = [PG(Q), PG(Q)], where

PG(Q) = min
P∈KG

P (Q) PG(Q) = max
P∈KG

P (Q)

In general, computing the probability interval for some
first-order Q is not tractable. As observed in Ceylan et al.
[2016], however, the situation is different for UCQ queries,
because they are monotone (they contain no negations). For
UCQs, the upper and lower bounds are given respectively by
the full completion (where all unknown probabilities are λ),
and the closed world database. This is a direct result of the
fact that OpenPDBs form a credal set: a closed convex set
of probability measures, meaning that probability bounds al-
ways come from extreme points [Cozman, 2000].

Furthermore, Ceylan et al. [2016] also provide an algo-
rithm for efficiently computing this upper bound correspond-
ing to a full completion, and show that it works whenever the
UCQ is safe.

3 Mean-Constrained Completions

This section motivates the need to strengthen the OpenPDB
semantics, and introduces our novel probabilistic data model.

3.1 Motivation

The ability to perform efficient query evaluation provides an
appealing case for OpenPDBs. They give a more reasonable
semantics, better matching their use, and for a large class of
queries they come at no extra cost in comparison to traditional
PDBs. However, in practice computing an upper bound in
this way tends to give results very close to 1. Intuitively, this
makes sense: our upper bound comes from simultaneously
assuming that every possible missing atom has some reason-
able probability. While such a bound is easy to compute, it is
too strong of a relaxation of the closed-world assumption.



Query CW OW CoOW

LiLA(x), S(x) 0 1− 10−290 1−10−15

LiSpr(x), S(x) 0 1− 10−191 0.96

Table 1: Comparison of upper bounds for the same query and
database with different model assumptions: Closed-World (CW),
Open-World (OW), and Constrained Open-World (CoOW).

Recall the motivation for the initial OpenPDB semantics:
statistical knowledge base construction (KBC) tools store
only the most likely extracted tuples [Ceylan et al., 2016].
The λ parameter in OpenPDBs is designed to account for this,
representing an upper bound on the probability of unobserved
tuples. However, this discards other information potentially
collected by the KBC system: for example, suppose that a
table in our database describes whether or not a person is a
scientist. The OpenPDB model will account for the fact that
many of the people we discard have a non-zero chance of be-
ing a scientist, but it will not take into account the fact that
our KBC system observes that fewer than 1% of the popula-
tion are scientists.

In order to consider a restricted subset of completions rep-
resenting reasonable situations, we propose directly incorpo-
rating these summary statistics. Specifically, we place con-
straints on the overall probability of a relation across the en-
tire population. In the scientist example, our model only con-
siders completions in which the probability mass of people
being scientists totals less than 1%. This allows us to include
more information at the domain level, without having more
information about each individual.

Example To illustrate the effect this has, consider a schema
in which we have 3 relations: LiLA(x) denoting whether one
lives in Los Angeles, LiSpr(x) denoting whether one lives in
Springfield, and S(x) denoting whether one is a scientist. Us-
ing a vocabulary of 500 people where each person is present
in at most one relation, Table 1 shows the resulting upper
probability bound under different model assumptions, where
the constrained open-world restricts at most 50% of mass on
LiLA, 5% on S, and 0.5% on LiSpr . In particular, notice
how extreme the difference is in upper bound with and with-
out constraints being imposed. The closed-world probability
of both of these queries is always 0, as each person in our
database only has a known probability for at most one rela-
tion. It is clear that of these three options, the constrained
open-world is the most reasonable – the rest of this section
formalizes this idea and investigates the resulting properties.

3.2 Formalization

We begin here by defining mean-based constraints, before ex-
amining some immediate observations about the structure of
the resulting constrained database.

Definition 6. Suppose we have a PDB P , and let Tup(R) ⊆
P be the set of probabilistic tuples in relation R. Let p̄ be
a probability threshold. Then a mean tuple probability con-
straint (MTP constraint) ϕ is a linear constraint of the form

p̄ ≥
1

|Tup(R)|

∑

〈t:p〉∈Tup(R)

p

Definition 7. We say that a λ-completion is ϕ-constrained if
the λ-completed database satisfies MTP ϕ. If it satisfies all of
Φ = (ϕ1, ϕ2, ..., ϕn), then we say it is Φ-constrained.

