
Active Inductive Logic Programming

for Code Search

Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, Miryung Kim

University of California, Los Angeles

{dcssiva, tianyi.zhang, guyvdb, miryung}@cs.ucla.edu

Abstract—Modern search techniques either cannot efficiently
incorporate human feedback to refine search results or cannot
express structural or semantic properties of desired code. The
key insight of our interactive code search technique ALICE

is that user feedback can be actively incorporated to allow
users to easily express and refine search queries. We design a
query language to model the structure and semantics of code
as logic facts. Given a code example with user annotations,
ALICE automatically extracts a logic query from code features
that are tagged as important. Users can refine the search query
by labeling one or more examples as desired (positive) or
irrelevant (negative). ALICE then infers a new logic query that
separates positive examples from negative examples via active
inductive logic programming. Our comprehensive simulation
experiment shows that ALICE removes a large number of
false positives quickly by actively incorporating user feedback.
Its search algorithm is also robust to user labeling mistakes.
Our choice of leveraging both positive and negative examples
and using nested program structure as an inductive bias is
effective in refining search queries. Compared with an existing
interactive code search technique, ALICE does not require a
user to manually construct a search pattern and yet achieves
comparable precision and recall with much fewer search
iterations. A case study with real developers shows that ALICE

is easy to use and helps express complex code patterns.
Index Terms—Code Search, Active Learning, Inductive Logic

Programming

I. INTRODUCTION

Software developers and tools often search for code to

perform bug fixes, optimization, refactoring, etc. For exam-

ple, when fixing a bug in one code location, developers

often search for other similar locations to fix the same

bug [1]–[3]. Text-based search techniques allow users to

express search intent using keywords or regular expressions.

However, it is not easy to express program structures or

semantic properties using text-based search, thus hindering

its capability to accurately locate desired code locations.

TXL [4] and Wang et al. [5] provide a domain-specific

language (DSL) for describing structural and semantic prop-

erties of code. However, learning a new DSL for code search

can be cumbersome and time consuming.

Several techniques infer an underlying code search pattern

from a user-provided example [2, 6]–[8]. These techniques

adopt fixed heuristics to generalize a concrete example to

a search pattern, which may not capture various search

intent or allow a user to refine the inferred pattern. Lase [9]

and Refazer [10] use multiple examples instead of a single

example to better infer the search intent of a user. However,

this requirement poses a major usability limitation: a user

must come up with multiple examples a priori. Critics allows

a user to construct an AST-based search pattern from a single

example through manual code selection, customization, and

parameterization [11]. However, users of Critics report that,

the internal representation of a search pattern is not easy to

comprehend and that they could benefit from some hints to

guide the customization process.

We propose an interactive code search technique, ALICE

that infers a search pattern by efficiently incorporating

user feedback via active learning. ALICE has three major

components: (1) a novel user interface that allows a user

to formulate an initial search pattern by tagging important

features and iteratively refining it by labeling positive and

negative examples, (2) a query language that models struc-

tural and semantic properties of a program as logic facts

and expresses a search pattern as a logic query, and (3) an

active learning algorithm that specializes a search pattern

based on the positive and negative examples labeled by the

user. In this interface, a user can start by selecting a code

block in a method as a seed and by tagging important code

features that must be included in the pattern. ALICE then

automatically lifts a logic query from the tagged features

and matches it against the logic facts extracted from the

entire codebase. Our query language models properties in-

cluding loops, method calls, exception handling, referenced

types, containment structures, and sequential ordering in a

program. Therefore, our query language can easily express

a search pattern such as ‘find all code examples that call

the readNextLine method in a loop and handle an excep-

tion of type FileNotFoundException,’ which cannot be

accurately expressed by text-based approaches.

Our active learning algorithm utilizes Inductive Logic

Programming (ILP) [12, 13] to refine the search pattern. ILP

provides an easy framework to express background knowl-

edge as rules and is well-suited for learning from structured

data. ILP does not assume a flat data representation and

allows to capture structural properties of code not easily

captured by other methods such as neural networks [14].

Additionally, ILP has been proven successful in program

synthesis [15], specification mining [16, 17], and model

checking [18]. Since users can only inspect a handful of

search results due to limited time and attention [19], ALICE

allows the user to provide partial feedback by only labeling

a few examples and gradually refine the search pattern in

multiple search iterations. ALICE uses an inductive bias

setup, the user only needs to provide a minimal number of

labels for the learner to reliably find the correct hypothesis.

