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Abstract. Concrete security proofs give upper bounds on the attacker’s
advantage as a function of its time/query complexity. Cryptanalysis
suggests however that other resource limitations – most notably, the
attacker’s memory – could make the achievable advantage smaller, and
thus these proven bounds too pessimistic. Yet, handling memory limita-
tions has eluded existing security proofs.

This paper initiates the study of time-memory trade-offs for basic sym-
metric cryptography. We show that schemes like counter-mode encryp-
tion, which are affected by the Birthday Bound, become more secure (in
terms of time complexity) as the attacker’s memory is reduced.

One key step of this work is a generalization of the Switching Lemma:
For adversaries with S bits of memory issuing q distinct queries, we prove
an n-to-n bit random function indistinguishable from a permutation as
long as S×q � 2n. This result assumes a combinatorial conjecture, which
we discuss, and implies right away trade-offs for deterministic, stateful
versions of CTR and OFB encryption.

We also show an unconditional time-memory trade-off for the secu-
rity of randomized CTR based on a secure PRF. Via the aforementioned
conjecture, we extend the result to assuming a PRP instead, assuming
only one-block messages are encrypted.

Our results solely rely on standard PRF/PRP security of an under-
lying block cipher. We frame the core of our proofs within a general
framework of indistinguishability for streaming algorithms which may
be of independent interest.

Keywords: Provable security · Symmetric cryptography ·
Time-memory trade-offs

1 Introduction

Concrete security proofs upper bound the adversarial advantage ε as a function
of the adversary’s resources. A scheme is deemed secure if the advantage is small
for all feasible resource amounts. The classical approach captures such resources
in terms of running time and/or description size.
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Time is however not the only resource to determine feasibility of an attack.
In particular, the memory costs also matter – in the context of provable security,
these were first studied by Auerbach et al. [4] and Wang et al. [26], who con-
sidered the tightness of reductions with respect to memory usage. Memory-tight
reductions lift an assumed time-memory trade-off for the assumption to one for
the scheme, and this is particularly important when the underlying assumption
does not admit low-memory attacks (e.g., this is true for the LPN problem).

Earlier work on time-memory tradeoffs in symmetric cryptography focused
on cryptanalytic attacks [5,15] or precomputation attacks against primitives like
hash functions [6].

Symmetric cryptography. Memory tightness is less useful for symmetric
cryptography: A typical assumption here is that AES is a PRP for attackers with
large time complexity, e.g., T = 2100, but the best generic attack is memoryless,
so there is generally no trade-off to be assumed.

Still, time-memory trade-offs may affect the actual modes of operation. For
example, it is well known that (randomized) counter mode (CTR$) allows to
encrypt no more than q =

√
N plaintexts when using an n-bit block cipher

(here, N = 2n), yet restricting memory to only store S bits may help. Indeed,
let the i-th message mi be encrypted as (ri, ci = AESK(ri) ⊕ mi), where ri is
a random string. The optimal distinguishing attack waits for ri = rj to occur
for i �= j, in which case ci ⊕ cj = mi ⊕ mj – which is unlikely to hold if ci

and cj are random. But this also requires remembering approximately
√

N ri’s.
If we can only store fewer of them, then we need a collision with one of the
ri’s we remember, and the attack advantage decrease to Sq

N when q messages
are encrypted. However, is this attack the optimal one? – a proof would have to
argue over all possible adversarial strategies storing S bits of partial information.

Remarkably, despite schemes like CTR$ being decades old, the question of
proving bounds that take memory into account has remained open.

Our results: Overview. This paper takes a ground-up approach to proving
time-memory trade-offs. To this end, we start with exactly those simple symmet-
ric encryption schemes like CTR$ and OFB we ought to understand, and develop
proofs and proof techniques – mostly relying on information-theoretic and com-
binatorial tools – aimed at showing that conjectured trade-offs are optimal.

A common trait of basic encryption schemes is that they are only secure
up to the Birthday Bound. For stateless, randomized schemes, this is because
inputs to the block cipher are otherwise going to repeat. Also, even when inputs
are distinct, non-repeating block-cipher outputs become easily distinguishable
from random. We will show that this fact is no longer valid if the adversary’s
memory capacity does not exceed

√
N , and more generally, we show a trade-off

between the number of encryptions and the attacker’s memory.
For example, we revisit the well-known Switching Lemma in the memory-

bounded setting: under a combinatorial conjecture (see details below), we show
that an adversary making T distinct queries to a random function or a random
permutation cannot tell them apart with advantage larger than O(

√
ST/N).

The special case S = T is the original switching lemma. This gives us bounds
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Fig. 1. Encryption schemes we analyze. Schemes with a $ are randomized, otherwise
they are deterministic. If Conjecture 1 holds then Osl(T, S, N) ∈ O(

√
ST/N). Bounds

are for INDR security. S is the memory bound of the adversary, T is the number of
blocks encrypted, and N is the domain size of the family of functions.

for stateful CTR and OFB, assuming the underlying block cipher is a sufficiently
secure PRP. We consider the question fundamental enough to justify a partial
answer even under a conjecture – moreover, the reduction to this conjecture
is highly non-trivial, and a failure of the conjecture is likely to only minimally
impact this bound.

We also show a bound of O(
√

ST�/N) for randomized CTR$ based on a
pseudorandom function (PRF), where � is a bound on the number of blocks
per encrypted message. This result does not need any conjecture, beyond PRF
security. For the case � = 1, we show that under the aforementioned conjecture,
the result holds when the scheme is based on a PRP, instead of a PRF.

An overview of our results for encryptions schemes is given in Fig. 1. We
discuss them in more detail below, but first address an important piece of recent
related work.

Related work. It is worth noting that our work complements a recent paper
by Tessaro and Thiruvengadam [25]. Their goal are schemes with security as high
as possible, well beyond 2n (where n is the block length of the cipher), provided
the cipher is secure enough (e.g., it has a long key), and adversarial memory is
bounded. In their work, neither tightness nor practical efficiency is a concern.
Here, in contrast, we focus on tightness for simple, deployed cryptography. As
a result of this, we end up facing different, and somewhat more technically
challenging problems.

A framework: Streaming indistinguishability. The common denomina-
tor of our security proofs is that they reduce to a new, yet natural, setting of
memory-bounded streaming algorithms which we refer to as streaming indis-
tinguishability. In essence, a memory-bounded algorithm A is given access, one
value at a time, to one of two streams

X1,X2, . . . or Y1, Y2, . . . ,

with different distributions. The goal is to distinguish them.



470 J. Jaeger and S. Tessaro

To the best of our knowledge, the existing literature on streaming algorithms
does not consider this problem explicitly. Rather, the focus is mostly on worst-
case complexity (we care about average-case), and search problems. However,
one can cast classical problems like building PRGs against space-bounded read-
once branching programs (cf. e.g. [21]), as a special case of this setting, where
the Xi’s are the output bits of the PRG and the Yi’s are random bits.

The Switching Lemma. Let us first address our generalized Switching Lemma.
It is well known that the advantage of a T -query distinguisher A trying to tell
apart a truly random permutation P from a truly random function F (both from
n bits to n bits) is at most T 2/N , which is tight. Also, an optimal distinguisher
making T ≈ √

N can be implemented to only use S � √
N bits, e.g., with

the help of a memory-less collision-finding algorithms (e.g., using Pollard’s ρ-
method [23,24]). One uses the fact that when accessing P , the algorithm will
never succeed in finding a collision.

One observation, however, is that in many useful scenarios, the resulting A
never queries the same input twice and it is not hard to see that any memory-less
collision-finding strategy will query the same input twice.

We show that, assuming the validity of a conjecture we explain next, under
non-repeating queries, the Switching Lemma indeed holds with a tradeoff of the
form S ×T = N . In fact, we prove a more general (and also fundamental) state-
ment about the advantage of distinguishing two streams: The first, X1,X2, . . .
samples n-bit values with replacement, the second, Y1, Y2, . . ., without.

A conjecture. A proof of a non-trivial bound appears out of reach. Instead,
we give a proof that relies on a (plausible) combinatorial conjecture involving
hypergraphs.

Recall that a k-hypergraph with N vertices is a collection H = {e1, . . . , em},
where the ei’s are distinct size-k subsets of [N ] = {1, 2, . . . , N}. The degree dH(i)
of i ∈ [N ] is the number of ej ’s such that i ∈ ej . Then, we look at the maximum
D2(m), over all m-edge hypergraphs H, of the function

D2(H) =
N∑

i=1

dH(i)2.