Being ϕ-constrained is not a property of OpenPDBs, but
of their PDB completions. Hence, we are interested in the
subset of completions that satisfy this property.

Definition 8. An OpenPDB G = (P, λ) together with MTP
constraints Φ induces a set of probability distributions KΦ

G ,

where distribution P belongs to KΦ
G iff P is induced by some

Φ-constrained λ-completion of P .

Much like with standard OpenPDBs, for a Boolean query
Q we are interested in computing bounds on P (Q).

Definition 9. The probability interval of a Boolean query
Q in OpenPDB G with MTP constraints Φ is KΦ

G (Q) =

[PΦ
G (Q), P

Φ

G (Q)], where

PΦ
G (Q) = min

P∈KΦ

G

P (Q); P
Φ

G (Q) = max
P∈KΦ

G

P (Q).

3.3 Completion Properties

A necessary property of OpenPDBs for efficient query evalu-
ation is that they are credal – this is what allows us to con-
sider only a finite subset of possible completions. MTP-
constrained OpenPDBs maintain this property.1

Proposition 1. Suppose we have an OpenPDB G together
with MTP constraints Φ. Then the induced set of probability
distributions KΦ

G is credal.

This property allows us to examine only a finite subset of
configurations when looking at potential completions, since
query probability bounds of a credal set are always achieved
at points of extrema [Cozman, 2000]. Next, we would like
to characterize these points of extrema, by showing that the
number of tuples not on their own individual boundaries (that
is, 0 or λ) is given by the number of MTP constraints.

Theorem 2. Suppose we have an OpenPDB G = (P, λ) with
MTP constraints Φ, and a UCQ Q. Then there exists a Φ-

constrained λ-completion P ′ for which PP′(Q) = P
Φ

G (Q)
and that contains some T ⊆ P ′ \ P such that |T | ≤ |Φ|, and

∀ 〈t : p〉 ∈ T : p ∈ [0, λ], and

∀ 〈t : p〉 ∈ (P ′ \ P) \ T : p ∈ {0, λ}.

That is, our upper bound is given by a completion that
has at most |Φ| added tuples with probability not exactly 0
or λ. Intuitively, each MTP constraint contributes a single
non-boundary tuple, which can be thought of as the “leftover”
probability mass once the rest has been assigned in full.

This insight allows us to treat MTP query evaluation as a
combinatorial optimization problem for the rest of this paper.
Thus, we only consider the case where achieving the mean
tuple probability exactly leaves us with every individual tuple
at its boundary. To see that we can do this, we observe that

1Proofs of all theorems and lemmas are available in appendix
of the full version of the paper at http://starai.cs.ucla.edu/papers/
FriedmanIJCAI19.pdf



Theorem 2 leaves a single tuple per MTP constraint not nec-
essarily on the boundary. But this tuple can always be forced
to be on the boundary by very slightly increasing the mean p̄
of the constraint, as follows.

Corollary 3. Suppose we have an OpenPDB G = (P, λ)
with MTP constraints Φ, and a UCQ Q. Suppose further that
each relation in G has at most 1 constraint in Φ, and that
each constraint allows adding open-world probability mass
exactly divisible by λ. Then there exists a Φ-constrained λ-
completion P ′, where KΦ

G (Q) = [PP(Q), PP′(Q)], and

∀〈t : p〉 ∈ P ′ \ P : p ∈ {0, λ}.

Our investigation into the algorithmic properties of MTP
query evaluation will be focused on constraining a single re-
lation, subject to a single combinatorial budget constraint.

4 Exact MTP Query Evaluation

With Section 3 formalizing MTP constraints and showing
that computing upper bounds subject to MTP constraints is
a combinatorial problem of choosing which λ-probability tu-
ples to add in the completion, we now investigate exact so-
lutions. With this now being a combinatorial problem, we
slightly change our terminology: “adding” an open-world tu-
ple t to a relation means we consider only completions where
P (t) = λ, and a “budget” b for a relation means we can add
up to b tuples while still satisfying the MTP constraint.