Second, most machine learning approaches represent data

as feature vectors, which cannot easily express the structure

of source code. Inductive logic programming (ILP) [12, 25]

is a form of relational learning that supports structured data

encoded as logical facts. In particular, ALICE uses the logical

predicates listed in the first column of Table I to represent

each code example in a factbase. The next section describes

this process in detail.

Given that the data is now in a suitable form, ILP aims

to learn a hypothesis by constructing a logical (Prolog [26])

query that returns exactly those code IDs that the user is

searching for. Queries in ALICE are represented as definite

clauses. For example, in the queries shown in Section II, we

are looking for values of the logical variable X for which the

body of the query is true. The body is true if there exists a

value for the remaining logical variables (uppercase), such

that each atom in the body is also found in the factbase.

The process of learning a query is centered around two

operations: generalization and specialization. Generalization

changes the query to return more results, e.g., removing

atoms from the body, or replacing constants with variables.

Specialization is the reverse operation, yielding a query with

fewer results. An ILP learner uses these operations to search

the space of all hypotheses for the right one.

Finally, even with active learning, ALICE operates in a

regime where little labeled data is available. We know from

learning theory that this is only possible when the learner

has a strong inductive bias. That is, the learner already

incorporates a lot of knowledge about the learning task,

before even seeing the data. We address this in three ways.

First, ILP affords the specification of declarative background

knowledge, which helps to create a more meaningful induc-

tive bias as it applies to code search. Table II shows AL-

ICE’s background knowledge, which enables ALICE to use

additional predicates to construct richer queries. Second, we

allow the user to annotate important code features in order

to obtain a stronger inductive bias. Third, ALICE adopts a

specialization procedure that is specifically designed to cap-

ture different program structures to strengthen the inductive

bias. We implement our own realtime ILP system based on

the high-performance YAP Prolog engine [27].

B. Logic Fact Extraction

ALICE creates a factbase from a given code reposi-

tory using the predicates described in Table I. It parses

program files to Abstract Syntax Trees (ASTs) and

traverses the ASTs to extract logic facts from each

method. Predicates if and loop capture the control flow

within a method; methodcall represents the relation-

ship between a method and its caller; exception cap-

tures the type of handled exceptions; type captures the

type of defined and used variables; contains describes

the relationship between each AST node and its par-

ent recursively; before captures the sequential order-

ing of AST nodes. Specifically, before(id1,id2) is

TABLE I: Predicates in Logical Representation

Fact Predicates Rule Predicates

if(ID, COND) iflike(ID, REGEX)
loop(ID, COND) looplike(ID, REGEX)
parent(ID, ID) contains(ID, ID)
next(ID, ID) before(ID, ID)
methodcall(ID, CALL)
type(ID, NAME)
exception(ID, NAME)
methoddec(ID)

TABLE II: Background Knowledge

Prolog Rules

iflike(ID, REGEX) : - if(ID, COND),
regex match(COND, REGEX).

looplike(ID, REGEX) : - loop(ID, COND),
regex match(COND, REGEX).

contains(ID1, ID2) : - parent(ID1, ID2).
contains(ID1, ID3) : - parent(ID1, ID2),

contains(ID2, ID3).
before(ID1, ID2) : - next(ID1, ID2).
before(ID1, ID3) : - next(ID1, ID2),

before(ID2, ID3).

true, when node id1 comes before node id2 in pre-

order traversal while excluding any direct or transitive

containment relationship. For Figure 1, loop(loop1,

"range==null && i<=this.leadingPtr") comes be-

fore if(if2, "range!=null") creating before(loop1,

if2). Ground facts are then loaded into a YAP Prolog

engine [27] for querying.

C. Generalization with Feature Annotation (Iteration 1)

When a user selects a code block of interest, ALICE

generates a specific query which is a conjunction of atoms

constructed using the predicates in Table I. Each atom

in the query is grounded with constants for its location

ID and value representing the AST node content. ALICE

replaces all ID constants in the query with logical vari-

ables to generate an initial candidate hypothesis h0. For

example, one ground atom in the query is of the form

if(if,"range!=null") and its variablized atom is of

the form if(IF,"range!=null"). To find more examples,

ALICE generalizes the hypothesis by dropping atoms in h0

other than the user annotated ones, producing h1.