Estimating D2(m) is challenging: The only known upper bound [9] is loose, and
the general question is believed to be out of reach [16]. This is because degree
sequences of hypergraphs are poorly understood, even more so when restricted
to m edges. Only for the special case of graphs (i.e., k = 2) is the question well
understood (cf. e.g. [1,10,14,20]), though far from trivial.

Our conjecture will be on the value of D2(m) when k > N/2 for specific
values of m. We will assume in particular that if m =

(
A
k

)
, then the complete

hypergraph containing all k-element subsets of {1, . . . , A} achieves D2(m). We
stress that even a slight relaxation of this conjecture would only affect our proof
slightly.

Randomized counter mode. The above switching lemma for distinct inputs
only applies to stateful schemes. Let us look now instead at randomized CTR$
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described above and, for simplicity, let us assume that we encrypt single-block
plaintexts. Assuming the underlying block cipher is a PRF, the resulting security
game can again be cast as a streaming (in)distinguishability setting with

Xi = (Ri, Zi), Yi = (Ri, F (Ri)),

where F is a random function from n bits to n bits and the Ri, Zi’s are random,
independent n-bit strings. We will show a bound of O(

√
ST/N). Interesting,

once cast in the right language, the proof is fairly elementary and uses only
simple properties of Shannon entropies – what is novel here is the usage of these
tools to prove the security of symmetric cryptography, and the fact that they
are robust to dealing with memory restrictions.

In practice, of course, F is more likely to be a permutation, as it is built
from a block cipher. However, our proof techniques seems not to extend directly
to random permutations. We also cannot apply the Switching Lemma directly,
because Ri’s will not be distinct.

We will however do something different – we will apply the streaming indis-
tinguishability result underlying the Switching Lemma to the Ri’s first, telling
us they can be replaced by random, distinct ones when encrypting single-block
plaintexts. This will allow us to ultimately to replace F with a permutation –
again by the Switching Lemma – but for a concrete bound, we will need to resort,
again to our conjecture. (This can be thought, more generally, as extending the
Switching Lemma to the case of random inputs.)

We could of course build a beyond-birthday secure PRF from a block cipher
directly, e.g., using the xor construction [7,12,22], but this would require two
block-cipher calls per block, or Iwata’s CENC [17,18] for better amortized effi-
ciency. We note that we also apply these techniques to analyze the confidentiality
of Encrypt-then-PRF.

Outline of this paper. Section 2 introduces notation and provides necessary
information theoretic and cryptographic background. Section 3.1 introduces our
general streaming setting. Sections 3.2 and 4.1 introduce our main streaming
theorems which are proven in Sects. 3.3 and 4.2, respectively. In Sects. 3.4 and 4.3
we apply these respective theorems to cryptographic reductions. We emphasize
that while the analysis in Sect. 3 requires a conjecture, the results of Sect. 4 are
unconditional.

2 Definitions

Let N = {0, 1, 2, . . . }. For N ∈ N let [N ] = {1, 2, . . . , N}. If S and S′ are finite
sets, then Fcs(S, S′) denotes the set of all functions F : S → S′ and Perm(S)
denotes the set of all permutations on S. The set of size k subsets of S is

(
S
k

)
.

Picking an element uniformly at random from S and assigning it to s is denoted
by s

$← S. The set of finite vectors with entries in S is (S)∗ or S∗. Thus {0, 1}∗

is the set of finite length strings.
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If M ∈ {0, 1}∗ is a string, then |M | denotes its bitlenth. If m ∈ N and
M ∈ ({0, 1}m)∗, then |M |m = |M |/m denotes the blocklength of M and Mi

denote the i-th m-bit block of M . When using the latter notation, m will be
clear from context. The empty string is ε.

Algorithms are randomized when not specified otherwise. If A is an algo-
rithm, then y ← AO1,...(x1, . . . ; r) denotes running A on inputs x1, . . . and
coins r with access to oracles O1, . . . to produce output y. The notation y

$←
AO1,...(x1, . . . ) denotes picking r at random then running y ← AO1,...(x1, . . . ; r).
The set of all possible outputs of A when run with inputs x1, . . . is [A(x1, . . . )].
Adversaries and distinguishers are algorithms. The notation y ← O(x1, . . . ) is
used for calling oracle O with inputs x1, . . . and assigning its output to y (even
if the value assigned to y is not deterministically chosen).

Our cryptographic reductions will use pseudocode games (inspired by the
code-based framework of [8]). See Fig. 2 for some example games. We let Pr [G]
denote the probability that game G outputs true. The model underlying this
pseudocode is the following formalism.

2.1 Model of Computation

Computational Model. Our model is based on those of [2,3,25]. We consider
a space-bounded adversary interacting with an oracle O.

The interaction between an adversary and oracle occurs over q stages. In the
i-th stage, the adversary deterministically computes, as a function of the state
σi−1 and stage number i, a query xi to O.1 Then the adversary is give yi = O(xi)
(with the same inputs as before) based on which it computes the next state σi.
The state σ0 is fixed and defined by A. The final output of A is σq. In code, stage
i behaves as follows, Stage i: xi ← A(i, σi−1); yi ← O(xi); σi

$← A(i, σi−1, yi).

Complexity Measures. An adversary A is S-bounded if |σi| � S holds for all
i. The running time of A is T if it queries at most T bits to its oracle. These
complexity measures do not count the local state or time used by A during
a round. This strengthens our main proofs which are information theoretic in
nature and only require that the states σi and T are bounded in size.

Our applications of these main proofs will involve cryptographic reductions.
These complexity measures are not appropriate for this because they could hide
a weakness in a reduction that “cheats” by using much more local state or
computation time during a round. None of our reductions have such a weakness
so we leave reduction efficiency claims informal. See [4] for discussion of what
conventions should be used for measuring the memory complexity of a reduction.
Our reductions are given via explicit pseudocode so their complexity with respect
to particular conventions can easily be extracted.

1 We insist on this computation being deterministic for convenience and because we
can think of xi having been included as part of σi−1.
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2.2 Information-Theoretic Preliminaries

Entropies and KL-divergence. For probability distributions P,Q : X →
[0, 1] where Q(x) > 0 for all x ∈ X , the Shannon and collision entropies are

H(P ) = −
∑

x∈X
P (x) log(P (x)) and H2(P ) = − log

(
∑

x∈X
P (x)2

)

.

Statistical distance and KL-divergence are defined by

SD(P,Q) =
1
2

∑

x∈X
|P (x) − Q(x)| and KL(P‖Q) =

∑

x∈X
P (x) log

(
P (x)
Q(x)

)
.

Pinsker’s inequality says that SD(P,Q) �
√
KL(P‖Q)/2.

As usual, for two random variables X and Y with distributions PX and PY ,
we write KL(X‖Y ) for KL(PX‖PY ) (and the analogous notation for H and H2).

Lemma 1. Let X,Y be random variables with range X with Pr [X = x] > 0 for
all x ∈ X . Let F : X → {0, 1}∗ be a (possibly randomized) function. Then,

KL(F (X)‖F (Y )) � KL(X‖Y ).

Proof. For compactness, denote PZ(x) = Pr [Z = x] for any random variable Z.
First, we note that we can consider without loss of generality deterministic F ’s.
Indeed, by convexity (cf. e.g. [11]),

KL(F (X)‖F (Y )) �
∑

f

Pr [F = f ] · KL(f(X)‖f(Y )).

Now fix a function f : X → {0, 1}∗. From the log-sum inequality we obtain

KL(F (X)‖F (Y )) =
∑

z

PF (X)(z) log
(
PF (X)(z)
PF (Y )(z)

)

=
∑

z

⎛

⎝
∑

x∈f−1(z)

PX(x)

⎞

⎠ · log

(∑
x∈f−1(z) PX(x)

∑
x∈f−1(z) PY (x)

)

�
∑

z

∑

x∈f−1(z)

PX(x) log
(
PX(x)
PY (x)

)

=
∑

x∈X
PX(x) log

(
PX(x)
PY (x)

)
.

The last equality follows because every x is the pre-image of exactly one z. ��
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Fig. 2. Security games for PRF/PRP security of a family of functions (Left/Middle)
and INDR security of an encryption scheme (Right).