4.1 An Algorithm for Inversion-Free Queries

We begin by describing a class of queries that admits poly-
time evaluation subject to an MTP constraint. We first need
to define some syntactic properties of queries.

Definition 10. Let Q be a conjunctive query, and let at(x) de-
note the set of relations containing variable x. We say that Q
is hierarchical if for any x, y, we have either at(x) ⊆ at(y),
at(y) ⊆ at(x), or at(x) ∩ at(y) = ∅.

Intuitively, a conjunctive query being hierarchical indicates
that it can either be separated into independent parts (the
at(x)∩at(y) = ∅ case), or there is some variable that appears
in every atom. This simple syntactic property is the basis for
determining whether query evaluation on a conjunctive query
can be done in polynomial time [Dalvi and Suciu, 2007]. We
can further expand on this definition in the context of UCQs.

Definition 11. A UCQ Q is inversion-free if each of its dis-
juncts is hierarchical, and they all share the same hierarchy.2

If Q is not inversion-free, we say that it has an inversion.

Inversion-free queries represent an especially tractable
class of queries for general inference. Since they are hi-
erarchical, they are also safe, meaning query evaluation is
efficient. Moreover, they precisely characterize the class of
queries that support compilation to a tractable form for per-
forming more complex queries, such as computing any joint
distribution [Jha and Suciu, 2011]. This query class remains
tractable under MTP constraints.

Theorem 4. For any inversion-free query Q, evaluating the

probability P
Φ

G (Q) subject to an MTP constraint is in PTIME.

2See Jha and Suciu [2011] for a more detailed definition.

In order to prove Theorem 4, we provide a polytime al-
gorithm for MTP query evaluation on inversion-free queries.
As with OpenPDBs, our algorithm depends on Algorithm 1,
the standard lifted inference algorithm for PDBs that was dis-
cussed in Section 2.

We now present an algorithm for doing exact MTP query
evaluation on inversion-free queries. For brevity, we present
the case of a binary relation; the general case follows simi-
larly and can be found in appendix. Suppose that we have
a probabilistic database P , a domain T of constants denoted
c, a query Q, and an MTP constraint on relation R(x, y) al-
lowing us to add exactly b tuples with probability λ. Suppose
that Q immediately reaches Step 5 of Algorithm 1 (other steps
will be discussed later), implying that x and y are unique vari-
ables in the query. We let A(cx, cy, b) denote the upper query
probability of Q(x/cx, y/cy) subject to an MTP constraint al-
lowing budget b on R restricted to x = cx, y = cy . That is, A
tells us the highest probability we can achieve for a partial as-
signment given a fixed budget. Observe that we can compute
all entries of A using a slight modification of Algorithm 1
where we compute probabilities with and without each added
tuple. This will take time polynomial in |T |.

Next, we impose an ordering c1, . . . , c|T | on the domain.

Then we let D(j, cy, b) denote the upper query probability of

∨

c∈{c1,...cj}

Q(x/c, y/cy)

with a budget of b on the relevant portions of R. Then
D(|T |, cy, b) considers all possible substitutions in our first
index, meaning we have effectively removed a variable. Do-
ing this repeatedly would allow us to perform exact MTP
query evaluation. However, D is non-trivial to compute, and
cannot be done by simply modifying Algorithm 1. Instead,
we observe the following recurrence:

D(j + 1, y/cy, b) =

max
k∈{1,...,b}

1− (1−D(j, y/cy, b− k))

· (1−A(x/cj+1, y/cy, k))

Intuitively, this recurrence says that since the tuples from
each fixed constant are all independent, we do not need to
store which budget configuration on the first j constants got
us our optimal solution. Thus, when we add the j + 1th con-
stant, we just need to check each possible value we could
assign to our new constant, and see which gives the overall
highest probability. This recurrence can be implemented effi-
ciently, yielding a dynamic programming algorithm that runs
in time polynomial in the domain size and budget.