Regex Conversion. ALICE further abstracts variable names

in h1 to identify other locations that are similar but

have different variable names. ALICE converts predicates

if and loop to iflike and looplike respectively. As

defined in Table II, iflike and looplike are back-

ground rules that match a regular expression (REGEX)

with ground conditions (COND) in the factbase. For in-

stance, each variable name in loop(ID,"range==null

&& i<= this.leadingPtr") is converted from a string

constant to a Kleene closure expression, generating

looplike(ID,".*==null && .*<=this.*"). The out-

put of this phase is a generalized query h2 and a set of

code examples that satisfy this query. This example set is

displayed in the Example View in Figure 4.

D. Specialization via Active Learning (Iterations 2 to N)

In each subsequent search iteration, given the set of

positive examples (P) and the set of negative examples (N)

labeled by a user, the previous hypothesis hi−1, which is a

conjunction of atoms, is specialized to hi by adding another

atom to exclude all negatives while maximally covering

positives. The specialization function is defined below.

Specialize(hi−1, P,N) = argmax
hi

∑

p∈P

[p |= hi]

such that hi |= hi−1 and ∀n ∈ N,n 6|= hi

Suppose all positive examples call foo and all negative

examples call bar instead of foo. We add a new atom

calls(m,"foo") to specialize hi−1, which distinguishes

the positives from the negatives. As a design choice, our

active ILP algorithm is consistent (i.e., not covering any neg-

ative example) but is not complete (i.e., maximally satisfying

positive examples). Our learning algorithm is monotonic

in that it keeps adding a new conjunctive atom in each

search iteration. This specialization procedure always returns

a subset of the previous search results obtained by hi−1. This

feedback loop continues to the n-th iteration until the user

is satisfied with the search results.

Given the large number of candidate atoms, inductive bias

is required to guide the specialization process of picking

a discriminatory atom. ALICE implements three inductive

biases, which are described below. The effectiveness of each

bias is empirically evaluated in Section IV.

• Feature Vector. This bias considers each code block to

have a flat structure. The feature vector bias does not

consider the nested structure or sequential code order.

It specializes by adding a random atom that reflects the

existence of loops, if checks, method calls, types, or

exceptions in the code block. It is used as the baseline

bias in the evaluation since it does not utilize any structural

information such as containment and ordering.

• Nested Structure. This bias utilizes the containment

structure of the seed code example to add atoms. In

addition to adding an atom corresponding to the AST

node, the bias adds a contains predicate to connect the

newly added atom to one that already appears in the query.

Consider an AST with root node A, whose children are

B and C; B has children D and E, and C has child

F . Suppose that h includes an atom referring to B. Then

based on the containment relationships, ALICE selects one

of D or E to specialize the query for the next iteration, not

F . If there are no available children, or if this query fails

to separate positives from negatives, it falls back to the

parent of B or its further ancestors to construct the next

query. We choose this nested structure bias as default since

it empirically achieves the best performance (detailed in

Section IV-A).

• Sequential Code Order. This bias uses sequential or-

dering of code in the seed example to determine which

atom to add next. Consider an example AST with root

node A and children B and C; C itself has children

D and E. Atoms before(B,D), before(B,C), and

before(B,E) are generated according to the rules in

Table II. Given a query that contains atoms referring to

B, ALICE now chooses one of C, D, or E, to connect

to B using the before predicate, and adds this node to

the query. If there are no available atoms to add, or if this

query fails to separate positives from negatives, it falls

back to the original feature vector bias.

An alternative approach is to carry out logical general-

ization where we generate a query by generalizing positive

examples and taking the conjunction with the negation of

negative example generalization. As a design choice, we do

not allow negations in our query for realtime performance,

since supporting negations would significantly increase the

search space and execution time.

IV. SIMULATION EXPERIMENT

We systematically evaluate the accuracy and effectiveness

of ALICE by assessing different search strategies and by

simulating various user behaviors.

Dataset. We use two complementary sets of similar code

fragments as the ground truth for evaluation, as shown in

Table III. The first dataset is drawn from the evaluation

data set of LASE [9]. This dataset consists of groups of

syntactically similar code locations in Eclipse JDT and SWT,

where developers need to apply similar bug fixes. We select

groups with more than two similar locations, resulting in

14 groups in total. Each group contains an average of five

similar code fragments and each fragment contains a median

of 24 lines of code, ranging from 3 to 648. ALICE extracts an

average of 670K logic facts from each repository. The sec-

ond data set is from the evaluation dataset of Casper [20], an

automated code optimization technique. This dataset consists

of groups of similar code fragments that follow the same

data access patterns (e.g., a sequential loop over lists) and

can be systematically optimized by Casper. By evaluating

ALICE with both datasets, we demonstrate that ALICE is

capable of accurately and effectively searching code in two

different usage scenarios—bug fixing and code optimization.