2.3 Cryptographic Preliminaries

Family of functions. A family of functions F specifies algorithms F.K and
F.Ev (where the latter of these is deterministic) and sets F.Dom and F.Rng.
Key generation algorithm F.K takes no input and outputs a key K. Evaluation
algorithm takes as input key K and X ∈ F.Dom to return Y ∈ F.Rng. We write
K

$← F.K and Y ← F.Ev(K,X).
A blockcipher is a family of functions F for which F.Dom = F.Rng and for all

K ∈ [F.K] the function F.Ev(K, ·) is a permutation with inverse F.Inv(K, ·).
Pseudorandomness security. For security we will consider both pseudoran-
dom function (PRF) and pseudorandom permutation (PRP) security.

Let F be a family of functions. PRF security requires that F.Ev(K, ·) looks
like a truly random function to somebody who does not know K. Consider the
game Gprf

F,b(A) shown on the left side of Fig. 2. It parameterized by F, a bit
b ∈ {0, 1}, and an adversary. The adversary is given access to an oracle Ror

which on input X either returns F applied to X (b = 1) or the output of a
random function on X (b = 0). The advantage of A against F is defined by
AdvprfF (A) = Pr[Gprf

F,1(A)] − Pr[Gprf
F,0(A)].

PRP security of a blockcipher F is defined analogously by the game Gprp
F,b(A)

shown in the middle of Fig. 2. This is essentially the same except the random
function F ∈ Fcs(F.Dom,F.Rng) has been replaced by a random permutation
P ∈ Perm(F.Dom). The advantage of A against F is defined by AdvprpF (A) =
Pr[Gprp

F,1(A)] − Pr[Gprp
F,0(A)].

Symmetric encryption. A symmetric encryption scheme SE specifies
algorithms SE.Sg, SE.E, and SE.D (where the last of these is deterministic) and
set SE.M. State generation algorithm takes no input and outputs state σ which
will be used as the initial encryption state σe and decryption state σd. Encryp-
tion algorithm SE.E takes as input σe and message M ∈ SE.M. It outputs updated
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state σe and ciphertext C. We assume there exists a constant expansion length
SE.xl ∈ N such that |C| = |M | + SE.xl. Decryption algorithm SE.D takes as input
σd and ciphertext C. It outputs updated state σd and M ∈ SE.M∪ {⊥}. We write
σ

$← SE.Sg, (σe, C) $← SE.E(σe,M), and (σd,M) ← SE.D(σd, C).
Correctness requires for all states σe

0 = σd
0 ∈ [SE.Sg] and all sequences of

messages M ∈ (SE.M)∗ that Pr[∀i : M i = M ′
i] = 1 where the probability is

over the coins of encryption in the operations (σe
i ,C i)

$← SE.E(σe
i−1,M i) and

(σd
i ,M ′

i) ← SE.D(σd
i−1,C i) for i = 1, . . . , |M |.

This non-standard syntax is used to simultaneously capture stateful deter-
ministic encryption and stateless probabilistic encryption. For the first of these
SE.E is a deterministic algorithm. For the latter, σe and σd are equal to some
key K which is never updated.

Encryption security. For security we will require that the output of encryp-
tion look like a random string. Consider the game Gindr

SE,b(A) shown on the right
side of Fig. 2. It is parameterized by a symmetric encryption scheme SE, adver-
sary A, and bit b ∈ {0, 1}. The adversary is given access to an oracle Enc which,
on input a message M , returns either the encryption of that message or a random
string of the appropriate length according to the secret bit b. The advantage of
A against SE is defined by AdvindrSE (A) = Pr[Gindr

SE,1(A)] − Pr[Gindr
SE,0(A)].

3 The Switching Lemma

How hard is it for a memory-bounded distinguisher to tell apart a random func-
tion from a random permutation [N ] → [N ]? It is easy to do so in a near-
memory-less strategy with roughly

√
N queries, where N is the domain size: The

distinguisher, given access to an oracle [N ] → [N ], mounts a classical memory-
less collision finding attack – if the attack succeeds, the distinguisher is highly
certain it is interacting with a random function.

However, this attack requires querying the random function at the same
point twice. It is not clear if a distinguisher which never repeats a query can still
succeed with low memory and roughly

√
N queries. We will show that it can-

not. This boils down to bounding how well a memory-bounded can distinguish
between a sequence of random values and a sequence of random values without
repetition.

3.1 Streaming Indistinguishability

We consider a streaming setting, where a sequence of random variables

X1,X2, . . . , Xq
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with range [N ] is given, one by one, to a (memory-bounded) distinguisher A,
which is otherwise computationally unbounded. The distinguisher will need to
tell apart this setting from another one, where it is given (Y1, Y2, . . . , Yq) instead.
We are interested in its distinguishing advantage. This is a very natural setting,
but we are not aware of this having been considered explicitly.

The streaming model. More formally, in the i-th step (for i ∈ [q]), the dis-
tinguisher A has a state σi−1 and stage number i. Then it asks for the value
Vi ∈ {Xi, Yi} based on which it updates its state to σi. We write for notational
convenience A(i, σi−1, Vi) = σi, noting that this mapping can be randomized.
We denote in particular Σ0, Σ1, . . . , Σq the states during the execution with Xq

and Γ0, Γ1, . . . , Γq the states during the execution with Y q. Here Σ0 = Γ0 is some
a priori fixed value. For the final state (Σq or Γq) A outputs a bit, which we
denote by A(Xq) and A(Y q), respectively, and we are interested in its advantage

AdvdistXq,Y q (A) = Pr [A(Xq) ⇒ 1] − Pr [A(Y q) ⇒ 1] .

It will sometime be convenient to think of this as an interaction between A
and an oracle Samp which returns Vi’s according to one of these distributions
(written as b

$← ASamp).
We will use the following lemma below, for the case where the Xi’s are

individually uniformly distributed.

Lemma 2. Let Xq = X1, . . . , Xq be independent and uniformly distributed.
Then for any Y q = Y1, . . . , Yq,

AdvdistXq,Y q (A) � 1√
2

√√√√q log N −
q∑

i=1

H(Yi | Γi−1).

Proof. Since the final output bit is Σq and Γq, respectively, we can always upper
bound the advantage by the statistical distance of these states, i.e.,

AdvdistXq,Y q (A) � SD(Σq, Γq) = SD(Γq, Σq).

We will work in the regime of KL-divergence, and thus we also have

AdvdistXq,Y q (A) � 1√
2

√
KL(Γq‖Σq).

We note now that for all i ∈ [q], by Lemma 1,

KL(Γi‖Σi) = KL(A(i, Γi−1, Yi)‖A(i, Σi−1,Xi)) � KL((Γi−1, Yi)‖(Σi−1,Xi)).
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Write P (s, x) = Pr [(Σi−1,Xi) = (s, x)], P (s) = Pr [Σi−1 = s] and P (x|s) =
Pr

[
Xi = x

∣∣ Σi−1 = s
]
. Also define analogously Q(s, x), Q(s) and Q(x|s) replac-

ing (Σi−1,Xi) with (Γi−1, Yi). Then,

KL((Γi−1, Yi)‖(Σi−1,Xi)) =
∑

s,x

Q(s, x) log
(

Q(s, x)
P (s, x)

)

=
∑

s,x

Q(s, x) log
(

Q(s)
P (s)

)
+

∑

s,x

Q(s, x) log
(

Q(x|s)
P (x|s)

)

= KL(Γi−1 ‖ Σi−1) + log N −
∑

s

Q(s) log
(

1
Q(x|s)

)

= KL(Γi−1 ‖ Σi−1) + log N − H(Yi | Γi−1).

Therefore, KL(Γq | Sq) � KL(Γ0 ‖ S0) + q log N − ∑q
i=1 H(Yi ‖ Γi−1), and the

lemma follows since KL(Γ0 ‖ S0) = 0. ��

3.2 Sampling with and Without Replacement

Consider the streaming indistinguishability of the following natural distributions:

– Sampling with replacement. In the distribution Xq = (X1,X2, . . . , Xq)
the Xi’s are independent and uniformly distributed over [N ].

– Sampling without replacement. In the distribution Y q = (Y1, . . . , Yq)
the Yi’s are sampled uniformly without repetition from [N ] (thus q � N).

We want to upper bound the advantage in distinguishing these two streams for
a memory-bounded distinguisher A which receives these values one by one. We
are going to show a time-memory trade-off for any distinguisher A, assuming
a conjecture that we now state. We will discuss the conjecture (and why this
requires a conjecture) later in Sect. 3.5.