Finally, we would like to generalize this algorithm beyond
the assumption that Q immediately reaches Step 5 of Algo-
rithm 1. Looking at other cases, we see that Steps 0 and 1
have no effect on this recurrence, and that Steps 2 and 4 corre-
spond to multiplicative factors. For a query that reaches Step
3 (inclusion-exclusion), we need to construct such A and D
for each term in the inclusion-exclusion sum, and follow the
analogous recurrence.

Notice that the modified algorithm would only work in the
case where we can always pick a common variable for all



sub-queries to do dynamic programming on – that is, when
the query is inversion-free, as was our assumption. If the sub-
calls generated by inclusion-exclusion do not share a common
variable hierarchy, and thus an order for using our dynamic
programming algorithm, we suffer an exponential blowup.

4.2 Queries with Inversion

We now show that allowing for inversions in safe queries can
cause MTP query evaluation to become NP-hard. Interest-
ingly, this means that MTP constraints fundamentally change
the difficulty landscape of query evaluation.

To show this, we investigate the following UCQ query.

M0 = ∃x∃y∃z (R(x, y, z) ∧ U(x)) ∨ (R(x, y, z) ∧ V (y))

∨ (R(x, y, z) ∧W (z)) ∨ (U(x) ∧ V (y))

∨ (U(x) ∧W (z)) ∨ (V (y) ∧W (z))

A key observation here is that the query M0 is a safe UCQ.
That is, if we ignore constraints and evaluate it subject to the
closed- or open-world semantics, computing the probability
of the query would be polynomial in the size of the database.
We now show that this is not the case for open-world query
evaluation subject to a single MTP constraint on R.

Theorem 5. Evaluating the upper query probability bound

P
Φ

G (M0) subject to an MTP constraint Φ on R is NP-hard.

The full proof of Theorem 5 can be found in appendix,
showing a reduction from the NP-complete 3-dimensional

matching problem to computing P
Φ

G (M0) with an MTP con-
straint on R. It uses the following intuitive correspondence.

Definition 12. Let X,Y, Z be finite disjoint sets represent-
ing nodes, and let T ⊆ X × Y × Z be the set of available
hyperedges. Then M ⊆ T is a matching if for any distinct
triples (x1, y1, z1) ∈ M, (x2, y2, z2) ∈ M , we have that
x1 6= x2, y1 6= y2, z1 6= z2. The 3-dimensional matching
decision problem is to determine for a given X,Y, Z, T and
positive integer k if there exists a matching M with |M | ≥ k.

The set of available tuples for R will correspond to all
edges in T . The MTP constraint on R forces a decision on
which subset of T to add to the database.

However, if we simply queried to maximize P (R(x, y, z)),
this completion need not correspond to a matching. Instead,
we have the disjunct R(x, y, z) ∧ U(x) which is maximized
when each tuple chosen from R has a different x value. Sim-
ilar disjuncts for y and z ensure that the query is maximized
when using distinct y and z values. Putting all of these to-
gether ensures that the query probability is maximized when
the subset of tuples chosen to complete R form a matching.

Finally, the last part of the query (U(x)∧V (y))∨ (U(x)∧
W (z)) ∨ (V (y) ∧ W (z)) ensures that inference on M0 is
tractable, but it is unaffected by the choice of tuples in R.

5 Approximate MTP Query Evaluation

With Section 4.2 answering definitively that a general-
purpose algorithm for evaluating MTP query bounds is un-
likely to exist, even when restricted to safe queries, an ap-
proximation is the logical next step. We now restrict our dis-
cussion to situations where we constrain a single relation, and

dig deeper into the properties of MTP constraints to show
their submodular structure. We then exploit this property to
achieve efficient bounds with guarantees.

5.1 On the Submodularity of Adding Tuples

To formally define and prove the submodular structure of the
problem, we analyze query evaluation as a set function on
adding tuples. We begin with a few relevant definitions.

Definition 13. Suppose that we have an OpenPDB G, with
an MTP constraint ϕ on a single relation R, and we let O be
the set of possible tuples we can add to R. Then the set query
probability function SP,Q : 2O → [0, 1] is defined as

SP,Q(X) = PP∪{〈t:λ〉|t∈X}(Q).