Because the second data set includes only the relevant files

not the entire codebase, we cannot reliably assess the rate of

false positives. Hence we exclude this second dataset when

assessing the impact of individual biases, annotations, and

labeling effort in Sections IV-A, IV-B, IV-C, and IV-D.

Experiment environment. All experiments are conducted

on a single machine with an Intel Core i7-7500U CPU

(2.7GHz, 2 cores/4 threads, x64 4.13.0-31-generic), 16GB

RAM, and Ubuntu 16.04 LTS. We use YAP Prolog (version

6.3.3), a high-performance Prolog engine [27] to evaluate

search queries.

We write a simulation script to randomly select a code

fragment in each group as the seed example. In the first

iteration, the script randomly tags k important features that

represent control structures, method calls, and types in the

seed example. In each subsequent iteration, it simulates the

user behavior by randomly labeling n examples returned

in the previous iteration. If a code example appears in the

TABLE VI: Time taken to label examples in Iteration 1

#Examples #Positives #Negatives Time Taken(s)

User 1 8 1 1 20
User 2 437 0 2 55
User 3 8 1 0 25

a method is called from, but ALICE can easily show the

context in which that method invocation appears.”

Participants said ALICE was more powerful than standard

search tools like grep and built-in search features in IDEs.

What do you like or not like about Alice? Overall,

participants like the interactive feature, as it allows for

refinement and builds on developer understanding. Some

participants find the color scheme in ALICE confusing due

to the conflict with existing syntax highlighting in Eclipse.

We observe that participants were able to easily recognize

the important features in the code example and tag them

in the first search iteration. Though participants had little

experience with the codebase, they could still distinguish

positive and negative examples without much effort. Ta-

ble VI summarizes the number of examples returned in the

first search iteration and the time taken for each user to

refine the search. In particular, a user took an average of 35

seconds to inspect each example and categorize it as positive

or negative. This indicates that the tool does not require

much effort for a user to inspect and label examples.

VI. COMPARISON

We compare ALICE with an existing interactive code

search technique called Critics. We choose Critics as a

comparison baseline, since Critics also performs interactive

search query refinement [11]. ALICE differs from Critics

in two ways. First, in Critics, a user has to manually

select code blocks such as an if-statement or a while loop

and parameterizes contents, for example, by replacing Foo

f=new Foo() to $T $v=new $T(). Such interaction is

time-consuming. To reduce the user burden, ALICE in-

fers a syntactic pattern such as “an if-statement with

a condition .*!=null inside a while loop” from

positive and negative methods. Second, Critics identifies

similar code via tree matching, while ALICE abstracts source

code to logic facts and identifies similar code via ILP.

We run ALICE on the public data set obtained from

Critics’s website.2 Table VII summarizes the results of

Critics vs. ALICE. In six out of seven cases, ALICE achieves

the same or better precision and recall with fewer iterations

to converge, compared to Critics. In ID 4, ALICE has low

precision because the expected code contains a switch

statement, which is currently not extracted by ALICE as

a logic fact. Extending current logic predicates to support

more syntactic constructs remain as future work.

VII. DISCUSSION

Noisy Oracle. The simulation in Section IV assumes that a

user makes no mistakes when labeling examples. However,

2https://github.com/tianyi-zhang/Critics

TABLE VII: Comparison Against Critics

Alice Critics

Critics
ID

Precision Recall Iterations Precision Recall Iterations

1 1.0 1.0 2 1.0 1.0 4
2 1.0 1.0 2 1.0 0.9 6
3 1.0 1.0 1 1.0 0.88 6
4 0.0 1.0 1 1.0 1.0 0
5 1.0 1.0 3 1.0 1.0 7
6 1.0 1.0 3 1.0 1.0 4
7 1.0 1.0 3 1.0 0.33 3

Average 0.86 1.0 2.1 1.0 0.87 4.3

TABLE VIII: Sensitivity of ALICE to labeling errors.

Error Rates

10% 20% 40%

Precision 1.0 1.0 1.0
Recall 0.95 0.90 0.93
% Inconsistent Cases 33% 60% 54%

it is possible that a real user may label a positive example

as negative, or even provide an inconsistent set of labels.