A conjecture on hypergraphs. A k-uniform simple hypergraph (or hence-
forth, simply, a k-hypergraph) with N vertices and m edges is a collection
H = {e1, e2, . . . , em} of distinct subsets ei ⊆ [N ], each of size k. Conventional
graphs correspond to the case k = 2. The degree dH(i) of a vertex i ∈ [N ] is

dH(i) = |{j ∈ [m] : i ∈ ej}| ,

i.e., the number of edges ej containing i. By a double-counting argument we
have

∑N
i=1 dH(i) = k · m. We will be interested in the following function of the

degrees of a hypergraph,

D2(H) =
N∑

i=1

dH(i)2.

For example, if H is the complete k-hypergraph, i.e., it contains all
(
N
k

)
possible

edges, dH(i) =
(
N−1
k−1

)
for all i ∈ [N ], and thus D2(H) = N · (N−1

k−1

)2
.
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Let HN,k(m) be the set of all k-hypergraphs with N vertices and m edges.
We define in particular,

D2
N,k(m) = max

H∈HN,k(m)
D2(H).

The behavior of D2
N,2(m) is fully characterized by a series of papers [1,10,14,20].

However, very little is known about D2
N,k(m) for general k. We will need the

following conjecture.

Conjecture 1 (Main conjecture). Let k > N/2 and assume further that m =
(
A
k

)

for some A � k. Then, the graph H = {e1, ..., em}, where e1, . . . , em are all size
k subsets of {1, . . . , A}, maximizes D2

N,k(m).

We refer the reader to Sect. 3.5 for an in-depth discussion of why we believe
Conjecture 1 to be true, and why it is however hard to provide a full proof.
We stress however that even weaker form of the conjecture (e.g., assuming that
D2

N,k(m) is at most (1 + 1/k) higher than the value achieved by the complete
H) would not invalidate our bound below. Weakening even further would also
simply result in a somewhat weaker bound.

Indistinguishability. We are going to now prove the following theorem.

Theorem 1. Let N be given, q < N/2, and 20 log(e) � S � N/4. Further, let
Xq be sampled with replacement and Y q be sampled without replacement from
[N ]. Then, if Conjecture 1 holds, for every S-bounded distinguisher A, we have

AdvdistXq,Y q (A) �
√

S · q

N
.

Let Osl(q, S,N) denote the best possible advantage over all S-bounded adver-
saries. The above result tells us that Osl ∈ O(

√
S · q/N). For the sake of gener-

ality our results which use Theorem1 are stated in terms of Osl.

3.3 Proof of Theorem1

We are going to use Lemma 2, and therefore we are going to be concerned solely
with showing a lower bound on H(Yi ‖ Γi−1) for all i ∈ [q]. This involves in
particular a random experiment where (1) Y1, . . . , Yi are sampled, and (2) the
state Γi−1 is going to be produced, as a function of Y1, . . . , Yi−1 only (which
however, also of course depend on Yi by being distinct from it).

Intermediate experiment. We note that in the actual random experiment
A has, when outputting Γi−1, information about Y1, . . . , Yi−1 which is poten-
tially incomplete, especially if Γi−2 does not allow completely to remember
Y1, . . . , Yi−2, and so on. As a first simplification, we will remove this, and allow
an adversary full information about Y1, . . . , Yi−1 when attempting to produce a
state Γi−1 with the sole intent of making H(Yi | Γi−1) as small as possible. A
second simplification is that, intuitively, the only information Y1, . . . , Yi−1 give
about Yi is its range, i.e., the set of values Yi can take.
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In particular, for an adversary B, consider the following experiment, produc-
ing variables (Yi, Γi−1):

– Sample Y $← (
[N ]

N−i+1

)

– Let Γi−1
$← B(Y)

– Yi
$← Y

– Return (Yi, Γi−1)

The additional constraint here is that |Γi−1| � S. Define now Hi(B) =
H(Yi | Γi−1). We will show the following.

Lemma 3. For all i, and S-bounded adversary A, there exists a deterministic
B outputting at most S bits such that

H(Yi | Γi−1) � Hi(B),

where H(Yi | Γi−1) is with respect to the original experiment.

Proof. We first build a randomized adversary A′ which given Y first samples
a random shuffling Y1, . . . , Yi−1 of the i − 1 elements not in Y, and then runs
A over i − 1 rounds feeding Y1, . . . , Yi−1 to it, to produce Γi−1, which is then
output by A′. Clearly, by construction, H(Yi | Γi−1) = Hi(B).

To make B deterministic, let R be the random coins used by A′, and observe
that

H(Yi | Γi−1) � H(Yi | Γi−1, R) = E
r

$←R

[H(Yi | Γi−1, R = r)] .

Define B by fixing the coins of A′ to those minimizing H(Yi | Γi−1, R = r). ��

Collision entropy and probabilities. We take an extra final step to sim-
plify our lower bound, and its connection with Conjecture 1. Namely, we will
lower bound

Hi
2(B) = E

γ
$←Γi−1

[H2(Yi | Γi−1 = γ)]

since clearly Hi(B) � Hi
2(B). Also define

Colli(B) = E
γ

$←Γi−1

[
∑

y

Pr
[
Yi = y

∣∣ Γi−1 = γ
]2

]

.

We note here that by Jensen’s inequality,

Hi
2(B) = E

γ
$←Γi−1

[

− log

(
∑

y

Pr
[
Yi = y

∣∣ Γi−1 = γ
]2

)]

� − logColli(B),

because x �→ − log(x) is a convex function. Therefore, the rest of the section will
be devoted to proving an upper bound for Colli(B). Specifically, we show:
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Lemma 4. For all adversaries B outputting at most S bits, if Conjecture 1 is
true,

Colli(B) �
(

1 +
2
N

)
· 1
N − S

.

Before we turn to a proof, let us see how this implies the desired result. First
off, it immediately implies by the above

H(Yi | Γi−1) � − logColli(B)

� − log
(

1 +
2
N

)
+ log(N − S)

= − log
(

1 +
2
N

)
+ log(N) + log

(
1 − S

N

)
.

Now note that log(1+x) � log(ex) = x log(e). On the other hand, using the fact
that x = S/N � 0.25, we have

log(1 − x) =
1

ln 2
ln(1 − x) � 1

ln 2
(−x − x2/2 − x3/2

)
� −21x

16 ln 2
� −1.9x

Plugging in gives,

q∑

i=1

H(Yi | Γi−1) � q

(
−2 log(e)

N
+ log(N) − 1.9S

N

)
.

Then using Lemma 2 we can complete the proof via

AdvdistXq,Y q (A) � 1√
2

√√√√q log N −
q∑

i=1

H(Yi | Γi)

� 1√
2

√

q

(
2 log(e)

N
+

1.9S

N

)

� 1√
2

√

q

(
0.1S

N
+

1.9S

N

)
=

√
S · q

N
.

Proof of Lemma 4. We first introduce some more notation. For a k-hypergraph
H = {e1, . . . , em} with vertex set [N ] where k := N − i + 1, consider the distri-
bution pH which samples a y ∈ [N ] by first picking a random edge ei, and then
letting y be a random element of the set. In particular, pH(y) = dH(y)/m · k.
We also define

Coll(H) =
∑

y

pH(y)2 =
1

m2k2
D2(H).

Also, let CollN,k(m) = maxH∈HN,k(m) Coll(H).
Note now that B assigns sets of size k to every S-bit output γ. For a given

γ, we can think of the sets assigned to it as a k-hypergraph, which we denote
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B−1(γ). Letting mγ denote the number of edges in B−1(γ) (and thus
∑

γ mγ =
(
N
k

)
), we have

Coll(B) =
1

(
N
k

)
∑

γ∈{0,1}S

mγ · Coll(B−1(γ)) � 1
(
N
k

)
∑

γ∈{0,1}S

mγ · CollN,k(mγ).

(1)
We are going to now maximize the right-hand-side of the above inequality over
all sets {mγ}γ∈{0,1}S , where

∑
γ mγ =

(
N
k

)
, using Conjecture 1.2 We need the

following helping lemma, that CollN,k(mγ) is a non-increasing function. Its proof
is deferred to the full version of this paper [19].

Lemma 5. For all m � 1, CollN,k(m + 1) � CollN,k(m).

Unfortunately, the function CollN,k(m) is not “smooth”, due to its discrete
nature, making our maximization of the RHS of (1) difficult. We will now replace
it with a continuous version without too much loss. Concretely, we define

AN,k(m) =
1
α

,

where α ∈ [k,N ] is the (unique) real number such that
(

α

k

)
=

α(α − 1) · · · (α − k + 1)
k!

= m.

We can now use the following lemma.

Lemma 6. Assume Conjecture 1. For all m ∈ {1, 2, . . . ,
(
N
k

)}, we have

CollN,k(m) �
(

1 +
1
k

)
· AN,k(m).