Intuitively, this function describes the probability of the
query as a function of which open tuples have been added.
It provides a way to reason about the combinatorial proper-
ties of this optimization problem. Observe that SP,Q(∅) is
the closed-world probability of the query, while SP,Q(O) is
the open-world probability.

We want to show that SP,Q is a submodular set function.

Definition 14. A submodular set function is a function f :
2Ω → R such that for every X ⊆ Y ⊆ Ω, and every x ∈
Ω \ Y , we have that

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

Theorem 6. The set query probability function SP,Q is sub-
modular for any tuple independent probabilistic database P
and UCQ query Q without self-joins.

This gives us the desired submodularity property, which we
can exploit to build efficient approximation algorithms.

5.2 From Submodularity to Approximation

Given the knowledge that the probability of a safe query with-
out self-joins is submodular in the completion of a single re-
lation, we are now tasked with using this to construct an effi-
cient approximation. Since we further know the probability is
also monotone as we have restricted our language to UCQs,
Nemhauser et al. [1978] tell us that we can get a 1− 1

e approx-
imation using a simple greedy algorithm. The final require-
ment to achieve the approximation described in Nemhauser et
al. [1978] is that our set function must have the property that
f(∅) = 0. This can be achieved in a straightforward manner
as follows.

Definition 15. In the context of the set query probability
function of Definition 13, the normalized set query proba-
bility function S′

P,Q : 2O → [0, 1] is defined as

S′
P,Q(X) = PP∪{〈t:λ〉|t∈X}(Q)− PP(Q).

Proposition 7. Any normalized set query probability function
S′
P,Q is monotone, submodular, and satifies S′

P,Q(∅) = 0.

By simply normalizing the set query probability function,
we can now directly apply the greedy approximation de-
scribed in Nemhauser et al. [1978]. We slightly modify Al-
gorithm 1 to efficiently compute the next best tuple to add
based on the current database, and add it. This is repeated



until adding another tuple would violate the MTP constraint.
Finally, we say that PGreedy(Q) is the approximation given
by this greedy algorithm and recall that the true upper bound

is P
Φ

G (Q). We observe that PGreedy(Q) ≤ P
Φ

G (Q). Further-
more, Nemhauser et al. [1978] tells us the following:

PGreedy(Q)− PP(Q) ≥ (1−
1

e
)(P

Φ

G (Q)− PP(Q))

Combining these and multiplying through gives us the fol-
lowing upper and lower bound on the desired probability.

PGreedy(Q) ≤ P
Φ

G (Q) ≤
e · PGreedy(Q)− PP(Q)

e− 1

It should be noted that depending on the query and
database, it is possible for this upper bound to exceed 1.

6 Discussion, Future & Related Work

We propose the novel problem of constraining open-world
probabilistic databases at the schema level, without having
any additional ground information over individuals. We in-
troduced a formal mechanism for doing this, by limiting the
mean tuple probability allowed in any given completion, and
then sought to compute bounds subject to these constraints.
We now discuss remaining open problems and related work.

Section 4 showed that there exists a query that is NP-hard
to compute exactly, and also presented a tractable algorithm
for a class of inversion-free queries. The question remains
how hard the other queries are – in particular, is the algo-
rithm presented complete. Is there a complexity dichotomy,
that is, a set of syntactic properties that determine the hard-
ness of a query subject to MTP constraints. Questions of this
form are a central object of study in probabilistic databases. It
has been explored for conjunctive queries [Dalvi and Suciu,
2007], UCQs [Dalvi and Suciu, 2012], and a more general
class of queries with negation [Fink and Olteanu, 2016].

The central goal of our work is to find stronger seman-
tics based on OpenPDBs, while still maintaining their de-
sirable tractability. This notion of achieving a powerful se-
mantics while maintaining tractability is a common topic of
study. De Raedt and Kimmig [2015] study this problem by
using a probabilistic interpretation of logic programs to de-
fine a model, leading to powerful semantics but a more lim-
ited scope of tractability [Fierens et al., 2015]. Description
logics [Nardi et al., 2003] are a knowledge representation for-
malism that can be used as the basis for a semantics. This is
implemented in a probabilistic setting in, for example, prob-
abilistic ontologies [Riguzzi et al., 2012, 2015], probabilistic
description logics [Heinsohn, 1994], probabilistic description
logic programs [Lukasiewicz, 2005], or the bayesian descrip-
tion logics [Ceylan and Peñaloza, 2014].