We investigate how resilient ALICE is to labeling mistakes

and how quickly ALICE can inform the user of such incon-

sistencies. We mutate our automated oracle with an error

rate of 10%, 20%, and 40%. Each of the 14 groups from

the first dataset is run five times (70 trials) with different

annotations, labels, and errors. In many cases, ALICE reports

inconsistencies in user labeling and provides immediate

feedback on the infeasibility of specializing queries (33%

to 60%). When ALICE does not find any inconsistencies,

ALICE behaves robustly with respect to errors, eventually

reaching 100% precision. Table VIII summarizes the results.

Threats to Validity. Regarding internal validity, the ef-

fectiveness of different inductive biases may depend on

the extent and nature of code cloning in a codebase. For

example, when there are many code clones with similar

nested code structures (while and if statements), the nested

structure may perform better than other inductive biases.

The current simulation experiment is run on ALICE by

choosing one seed example from each group, by randomly

selecting annotations from the selected seed, and by labeling

a randomly chosen subset of returned results. To mitigate

the impact of random selection, we repeat ten runs and

report the average numbers. In terms of external validity, we

assume that any user could easily annotate features and label

examples. However, it is likely that a novice programmer

might find it hard to identify important features. To mitigate

this threat to validity, as future work, we will investigate the

impact of different expertise levels.

Limitations and Future Work. Currently, we generate

facts based on structural and intra-procedural control flow

properties. Other types of analysis such as dataflow analysis

or aliasing analysis could be used in identifying similar snip-

pets. In addition, the query language itself can be extended to

make it easier to capture the properties of desired code. For

example, by introducing negations in the query language,

a user can specify atoms that should not be included.

There could be specializations that strictly require negations.

However, in our experiments, empirically, we are always

able to find a pattern without negations. As mentioned in

Section III-D, our learning process is monotonic and to

learn a different query, a user may need to start over. To

overcome this, we may need backtracking and investigate

new search algorithms that generalize and specialize the

query in a different way.

VIII. RELATED WORK

Code Search and Clone Detection. Different code search

techniques and tools have been proposed to retrieve code

examples from a large corpus of data [29]–[34]. The most

popular search approaches are based on text, regular expres-

sions, constraints [35], and natural language [31, 36]–[38].

Exemplar [39] takes a natural language query as input and

uses information retrieval and program analysis techniques

to identify relevant code. Wang et al. propose a dependence-

based code search technique that matches a given pattern

against system dependence graphs [5]. XSnippet [30] allows

a user to search based on object instantiation using type

hierarchy information from a given example. ALICE differs

from these search techniques in two ways. First, ALICE

allows a user to tag important features to construct an initial

query. Second, ALICE uses active learning to iteratively

refine a query by leveraging positive vs. negative labels.

ALICE is fundamentally different from clone detec-

tors [40]–[44] in two ways. First, while clone detectors use

a given internal representation such as a token string and a

given similarity threshold to search for similar code, ALICE

infers the commonality between positive examples, encodes

them as a search template, and uses negative examples to

decide what not to include in the template. Second, ALICE

presents the search template as a logic query to a user, while

clone detectors do not infer nor show a template to a user.

Logic-Programming-Based Techniques. JQuery is a code

browsing tool [45] based on a logic query language. Users

can interactively search by either typing a query in the

UI or selecting a predefined template query. Hajiyev et

al. present an efficient and scalable code querying tool [46]

that allows programmers to explore the relation between

different parts of a codebase. A number of techniques use

logic programming as an abstraction for detecting code

smells [47]–[49]. Many program analysis techniques abstract

programs as logic facts and use Datalog rules, including

pointer and call-graph analyses [50, 51], concurrency analy-

ses [52, 53], datarace detection [54], security analyses [55],

etc. Apposcopy [56] is a semantics-based Android malware

detector, where a user provides a malware signature in

Datalog. While ALICE and this line of research both use

logic programs as an underlying representation, ALICE does

not expect a user to know how to write a logic query nor

requires having a set of pre-defined query templates. Instead,

ALICE allows the user to interactively and incrementally

build a search query using active ILP.

Interactive Synthesis. Some program synthesis techniques

use input-output examples to infer a program and interac-

tively refine its output [57, 58]. For instance, CodeHint [58]

is a dynamic code synthesis tool that uses runtime traces,

a partial program sketch specification, and a probabilistic

model to generate candidate expressions. Interactive disam-

biguation interfaces [59, 60] aim to improve the accuracy

of programming-by-example systems. ALICE is similar to

these in leveraging interactivity, but these do not target code

search, do not use ILP, and do not assess the impact of

iterative labeling and annotations.