Proof. Pick m, and let m0 � m � m1 such that m0 =
(
A
k

)
and m1 =

(
A+1

k

)
for

a natural number A � k. Then, AN,k(m) = 1
α for some α ∈ [A,A+1], and using

Lemma 5 and Conjecture 1,

CollN,k(m) � CollN,k(m0) =
1
A

=
α

A
AN,k(m) � 1 + A

A
AN,k(m).

The claim follows, because 1+A
A � 1 + 1

k . ��
Therefore, we can now adapt this to (1) as

Coll(B) �
(

1 +
1
k

)
1

(
N
k

)
∑

γ∈{0,1}S

mγ · AN,k(mγ)

=
(

1 +
1
k

)
1

(
N
k

)
∑

γ∈{0,1}S

BN,k(mγ),
(2)

where BN,k(m) = m · AN,k(m). To conclude the proof, we use the following two
lemmas, whose proofs are deferred to the full version of this paper [19].
2 Note that applying this conjecture requires k > N/2 which holds because k =

N − i + 1 � N − q + 1 > N − N/2 + 1.
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Lemma 7. The function BN,k(m) is concave.

Lemma 8. For N/2 � k ≤ N − S, we have
(
N
k

)
/2S �

(
N−S

k

)
.

Lemma 7 can now be applied to (2) to yield

Coll(B) �
(

1 +
1
k

)
2S

(
N
k

)
1
2S

∑

γ∈{0,1}S

BN,k(mγ)

�
(

1 +
1
k

)
2S

(
N
k

)BN,k

⎛

⎝ 1
2S

∑

γ∈{0,1}S

mγ

⎞

⎠

=
(

1 +
1
k

)
2S

(
N
k

)BN,k

((
N

k

)
/2S

)

=
(

1 +
1
k

)
· AN,k

((
N

k

)
/2S

)

�
(

1 +
1
k

)
· AN,k

((
N − S

k

))
=

(
1 +

1
k

)
1

N − S
,

(3)

where for the last inequality we have used Lemma 8 and the fact that AN,k(·) is
a non-increasing function.

3.4 Application: The Switching Lemma and Counter-Mode
Encryption

The switching lemma. A classic result in cryptography is the switching lemma
which says roughly that for any blockcipher F and adversary A making at most
q oracle queries,

∣
∣∣AdvprfF (A) − AdvprpF (A)

∣
∣∣ < q2/N where N = |F.Dom|. The stan-

dard proof works by bounding the ability of A to distinguish a random function
from a random permutation by analyzing the probability that the output of a
random function repeats. When A does not repeat its oracle queries we can
reduce this to the streaming problem we just analyzed this.

Lemma 9. Let F be a blockcipher with F.Dom = [N ]. Let A be an S-bounded
adversary which makes at most q non-repeating queries to its oracle. Then

|AdvprfF (A) − AdvprpF (A)| � Osl(q, S,N).

If Conjecture 1 holds, then we can in turn bound Osl(q, S,N) by
√

S · q/N
using Theorem 1. This would make the bound (and others in the section) essen-
tially tight. If an attacker stores S outputs from its oracle, we expect it to see
one of these outputs again from a random function after T ≈ N/S queries. For
a random permutation such a repeat is impossible. In the full version of this
paper [19] we provide the (simple) analysis for this attack.
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Proof. Without loss of generality, assume that AdvdistXq,Y q (A) is positive. We claim
that Pr[Gprf

F,0(A)] = Pr [A(Xq) ⇒ 1] and Pr[Gprp
F,0(A)] = Pr [A(Y q) ⇒ 1]. Then the

following calculation establishes the result.

|AdvprfF (A) − AdvprpF (A)| = |Pr[Gprp
F,0(A)] − Pr[Gprf

F,0(A)]|
= |Pr [A(Y q) ⇒ 1] − Pr [A(Xq) ⇒ 1]|
= AdvdistXq,Y q (A)

� Osl(q, S,N).

The first equality used that games Gprf
F,1(A) and Gprp

F.1(A) are identical. ��

Counter-mode encryption. Let F be a family of functions with F.Dom = [N ]
for some N ∈ N and F.Rng = {0, 1}F.ol for some F.ol ∈ N. One classic example of
an encryption mode constructed using F is stateful counter-mode. Formally this
is the encryption scheme CTR[F] with CTR[F].M = ({0, 1}F.ol)∗ and algorithms
defined as shown below.

CTR[F].Sg
K

$← F.K
Return (0,K)

CTR[F].E(σe,M)
(i,K) ← σe

For j = 0, . . . , |M |F.ol

Cj ← Mj ⊕ F.Ev(K, i + j)
i ← i + |M |F.ol

Return ((i,K), C)

CTR[F].D(σd, C)
(i,K) ← σd

For j = 0, . . . , |C|F.ol

Mj ← Cj ⊕ F.Ev(K, i + j)
i ← i + |C|F.ol

Return ((i,K),M)

Here addition is mod N . It is trivial to show that if F is a good PRF then,
CTR[F] is a secure encryption scheme. Consider the following theorem. For sim-
plicity we focus on the case that the attacker queries only 1 block messages.

Theorem 2. Let F be given with F.Dom = [N ] and F.Rng = {0, 1}F.ol. Let A be
an adversary making at most q < N queries to its Enc oracle where each is F.ol
bits long. Then we can build an adversary Aprf (Fig. 3) such that

AdvindrCTR[F](A) = AdvprfF (Aprf).

Adversary Aprf is roughly as efficient as A.

Proof. Let Aprf be the adversary shown in Fig. 3. It uses its Ror oracle to
simulate the view of A. We claim that Pr[Gindr

CTR[F],1(A)] = Pr[Gprf
F,1(A)] and

Pr[Gindr
CTR[F],0(A)] = Pr[Gprf

F,0(A)] from which the stated advantage relationship fol-
lows. The former equality holds because in both A is seeing CTR[F] encryptions of
M . For the latter equality note that the total block-length of all of A’s queries is
less than N so the input to the random function will never repeat. Consequently
each value returned by Ror in Gprf

F,0(A) (and thus each Cj = Mj ⊕ Ror(i + j))
is a fresh random string. This is identical to the distribution on C returned to
A in Gindr

CTR[F],0(A).
The efficiency of Aprf can be verified by examining its pseudocode. ��
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Fig. 3. Adversary for Theorem 2.

Suppose F is a blockcipher (where we identify [N ] with {0, 1}F.ol in the obvious
way). If q ∈ Ω(

√
N), then we cannot generically hope that AdvprfF (Aprf) is small

because an attacker with unbounded state can remember the outputs of F for
every query it made and check if they ever repeated. However, if S is o(

√
N) then

we can still meaningfully hope for security because Aprf cannot remember ever
query it made. In particular, by combining Theorem2 and Lemma 9 we obtain
the following corollary.

Corollary 1. Let F be a blockcipher with F.Rng = {0, 1}F.ol. Let A be an
S-bounded adversary making at most q � 2F.ol queries to its Enc oracle each
of which are F.ol bits long. Then we can build an adversary Aprf (Fig. 3) such
that

AdvindrCTR[F](A) � AdvprpF (Aprf) + Osl(q, S, 2F.ol).

Adversary Aprf is roughly as efficient as A.

Proving this requires only observing that Aprf is S-bounded. Examining the
code of Aprf it may seem like it needs to remember the counter i and M in
addition to the state of A. However, as per the computation model in Sect. 2.1,
the stage number is given to an adversary during each stage and the i-th message
Mi can be deterministically recomputed from A’s state σi−1.

Output-feedback mode encryption. In the full version of this paper [19] we
apply our streaming results to analyze the security of stateful output-feedback
mode. This mode starts with Y0 = 0F.ol and the encrypts each Mi via Yi ←
F.Ev(K,Yi−1); Ci ← Mi ⊕Yi where F is a blockcipher. The analysis of the mode
is more involved than the CTR$ analysis because we cannot a priori assume that
the inputs to F will not repeat.