Probabilistic databases in particular are of interest due to
their simplicity and practicality. Foundational work defines
a few types of probabilistic semantics, and provides efficient
algorithms as well as when they can be applied [Dalvi and Su-
ciu, 2004, 2007, 2012]. These algorithms along with practi-
cal improvements are implemented as industrial level systems
such as MystiQ [Ré and Suciu, 2008], SPROUT [Olteanu et

al., 2009], MayBMS [Huang et al., 2009], and Trio which im-
plements the closely related Uncertainty-Lineage Databases
[Benjelloun et al., 2007].

Problems outside of simple query evaluation are also points
of interest for PDBs, for example the most probable database
problem [Gribkoff et al., 2014], or the problem of ranking the
top-k results [Ré et al., 2007]. In the context of OpenPDBs in
particular, Grohe and Lindner [2018] study the notion of an
infinite open world, using techniques from analysis to explore
when this is feasible. Borgwardt et al. [2017] study an or-
thogonal way to introduce constraints on OpenPDBs to make
the probability bounds realistic, by adding logical constraints
based on an ontology.

Finally, probabilistic databases are closely related to other
statistical relational models such as Markov logic networks
[Richardson and Domingos, 2006] and probabilistic soft logic
[Kimmig et al., 2012]. These models implicitly support the
open-world assumption, although inference will not be effi-
cient in general given the large number of random variables
induced by the open world.
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scription logic BEL. In Stéphane Demri, Deepak Kapur,
and Christoph Weidenbach, editors, Automated Reasoning,
pages 480–494, Cham, 2014. Springer International Pub-
lishing.

Ismail Ilkan Ceylan, Adnan Darwiche, and Guy Van den
Broeck. Open-world probabilistic databases. In KR, 2016.
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A Proofs of Theorems, Lemmas, and

Propositions

A.1 Proof of Proposition 1

Proof. To prove this, we need to show that KΦ
G is both closed

and convex.

Due to the way our constraints are defined, we know that
KΦ

G = KG ∩ KΦ, where KΦ is the set of all completions
satisfying Φ (but not necessarily having all tuple probabilities
≤ λ). We already know that KG is credal, and thus closed and
convex. KΦ is a half-space, which we also know is closed and
convex. The intersection of closed spaces is closed, and the
intersection of convex spaces is convex, so KΦ

G is credal.

A.2 Proof of Theorem 2

Lemma 8. If S ⊆ R
n is a set formed by the intersection of

k < n half-spaces, S has no points of extrema.

Proof. Written as a set of linear equalities, the solution
clearly must have at least 1 degree of freedom. This indi-
cates that for any potential extrema point x, one can move in
either direction along this degree of freedom to construct an
open line intersecting x, but entirely contained in S.

Proof. Since KΦ
G is credal, we are interested here in deter-

mining the point of extrema of KΦ
G , as this will tell us pre-

cisely which completions can represent boundaries.

Consider the construction of the set KΦ
G , and suppose that

there are d possible open-world tuples, meaning that KΦ
G ⊆

R
d. As we observed in the proof of Theorem 1, KΦ

G = KG ∩

KΦ, where KΦ is the set of all completions satisfying Φ. We
now make three key observations about these sets:

1. Each individual possible open-world tuple is described
by the intersection of 2 half-spaces: that is, the tuple on
dimension i is described by xi ≥ 0 and xi ≤ λ. KG is
the intersection of all 2d of these half-spaces.

2. For any individual open-world tuple, the boundaries of
the two half-spaces that describe it cannot intersect each
other.

3. An MTP constraint is a linear constraint, and thus can be
described by a single half-space. So KΦ is described by
the intersection of these |Φ| half-spaces.