Machine Learning. Active learning is often used when

unlabeled data may be abundant or easy to come by, but

training labels are difficult, time-consuming, or expensive

to obtain [24, 61]. An active learner may pose questions,

usually in the form of unlabeled data instances to be labeled

by an “oracle” (e.g., a human annotator). LOGAN-H is an

ILP-based active learning approach [62]. It learns clauses

by either asking the oracle to label examples (membership

queries) or to answer an equivalence query. Such oracles

were first proposed by Angluin in the query-based learn-

ing formalism [63]. Other approaches to inductive logic

programming and relational learning are surveyed in De

Raedt [13]. Alrajeh et al. integrate model checking and

inductive learning to infer requirement specifications [18].

Other applications of ILP to software engineering include

the work of Cohen [16, 64], to learn logical specifications

from concrete program behavior. Because ultimately our

approach is not concerned with finding the right hypothesis,

and only with retrieving the right code examples, it can also

be thought of as a transductive learning problem [65, 66].

IX. CONCLUSION

ALICE is the first approach that embodies the paradigm of

active learning in the context of code search. Its algorithm

is designed to leverage partial incremental feedback through

tagging and labelling. ALICE demonstrates realtime perfor-

mance in constructing a new search query. Study participants

resonate with ALICE’s interactive approach and find it easy

to describe a desired code pattern without much effort.

Extensive simulation shows that leveraging both positive and

negative labels together can help achieve high precision and

recall. Tagging features is also necessary for minimizing the

size of initial search space. Our experimental results justify

the design choice of ALICE, indicating that interactivity pays

off—labeling a few in a spread out fashion is more effective

than labeling many at a time.

ACKNOWLEDGMENT

Thanks to anonymous participants from the University of

California, Los Angeles for their participation in the user

study and to anonymous reviewers for their valuable feed-

back. This work is supported by NSF grants CCF-1764077,

CCF-1527923, CCF-1460325, CCF-1837129, IIS-1633857,

ONR grant N00014-18-1-2037, DARPA grant N66001-17-

2-4032 and an Intel CAPA grant.

REFERENCES

[1] S. Kim, K. Pan, and E. Whitehead Jr, “Memories of bug fixes,” in
Proceedings of the 14th ACM SIGSOFT international symposium on

Foundations of software engineering. ACM, 2006, pp. 35–45.

[2] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Recurring bug fixes in object-oriented programs,” in Soft-

ware Engineering, 2010 ACM/IEEE 32nd International Conference

on, vol. 1. IEEE, 2010, pp. 315–324.

[3] J. Park, M. Kim, B. Ray, and D.-H. Bae, “An empirical study of
supplementary bug fixes,” in Proceedings of the 9th IEEE Working

Conference on Mining Software Repositories. IEEE Press, 2012, pp.
40–49.

[4] J. R. Cordy, “The txl source transformation language,” Science of

Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[5] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu, “Matching
dependence-related queries in the system dependence graph,” in
Proceedings of the IEEE/ACM international conference on Automated

software engineering. ACM, 2010, pp. 457–466.

[6] J. Andersen and J. L. Lawall, “Generic patch inference,” Automated

software engineering, vol. 17, no. 2, pp. 119–148, 2010.

[7] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Detection of recurring software vulnerabilities,” in Proceedings of

the IEEE/ACM international conference on Automated software engi-

neering. ACM, 2010, pp. 447–456.

[8] N. Meng, M. Kim, and K. S. McKinley, “Systematic editing: gen-
erating program transformations from an example,” ACM SIGPLAN

Notices, vol. 46, no. 6, pp. 329–342, 2011.

[9] ——, “Lase: locating and applying systematic edits by learning from
examples,” in Proceedings of the 2013 International Conference on

Software Engineering. IEEE Press, 2013, pp. 502–511.

[10] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann, “Learning syntactic program transfor-
mations from examples,” in Proceedings of the 39th International

Conference on Software Engineering. IEEE Press, 2017, pp. 404–
415.

[11] T. Zhang, M. Song, J. Pinedo, and M. Kim, “Interactive code review
for systematic changes,” in Proceedings of the 37th International

Conference on Software Engineering-Volume 1. IEEE Press, 2015,
pp. 111–122.