The crux of the proofs lies in considering the streaming problem of distin-
guishing 1, F (1), F (F (1)), . . . from random where F is a random permutation
[N ] → [N ]. This is exactly what arises from the standard reduction to replace
the PRF with a truly random function. In analyzing this streaming problem we
first bound the statistical distance between the stated distribution and sampling
without replacement. This gives a O(q/N) term corresponding to the probability
that 1 is chosen as the output of F for any of first q samples in the distribution.
Having done this we can now simply apply a bound on the streaming problem we
have been studying in this section. Putting everything together, the reduction
from security of the encryption scheme to this new streaming problem is straight-
forward and gives a bound AdvindrOFB[F](A) = AdvprpF (Aprp)+Osl(q, S, 2F.ol)+4q/N .
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Surprisingly, this result cannot hold for output-feedback mode with a PRF
instead of a PRP. In the full version of this paper [19] we note a low memory
attack that with high success probability when the number of encrypted blocks
is Ω(

√
N). The critical difference allowing this attack is that random functions

have much shorter cycle lengths than random permutations. The importance of
cycle lengths for OFB was first noted by Davies and Parkin [13].

Nonce-based encryption. A standard way of constructing nonce-based
encryption from a randomized encryption scheme is to apply a PRF to the
nonce to obtain coins for the underlying encryption scheme. Because nonce rep-
etitions are disallowed in the most basic security definitions for nonce-based
encryption we can use Lemma 9 to replace the PRF with a PRP. The proof of
this is straightforward and we omit a formalization.

3.5 Validity of Conjecture 1

We now discuss Conjecture 1. First off, we point out that the problem is well
understood for the case of graphs, that correspond to k = 2.

Additionally, note that the conjecture is not true for all k. For example, take
k = 2, m =

(
4
2

)
= 6 and N � 7. The complete graph over 4 vertices gives

D2(K4) = 4 × 9 = 36. Yet the star S6 with edges {1, 2}, {1, 3}, . . . , {1, 7} has
D2(S6) = 62 + 6 × 1 = 42. In fact, one can show that S6 is optimal (see below).

The case k > N/2. However, this is different for k > N/2, and we briefly
explain the intuition, by giving an equivalent formulation of our conjecture. The
first observation here is that for any k-hypergraph H = {e1, . . . , em}, we can
define its complement as the (N − k)-hypergraph H ′ = {e′

1, . . . , e
′
m}, where

e′
i = [N ] \ ei. Now, note that

D2(H) =
N∑

i=1

dH(i)2 =
N∑

i=1

(m − dH′(i))2

= N · m2 − 2m ·
N∑

i=1

dH′(i) +
N∑

i=1

dH′(i)2

= N · m2 − 2m2(N − k) + D2(H ′).

This in particular implies directly the following: H maximizes D2(H) over
k-hypergraphs with m edges iff H ′ maximizes D2(H ′) over (N −k)-hypergraphs
with m edges.

In general, if m =
(
A
k

)
for N/2 < k � A � N , then our conjecture says that

the complete k-hypergraph over [A], denoted KA,k, maximizes D2(H). We note
that the complement of KA,k is (isomorphic to) SN,N−A,N−k, where SN,R,k′ for
k′ > R is the k′-hypergraph with edges

{1, . . . , R} ∪ e,
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and e is any subset of size k′ − R of {R + 1, . . . , N}. Our conjecture is then
equivalent to the statement that for any k′ < N/2 and m =

(
A

N−k′
)
, the graph

H = SN,R,k′ for R = N − A maximizes D2(H).

Example 1. The conjecture is easily seen to be true for k = N − 2, and we are
given m =

(
N−1
N−2

)
edges (this is the only non-trivial m). Then, k′ = 2, and thus

SN,N−A,N−k = SN,1,2 = SN , the graph which contains exactly all edges {i,N}
for i ∈ [N − 1].

Now, we can see that H = SN maximizes D2(H). This is because for any
k′-hypergraph H = (e1, . . . , em), let v1, . . . ,vm ∈ {0, 1}N be the characteristic
vectors of the edges, then

D2(H) =

(
m∑

i=1

vi

)T (
m∑

i=1

vi

)

=
m∑

i=1

vT
i vi + 2

∑

i,j

vT
i vj

= m · k′ + 2
∑

i,j

|ei ∩ ej |.

Clearly, for edges of size k′ = 2, |ei ∩ ej | is at most 1, and SN has the property
that it is exactly one for any i �= j.

The above example, showing the optimality of one simple special case, also
shows our intuition. Namely, to maximize m · k′ + 2

∑
i,j |ei ∩ ej |, we make

every pair of vertices share the highest number of possible vertices, i.e., N − A.
The number of edges then exactly corresponds to the completion of all edges
consisting of all subsets of size A of the remaining vertices.

Dual graph. We can repeat an analogous analysis of the dual graph of H =
{e1, . . . , em}. We define this to be the k-hypergraph H =

(
[N ]
k

) \ H. Now, note
that

D2(H) =
N∑

i=1

dH(i)2 =
N∑

i=1

((
N

k

)
− dH′(i)

)2

= N ·
(

N

k

)2

− 2
(

N

k

)2

(N − k) + D2(H ′).

This implies that H maximizes D2(H) over k-hypergraphs with m edges iff H ′

maximizes D2(H ′) over k-hypergraphs with
(
N
k

) − m edges.
The complement of a k-hypergraph KA,k is isomorphic to ZN,N−A,k, where

ZN,R,k is the k-hypergraph with all edges e ∈ (
[N ]
k

)
such that

{1, . . . , R} ∩ e �= ∅.

Our conjecture is then equivalent to the statement that for any k > N/2 and
m =

(
A
k

)
, the graph H = ZN,R,k for R = N − A maximizes D2(H). Note
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when k = 2, the only S graphs are isomorphic to SN,1,2 = ZN,1,2. Furthermore,
when k = 2 for an appropriate generalization of complete graphs and Z graphs
(covering when they do not “fits” perfectly for a given m) D2(H) is always
maximized by a complete or Z graph.

Complete, S, and Z graphs are very natural ways to try to “pack” a hyper-
graph. Complete graphs create a uniform packing over a subset of the nodes
with no overflow. Both S and Z graphs create very biased packings by making a
small subset of the nodes have particularly high degree at the expense of a long
tail of nodes that have low, but non-zero degree.

Why proving it is hard? One reason why proving the conjecture is hard is
that we are maximizing a function over degree sequences (d1, . . . , dN ) of hyper-
graphs. The structure of this set is however not well understood, even when
dropping the restriction that we must have exactly m edges.

4 Randomized Encryption

The general streaming setting introduced in Sect. 3.1 can be used to derive time-
memory tradeoff bounds for other encryption schemes by considering other dis-
tributions for Xq and Y q. In this section we study randomized stateless encryp-
tion schemes (the only state is an unchanging secret key K). Our main positive
result is for randomized counter-mode (CTR$) with a good PRF. Towards this
we start by (in Sect. 4.1) specifying the necessary streaming distribution for
analyzing CTR$. Analyzing this requires different techniques than those used in
Sect. 3.3 and is done unconditionally (i.e. we do not rely on Conjecture 1).

Note that, unlike in the case of stateful counter-mode, security with a PRF is
not trivial because the input to the function may repeat across different encryp-
tion queries. We show a O(

√
Spq/N) bound on the adversary’s advantage where

p is the length of the messages encrypted and q is the number of messages. Note
that the running time of an adversary, T , upper bounds p · q.

Beyond this we show a generic “switching lemma” between two notions
of weak PRF security. In the first an adversary tries to distinguish between
(R,F.Ev(K,R)) and (R,F (R)) for randomly sampled R and F a random func-
tion [N ] → [N ]. In the other notion, the latter distribution is replaced with
(R, Y ) where Y is chosen at random. The latter of these is more useful for secu-
rity, but the former is more plausible achieved with good bounds. We show that
there can be at most an O(

√
ST/N) difference between an adversary’s advan-

tage in these two games. As an example application of this result we note this
can be used to provide a time-memory tradeoff for the INDR security of the
Encrypt-then-PRF generic composition.

All of these bounds are essentially tight. If an attacker stores S input-output
examples for F, we expect it to see one of these inputs again (allowing it to
trivially distinguish from random) after T ≈ N/S queries.
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4.1 Streaming Distributions for CTR$

Consider the streaming indistinguishability of the following two distributions.

– Rand[N,M, p, q]. The distribution Xq = (X1,X2, . . . , Xq) is such that the
Xi’s are independent and uniformly distributed over [N ] × [M ]p.

– CTR$[N,F , p, q]. For the distribution Y q = (Y1, . . . , Yq) first a function F is
sampled at random from F . Then Yi = (Ri, F (Ri + 1), . . . , F (Ri + p)) where
Ri’s are are independent and uniformly distributed over [N ] and addition is
modulo N .

To analyze CTR$ with a good PRF we will let F = Fcs(N,M). Security with
a good PRP could be modeled by letting N = M and F = Perm(N).