Observations 1 and 3, together with Lemma 8 tells us that
any point of extrema of KΦ

G must be given by the intersection
of the boundaries of at least d of the half-spaces that form
KΦ

G . Observation 3 tells us that at most |Φ| of these half-
spaces come from MTP constraints, leaving the boundaries
of at least d− |Φ| half-spaces which come from KG . Finally,
observation 2 tells us that each of these d − |Φ| half-spaces
is describing a different open world tuple. But this means we
must have at least d−|Φ| tuples which lie on the boundary of
one of their defining half-spaces: they must be either 0 or λ.

A.3 Proof of Theorem 5

Before we present the formal proof, we state and prove 2
Lemmas we will need.

Lemma 9. Suppose we have two completions P1 and P2 of
R, which only differ on a single triple, that is P1 = P0 ∪
{x1, y1, z1} and P2 = P0 ∪ {x2, y2, z2}. Further suppose
that y1 = y2, z1 = z2, and that P0 contains no triples with
x-value x1, but does contain at least 1 triple with x-value x2.
Then P1(M0) > P2(M0).

Proof. Let us directly examine ∆, the logical formula found
by grounding M0. Since M0 is a union of conjunctive
queries, ∆ must be a DNF. Each disjunct either does not con-
tain R, in which case it does not vary with the choice of com-
pletion, or it contains it exactly once. Any disjunct containing
an atom of R not assigned probability by a completion is log-
ically false.

In order to prove that P1(M0) > P2(M0), let us com-
pare the ground atoms that result from each. It is clear that
the only spot on which they differ is on disjuncts involving
R(x1, y1, z1) or R(x2, y1, z1). Any disjuncts involving one
of these and V or W will also have an identical effect on the
probability of the query, since the completions are identical
over y and z.

Finally this means we need to compare the term
R(x1, y1, z1), U(x1) with the term R(x2, y1, z1), U(x2). Ob-
serve that we know P0 contains triples with x-value x2, which
means the term only contributes new probability mass when
U(x2) is true and none of the other triples involving x2 are
true. However, P0 does not contain any triples with x-value
x1, so the term R(x1, y1, z1), U(x1) contributes the maxi-
mum probability possible. Thus, for any choice of proba-
bilities on U such that U(x2) < 1, we have that P1(M0) >
P2(M0).

Lemma 10. The upper bound P (M0) subject to an MTP con-
straint on R allowing for k · λ total probability mass is max-
imized if and only if P is a completion formed by a matching
of size k, where k is the maximum number of tuples with prob-
ability λ that can be added to R in M0.

Proof. Observe that if we begin with a completion given by a
matching, we can repeatedly apply Lemma 9 to arrive at any
completion. Thus a completion given by a matching must
have higher probability than any completion not given by a
matching.

Finally, we are ready to present the proof of Theorem 5.

Proof. Suppose we are given an instance of a 3-dimensional
matching problem X,Y, Z, T and an integer k. Let
U(x), V (y),W (z) be 0.8 wherever x ∈ X, y ∈ Y , or
z ∈ Z respectively, and 0 everywhere else. Additionally,
let R(x, y, z) be unknown for any (x, y, z) ∈ T , and 0 oth-
erwise. Finally, we place an MTP constraint on R ensuring
that at most k tuples can be added, and let λ = 0.8. Then
Lemma 10 tells us that M0 evaluated on this database will
be maximized if and only if the completion used corresponds
to a matching of size k. We determine this probability Pmax

using a standard probabilistic database query algorithm, and



fixing R to have entries 0.8 for some disjoint set of triples.
Observe that this computation is easy if we allow any tuples
from R to have non-zero probability: this corresponds to a
matching in the setting where all hyperedges are available,
but will still give the same query probability.

Finally, we use our oracle for MTP constrained query eval-
uation to check P (M0) with the database we constructed
from the matching problem. We compare the upper bound
given by the oracle, and if it is equal to Pmax, Lemma 10 tells
us that a matching of size k does exist. Similarly, if the up-
per bound given by the oracle is lower than Pmax, Lemma 10
tells us a matching of size k does not exist.