[12] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory
and methods,” The Journal of Logic Programming, vol. 19, pp. 629–
679, 1994.

[13] L. D. Raedt, Logical and relational learning, ser. Cognitive
Technologies. Springer, 2008. [Online]. Available: https://doi.org/
10.1007/978-3-540-68856-3

[14] S. Haykin, Neural Networks: A Comprehensive Foundation (3rd

Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2007.

[15] S. Muggleton, C. Feng et al., Efficient induction of logic programs.
Citeseer, 1990.

[16] W. W. Cohen, “Recovering software specifications with inductive
logic programming,” in AAAI, vol. 94, 1994, pp. 1–4.

[17] I. Bratko and M. Grobelnik, “Inductive learning applied to program
construction and verification,” 1993.

[18] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel, “Elaborating
requirements using model checking and inductive learning,” IEEE

Transactions on Software Engineering, vol. 39, no. 3, pp. 361–383,
2013.

[19] J. Starke, C. Luce, and J. Sillito, “Working with search results,” in
Search-Driven Development-Users, Infrastructure, Tools and Evalua-

tion, 2009. SUITE’09. ICSE Workshop on. IEEE, 2009, pp. 53–56.

[20] M. B. S. Ahmad and A. Cheung, “Automatically leveraging mapre-
duce frameworks for data-intensive applications,” in Proceedings of

the 2018 International Conference on Management of Data. ACM,
2018, pp. 1205–1220.

[21] ——, “Leveraging parallel data processing frameworks with verified
lifting,” arXiv preprint arXiv:1611.07623, 2016.

[22] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klem-
mer, “Two studies of opportunistic programming: interleaving web
foraging, learning, and writing code,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, 2009,
pp. 1589–1598.

[23] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar apis: An exploratory study,” in Proceedings of the

34th International Conference on Software Engineering. IEEE Press,
2012, pp. 266–276.

[24] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelli-

gence and Machine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[25] L. De Raedt, Logical and relational learning. Springer Science &
Business Media, 2008.

[26] P. A. Flach, “Simply logical intelligent reasoning by example,” 1994.

[27] V. S. Costa, R. Rocha, and L. Damas, “The yap prolog system,”
Theory and Practice of Logic Programming, vol. 12, no. 1-2, pp.
5–34, 2012.

[28] R. K. Yin, Case Study Research: Design and Methods (Applied Social

Research Methods), fourth edition. ed. Sage Publications, 2008.

[29] R. Holmes and G. C. Murphy, “Using structural context to recom-
mend source code examples,” in ICSE ’05: Proceedings of the 27th

International Conference on Software Engineering. New York, NY,
USA: ACM Press, 2005, pp. 117–125.

[30] N. Sahavechaphan and K. Claypool, “Xsnippet: Mining for sample
code,” ACM Sigplan Notices, vol. 41, no. 10, pp. 413–430, 2006.

[31] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceedings

of the 33rd International Conference on Software Engineering. ACM,
2011, pp. 111–120.

[32] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant for
reusing open source code on the web,” in Proceedings of the twenty-

second IEEE/ACM international conference on Automated software

engineering. ACM, 2007, pp. 204–213.

[33] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,
“Example-centric programming: integrating web search into the de-
velopment environment,” in Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. ACM, 2010, pp. 513–522.

[34] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the ide into a self-confident program-
ming prompter,” in Proceedings of the 11th Working Conference on

Mining Software Repositories. ACM, 2014, pp. 102–111.

[35] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 23, no. 3, p. 26, 2014.

[36] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems, languages, and

applications. ACM, 2006, pp. 681–682.

[37] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings of

the 31st IEEE/ACM International Conference on Automated Software

Engineering. ACM, 2016, pp. 87–98.

[38] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of

the 40th International Conference on Software Engineering. ACM,
2018, pp. 933–944.

[39] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie,
“Exemplar: A source code search engine for finding highly relevant
applications,” IEEE Transactions on Software Engineering, vol. 38,
no. 5, pp. 1069–1087, 2012.

[40] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: A tool for finding
copy-paste and related bugs in operating system code.” in OSdi, vol. 4,
no. 19, 2004, pp. 289–302.

[41] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–
670, 2002.

[42] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Software

Engineering (ICSE), 2016 IEEE/ACM 38th International Conference

on. IEEE, 2016, pp. 1157–1168.