Indistinguishability. We are going to now prove the following theorem.

Theorem 3. Let N , M , p, q, and S be given such that p|N . Furthermore, let
Xq = Rand[N,M, p, q] and Y q = CTR$[N,Fcs(N,M), p, q]. Then for every
S-bounded distinguisher A, we have

AdvdistXq,Y q (A) � 1√
2

√
S · p · q

N
.

Note that unlike Theorem 1 we prove this result uncategorically, without requir-
ing any conjectures.

For notational convenience we use bold-face to indicate vectors obtained by
adding 1 through p to some value. For example, if R ∈ [N ] we will let R =
(R + 1, . . . , R + p). Further, we let F (R) = (F (R + 1), . . . , F (R + p)).

In the proof we will use the chain rule which says H(X,Y ) = H(X|Y )+H(Y ).
We also use that H(X,Y | Z) � H(X | Z)+H(Y | Z) and H(X) � log X where
X is the support of X with equality when X is uniformly distributed over X .
These are standard facts about entropy.

4.2 Proof of Theorem3

Associating the set [N ] × [M ]p with [N · Mp] we can use Lemma 2 to obtain a
bound of,

AdvdistXq,Y q (A) � 1√
2

√√
√√q log(N · Mp) −

q∑

i=1

H(Yi | Γi).

Therefore we are going to be concerned solely with showing a lower bound
on H(Yi | Γi) for all i ∈ [q]. Recall that Yi is the tuple (Ri, F (Ri)). The chain
rule gives that H(Yi | Γi) = H(F (Ri) | Ri, Γi) + H(Ri | Γi).
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Note that Ri is independent of Γi and uniformly sampled from [N ] so
H(Ri | Γi) = log N . Conditioning over all possible values of Ri gives

H(F (Ri) | Ri, Γi) = N−1 ·
∑

r∈[N ]

H(F (r) | Γi−1).

Observe that because p divides N the vectors r can be divided into p different
partitions of [N ]. That is for every j ∈ [p],

⊔
k∈[N/p]{j +kp+1, . . . , j +kp+p} =

[N ]. This observation allows us to continue our calculations as follows,

H(F (Ri) | Ri, Γi) = N−1 ·
∑

j∈[p]

∑

k∈[N/p]

H(F (j + kp) | Γi−1)

� N−1 · p · H(F | Γi−1)

� N−1 · p · (H(F ) − H(Γi−1))

� N−1 · p · (N log M − S)

Thence
q∑

i=1

H(Yi | Γi) =
q∑

i=1

H(F (Ri) | Ri, Γi) + H(Ri | Γi)

�
q∑

i=1

N−1 · p · (N log M − S) + log N

= q log(N · Mp) − Spq/N,

from which the result follows. ��

4.3 Application: CTR$ with a PRF and Weak PRFs

Randomized counter-mode. We can use Theorem 3 to prove a security
result for randomized counter-mode encryption. Let F be a family of functions
with F.Dom = [N ] and F.Rng = {0, 1}F.ol. Then randomized counter-mode
with F is the encryption scheme CTR$[F] with state generation algorithm
CTR$[F].Sg = F.K, message space CTR$[F].M = ({0, 1}F.ol)∗, and encryp-
tion/decryption algorithms defined as shown below.

CTR$[F].E(K,M)
R

$← [N ]
For i = 1, . . . , |M |F.ol

Ci ← Mi ⊕ F.Ev(K,R + i)
Return (K, (R,C))

CTR$[F].D(K, (R,C))
For i = 1, . . . , |C|F.ol

Mi ← Ci ⊕ F.Ev(K,R + i)
Return (K,M)

Here R + i is addition mod N . The standard security theorem for CTR$[F]
tells us (roughly) that given an adversary A making q oracle queries we can
construct a PRF adversary Aprf such that AdvindrSE (A) � AdvprfF (Aprf) + p2q2/N .
Below is our theorem which takes space into account to provide a better bound
when the amount of space used is much less than pq.
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Fig. 4. Adversary for Theorem 4.

Theorem 4. Let F be a family of functions with F.Dom = [N ] and F.Rng =
{0, 1}F.ol. Let A be an S-bounded adversary making at most q queries with lengths
at most p · F.ol bits to its oracle. Assume p|N . Then we can build an adversary
Aprf (Fig. 4) such that

AdvindrCTR$[F](A) � AdvprfF (Aprf) +
1√
2

√
S · p · q

N
.

Adversary Aprf is roughly as efficient as A.

Proof. (of Theorem 4) Our proof begins with the PRF adversary Aprf on the left
side of Fig. 4. It simulates the view of A using its own oracle to provide A with
the encryption of messages. Similarly the distinguisher Adist shown on the right
side of Fig. 4 uses its sample oracle to simulate the view of A.

The claim on the efficiency of Aprf follow from examination of its code. Note
that distinguisher Adist is S-bounded because it only needs to store the state of
A during its oracle query (because M can be recomputed from this state).

We claim that the following equalities hold

(i) Pr[Gprf
F,1(Aprf)] = Pr[Gindr

CTR$[F],1(A)],
(ii) Pr[Gprf

F,0(Aprf)] = Pr[Adist(Y q) ⇒ 1],
(iii) Pr[Adist(Xq) ⇒ 1] = Pr[Gindr

CTR$[F],0(A)].

Here we let Xq = Rand[N, 2F.ol, p, q] and Y q = CTR$[N,Fcs(N, 2F.ol), p, q].
Claim (i) holds because in both games A is seeing encryptions of M using

CTR$[F]. Claim (ii) holds because in both games A is seeing randomized counter-
mode encryption of M using a random function F . Claim (iii) holds because in
both games A is seeing random strings.
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Fig. 5. Games defining weak pseudorandom function security of a family of functions.

The calculations are then as follows.

AdvindrCTR$[F](A) = Pr[Gindr
CTR$[F],1(A)] − Pr[Gindr

CTR$[F],0(A)]

= Pr[Gprf
F,1(Aprf)] − Pr [Adist(Xq) ⇒ 1]

= AdvprfF (Aprf) − AdvdistXq,Y q (Adist)

� AdvprfF (Aprf) +
1√
2

√
S · p · q

N
.

The final inequality follows by applying Theorem3 with the distinguisher that
outputs the bit 1 ⊕ ASamp

dist . ��
Weak prf. Weak PRF security is a variant of PRF security where the game
picks the input to the PRF at random for the adversary. Consider the game
Gwprf
F,b (A) shown in Fig. 5 when b ∈ {0, 1}. The standard definition of WPRF

security is AdvwprfF (A) = Pr[Gwprf
F,1 (A)] − Pr[Gwprf

F,0 (A)]. It asks that an adversary
cannot distinguish between F.Ev(K,X) and F (X) when X is picked at random
and F is a random function.

For proofs a different version of WPRF security is preferable. Consider the
game Gprf

F,−1(A). It differs from Gwprf
F,0 (A) because the Ror oracle returns a fresh

random Y even if X’s repeat. We define the advantage of A by Advwprf2F (A) =
Pr[Gprf

F,1(A)] − Pr[Gprf
F,−1(A)]. We call this WPRF2 security.

A family of functions is deterministic so its output will necessarily repeat
on repeated inputs. Thus we can expect better security for the first definition.
It is then useful to assume good WPRF security and have a generic proof that
WPRF2 security cannot differ from it too much. It is straightforward to show,
for example, that |AdvwprfF (A) − Advwprf2F (A)| � q2/N . Using our space-bounded
techniques we can show the following theorem which improves the bound when
the space used by A is less than the number of queries it makes.

Lemma 10. Let F be a family of functions with F.Dom = [N ]. Let A be an
S-bounded adversary making at most q queries to its oracle. Then

∣
∣∣AdvwprfF (A) − Advwprf2F (A)

∣
∣∣ � 1√

2

√
S · q

N
.
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Proof. First note that |AdvwprfF (A)−Advwprf2F (A)| = |Pr[Gwprf
F,−1]−Pr[Gwprf

F,0 (A)]| and
suppose without loss of generality that this difference in probabilities is positive.
Identify F.Rng with [M ]. In game Gwprf

F,−1 the adversary is being given uniformly

random samples (X,Y ) $← [N ] × [M ] and in game Gwprf
F,0 (A) it is seeing the same

subject to the fact that Y will repeat whenever X does. These views are exactly
identical to the view of a distinguisher in the setting of Theorem3. Applying
that result gives the state bound. ��

4.4 CTR$ with a PRP and Weak PRPs

In practice most encryption uses AES - a blockcipher with domain {0, 1}128
which is thus best modeled as a PRP. We do not know how to extend our CTR$
analysis for this case. Our streaming analysis with a random function F used that
H(F ) = log(MN ). If F is a random permutation then H(F ) = log(N !) which is
not sufficiently large. However, when only one block messages are encrypted, we
can using the streaming problem addressed in Sect. 3 to bound the advantage
by O(Osl).