A.4 Proof of Theorem 6

Proof. Without directly computing probabilities, let us in-
spect ∆, the logical formula we get by grounding Q. Q is
a union of conjunctive queries, and thus ∆ is a DNF. Each
disjunct can contain our constrained relation R at most once
due to the query not having self-joins, and any one of these
disjuncts containing an atom of R not assigned any probabil-
ity is logically false.

Next, to show that SP,Q is submodular, let X ⊆ Y ⊆ O,
and let x ∈ O\Y be given. We assign names to the following
subformulas of ∆

– α (β) is the disjunction of all disjuncts of ∆ which are
not logically false due to missing RB tuples in X (Y )

– γ is the disjunction of all disjuncts of ∆ containing the
tuple x

Additionally, since X ⊆ Y , we also know that α ⇒ β.
Now, we make a few observations relating these quantities
with our desired values for submodularity:

– SP,Q(X) = P (α)

– SP,Q(Y ) = P (β)

– SP,Q(X ∪ {x}) = P (α ∨ γ)

– SP,Q(Y ∪ {x}) = P (β ∨ γ)

Finally, we have the following:

SP,Q(X ∪ {x})− SP,Q(X) = P (α ∨ γ)− P (α)

= P (¬α ∧ γ)

≥ P (¬β ∧ γ)

= P (β ∨ γ)− P (β)

= SP,Q(Y ∪ {x})− SP,Q(Y )

B General Algorithm for Inversion-Free

Queries

We now present an algorithm for doing exact MTP
query evaluation on inversion-free queries. Suppose
that we have a probabilistic database P , a domain
T of constants denoted c, a query Q, and an MTP
constraint on relation R(x1, x2, . . . , xr) allowing us to
add B tuples. For any I ⊆ {1, . . . , r}, we let
A(xi1/ci1 , xi2/ci2 , . . . , xi|I|/ci|I| , b) denote the upper query

probability of Q(xi1/ci1 , xi2/ci2 , . . . , xi|I|/ci|I|) subject to

an MTP constraint allowing budget b on the relevant portion
of R. That is, A tells us the highest probability we can achieve
for a partial assignment given a fixed budget. Observe that
we can compute all entries of A using a slight modification of
Algorithm 1. This will take time polynomial in |T |.

Next, we impose an ordering c1, c2, . . . , c|T | on

the domain. For any I ⊆ {1, . . . , r}, we let
D(j, xi2/ci2 , . . . , xi|I|/ci|I| , b) denote the upper query
probability of

∨

c∈{c1,...cj}

Q(xi1/c, xi2/ci2 , . . . , xi|I|/ci|I|) (1)

with a budget of b on the relevant portions of R. Then
D(|T |, xi2/ci2 , . . . , xi|I|/ci|I| , b) considers all possible sub-
stitutions in our first index, meaning we no longer need to
worry about it. Doing this repeatedly would allow us to per-
form exact MTP query evaluation. However, D is non-trivial
to compute, and cannot be done by simply modifying Algo-
rithm 1. Instead, we observe the following recurrence:

D(j + 1, xi2/ci2 , . . . , xi|I|/ci|I| , b)

= max
k∈{1,...,b}

1−D(j, xi2/ci2 , . . . , xi|I|/ci|I| , b− k)

·A(xi1/cj+1, xi2/ci2 , . . . , xi|I|/ci|I| , k)

Intuitively, this recurrence is saying that since the tuples
from each fixed constant are independent of each other, we
can add a new constant to our vocabulary by simply consider-
ing all combinations of budget assignments. This recurrence
can be implemented efficiently, yielding a dynamic program-
ming algorithm that runs in time polynomial in the domain
size and budget.

The keen reader will now observe that the above defini-
tion and recurrence only make sense if Q immediately reaches
Step 5 of Algorithm 1. While this is true, we see that Steps
0 and 1 have no effect on this recurrence, and Steps 2 and 4
correspond to multiplicative factors. For a query that reaches
Step 3: inclusion-exclusion, we indeed need to construct such
matrices for each sub-query. Notice that the modified algo-
rithm would only work in the case where we can always pick
a common xi for all sub-queries to do dynamic programming
on - that is, when the query is inversion-free.
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