[43] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the

29th International Conference on Software Engineering, ser. ICSE
’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
96–105. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2007.30

[44] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normaliza-
tion,” in Program Comprehension, 2008. ICPC 2008. The 16th IEEE

International Conference on. IEEE, 2008, pp. 172–181.

[45] D. Janzen and K. De Volder, “Navigating and querying code without
getting lost,” in Proceedings of the 2nd international conference on

Aspect-oriented software development. ACM, 2003, pp. 178–187.
[46] E. Hajiyev, M. Verbaere, and O. De Moor, “Codequest: Scalable

source code queries with datalog,” in European Conference on Object-

oriented Programming. Springer, 2006, pp. 2–27.
[47] R. Wuyts, “Declarative reasoning about the structure of object-

oriented systems,” in Technology of Object-Oriented Languages, 1998.

TOOLS 26. Proceedings. IEEE, 1998, pp. 112–124.
[48] T. Tourwé and T. Mens, “Identifying refactoring opportunities using

logic meta programming,” in Software Maintenance and Reengineer-

ing, 2003. Proceedings. Seventh European Conference on. IEEE,
2003, pp. 91–100.

[49] Y.-G. Guéhéneuc and H. Albin-Amiot, “Using design patterns and
constraints to automate the detection and correction of inter-class
design defects,” in Technology of Object-Oriented Languages and Sys-

tems, 2001. TOOLS 39. 39th International Conference and Exhibition

on. IEEE, 2001, pp. 296–305.
[50] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification

of sophisticated points-to analyses,” ACM SIGPLAN Notices, vol. 44,
no. 10, pp. 243–262, 2009.

[51] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts
well: understanding object-sensitivity,” in ACM SIGPLAN Notices,
vol. 46, no. 1. ACM, 2011, pp. 17–30.

[52] M. Naik, A. Aiken, and J. Whaley, Effective static race detection for

Java. ACM, 2006, vol. 41, no. 6.
[53] M. Naik, C.-S. Park, K. Sen, and D. Gay, “Effective static deadlock

detection,” in Software Engineering, 2009. ICSE 2009. IEEE 31st

International Conference on. IEEE, 2009, pp. 386–396.
[54] R. Mangal, X. Zhang, A. V. Nori, and M. Naik, “A user-guided

approach to program analysis,” in Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering. ACM, 2015, pp.
462–473.

[55] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors
and security flaws using pql: a program query language,” ACM

SIGPLAN Notices, vol. 40, no. 10, pp. 365–383, 2005.
[56] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-

based detection of android malware through static analysis,” in Pro-

ceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering. ACM, 2014, pp. 576–587.
[57] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive

sql queries from input-output examples,” in ACM SIGPLAN Notices,
vol. 52, no. 6. ACM, 2017, pp. 452–466.

[58] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen,
“Codehint: Dynamic and interactive synthesis of code snippets,”
in Proceedings of the 36th International Conference on Software

Engineering. ACM, 2014, pp. 653–663.
[59] F. Li and H. V. Jagadish, “Nalir: an interactive natural language

interface for querying relational databases,” in Proceedings of the

2014 ACM SIGMOD international conference on Management of

data. ACM, 2014, pp. 709–712.
[60] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov,

R. Singh, B. Zorn, and S. Gulwani, “User interaction models for
disambiguation in programming by example,” in Proceedings of

the 28th Annual ACM Symposium on User Interface Software &

Technology. ACM, 2015, pp. 291–301.
[61] S. Tong and E. Chang, “Support vector machine active learning

for image retrieval,” in Proceedings of the ninth ACM international

conference on Multimedia. ACM, 2001, pp. 107–118.
[62] M. Arias, R. Khardon, and J. Maloberti, “Learning horn expressions

with logan-h,” Journal of Machine Learning Research, vol. 8, no. Mar,
pp. 549–587, 2007.

[63] D. Angluin, “Queries and concept learning,” Machine learning, vol. 2,
no. 4, pp. 319–342, 1988.

[64] W. W. Cohen, “Inductive specification recovery: Understanding soft-
ware by learning from example behaviors,” Automated Software

Engineering, vol. 2, no. 2, pp. 107–129, 1995.
[65] A. Gammerman, V. Vovk, and V. Vapnik, “Learning by transduction,”

in Proceedings of the Fourteenth conference on Uncertainty in ar-

tificial intelligence. Morgan Kaufmann Publishers Inc., 1998, pp.
148–155.

[66] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning,”
IEEE Transactions on Neural Networks, vol. 20, no. 3, pp. 542–542,
2009.