Security of CTR$ for one block messages corresponds closely to the WPRF2
security of the underlying blockcipher. Thus we divide the CTR$ proof into
three steps. First we use Theorem 1 to obtain a bound in the streaming setting
naturally induced by this problem. Next we use this to prove a generic “switch-
ing lemma” between Weak PRP (WPRP) security (defined momentarily) and
WPRF2 security analogous to Lemma 10. The security of CTR$ for one block
messages follows from this lemma in a straightforward way. The streaming anal-
ysis will be presented in full here. The WPRP and CTR$ results are stated, but
the (straightforward) proofs are deferred to the full version of this paper [19].

Weak prp. WPRP security is defined via the games Gwprp
F,b shown in Fig. 6. The

advantage of an adversary A against blockcipher F is defined by AdvwprpF (A) =
Pr[Gwprp

F,1 (A)] − Pr[Gwprp
F,0 (A)]. The notion is essentially the same as for WPRF

security, except the random function has been replaced with a random permu-
tation.

The following lemma bounds the difference between an adversary’s WPRP
and WPRF2 advantages, allowing one to generically switch between the two. It
is an almost immediate implication of the coming streaming analysis.

Lemma 11. Let F be a family of functions with F.Dom = F.Rng = [N ]. Let A
be an S-bounded adversary making at most q queries to its oracle. Then

∣∣∣AdvwprpF (A) − Advwprf2F (A)
∣∣∣ � 3Osl(q, S,N).

Randomized counter-mode. The following theorem (proved using Lemma11)
bounds the advantage of an attacker against CTR$ with a blockcipher by the
WPRP security of the blockcipher when only one block messages are encrypted.
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Fig. 6. Games for weak pseudorandom permutation security of a family of functions.

Theorem 5. Let F be a blockcipher with F.Dom = F.Rng = {0, 1}n. Let A be
an S-bounded adversary making at most q queries of length n to its oracle. Then
we can build an adversary Awprp such that

AdvindrCTR$[F](A) � AdvwprpF (Awprp) + 3Osl(q, S, 2n).

Adversary Awprp is roughly as efficient as A.

Steaming analysis. In the streaming setting we now analyze A is given
repeated samples (Ri, Pi) where Pi is either random or F (Ri) for a random
F ∈ Perm(N). We first use Osl to switch to Ri being picked without replace-
ment. Now Pi = F (Ri) can be viewed as random samples without replacement;
we use Osl again to switch Pi to being sampled with replacement. Then we use
Osl a final time to switch Ri back to being picked with replacement.

Lemma 12. Let N , q, and S be given. Further, let W q = Rand[N,N, 1, q] and
V q = CTR$[N,Perm(N), 1, q]. Then for every S-bounded distinguisher A, we
have

AdvdistW q,V q (A) � 3Osl(q, S,N).

Proof. Consider the sequence of game G0 through G4 shown in Fig. 7.
In game G0, each Ri is uniformly and independently sampled and Pi =

F (Ri) where F is a random permutation. This is exactly the distribution V q

so Pr [G0] = Pr [A(V q) ⇒ 1]. In game G4, each Ri and each Pi are uniformly
and independently sampled. This is exactly the distribution W q so Pr [G4] =
Pr [A(W q) ⇒ 1]. We can then see that,

AdvdistW q,V q (A) =
4∑

i=1

Pr [Gi] − Pr [Gi−1]

Let Xq be sampling with replacement and Y q be sampling without replace-
ment from [N ]. We will bound the difference between G0 and G4 by using a
sequence of distinguishers for (Xq, Y q), whose advantages we bound with Osl.

The distinguishers are shown below, where R<i = {R1, . . . , Ri−1}. As writ-
ten, distinguishers A0,1 and A1,2 store large amounts of space. The former stores
an entire random permutation F : [N ] → [N ]. The latter stores a list of q dif-
ferent Ri values. Used naively, this would result in useless advantage bounds.
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Fig. 7. Games for proof of Lemma 12. Commented lines of code are only included in
the indicated games.

However, note that the stored state is sampled before any oracle queries are
made. Thus we can use a standard coin-fixing argument to upper bound the
advantage of these distinguishers by the advantage of distinguishers A∗

0,1 and
A∗

1,2 for which the best choices of F and the Ri values are hardcoded.
The description size of a distinguisher is not included in the bound of their state

so we can see that A∗
0,1 is S-bounded, A∗

1,2 is S-bounded, and A3,4 is S-bounded.
Note that A∗

1,2 does not need to store the stage counter i for itself because this is
provided as input as part of our streaming.

Distinguisher ASamp

0,1

F
$← Perm(N)

b′ $← ASimSamp

Return 1 ⊕ b′

SimSamp()
R ← Samp

P ← F (R)
Return (R,P )

Distinguisher ASamp

1,2

For i = 1, . . . , q do
Ri

$← [N ] � R<i

i ← 1
b′ $← ASimEnc

Return b′

SimSamp()
P ← Samp

i ← i + 1
Return (Ri, P )

Distinguisher ASamp

3,4

b′ $← ASimEnc

Return b′

SimSamp()
R ← Samp

P
$← [N ]

Return (R,P )

Now consider the transition from G0 to G1. They differ in whether Ri is sam-
pled with or without replacement. Distinguisher A0,1 tries to use this difference
to distinguish between Xq and Y q using its samples to set Ri and simulating
P = F (R) for itself. We have Pr [G1]−Pr [G0] = AdvdistXq,Y q (A0,1). Note that A0,1

outputs the bit 1 ⊕ b′ to give the order we want.
Games G1 and G2 differ only in whether F is a random permutation or

random function. Because they are being fed non-repeating input the values
Pi = F (Ri) are distributed according to Y q in the former case and Xq in the
latter. Consequently, we can see that Pr [G2] − Pr [G1] = AdvdistXq,Y q (A1,2).

Games G2 and G3 are equivalent. They differ in whether each Pi is by Pi
$←

[N ] or as F (Ri) for a random function F . Because the Ri values are non-repeating
these are the same distribution, giving Pr [G3] − Pr [G2] = 0.
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Finally, G3 and G4 differ in whether Ri is sampled with or without replace-
ment. Via A3,4 we again reduce this to distinguishing between Xq and Y q. We
have Pr [G4] − Pr [G3] = AdvdistXq,Y q (A3,4).

Plugging in to Sect. 4.4 and bounding with A∗
0,1 and A∗

1,2 gives

AdvdistW q,V q (A) � AdvdistXq,Y q (A∗
0,1) + AdvdistXq,Y q (A∗

1,2) + AdvdistXq,Y q (A3,4).

The result follows by bounding these advantages with Osl. ��

4.5 Other Results

Encrypt-then-prf. In the full version of this paper [19] we apply the above
result to the proving the security of the encrypt-then-PRF construction of an
authenticated encryption scheme (for fixed length messages).

Nonce-based encryption. We note that our CTR$ and encrypt-then-prf the-
orems composes correctly with the standard way of constructing nonce-based
encryption from a randomized encryption scheme by applying a PRF to the
nonce to obtain coins for the underlying encryption scheme.

Other encryption schemes. In the full version of this paper [19] we look at
streaming models induced by other randomized encryption schemes (CTR$ with
a permutation, OFB$, CBC$, and CFB$). We exhibit straightforward attacks
which distinguish length p ∈ Θ(

√
N) samples from random with low state, q = 1,

and good advantage.
Our streaming proof for the model induced by CTR$ with a random function

implies such an attack is not possible against it. However, to be clear, these
attacks do not rule out good time-memory tradeoffs for these other schemes.
Instead these very weak attacks indicate that if such bounds are possible, their
proofs will require new insights/models. See the full version of this paper [19]
for more discussion.

5 Open Questions

Our work leaves open a number of important questions - most directly resolv-
ing validity of Conjecture 1 (or a relaxed version thereof which suffices for our
final statement). More generally, there is the question of which other encryption
schemes admit proofs of tight time-memory trade-offs. Furthermore, we do not
know how to prove trade-offs for more complex security games which do not fit
within the streaming model, e.g., security in the presence of decryption oracles.
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