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Abstract

Binarized Neural Networks (BNNs) can significantly
reduce the inference latency and energy consumption in
resource-constrained devices due to their pure-logical com-
putation and fewer memory accesses. However, training
BNNs is difficult since the activation flow encounters de-
generation, saturation, and gradient mismatch problems.
Prior work alleviates these issues by increasing activation
bits and adding floating-point scaling factors, thereby sac-
rificing BNN'’s energy efficiency. In this paper, we propose
to use distribution loss to explicitly regularize the activation
flow, and develop a framework to systematically formulate
the loss. Our experiments show that the distribution loss
can consistently improve the accuracy of BNNs without los-
ing their energy benefits. Moreover, equipped with the pro-
posed regularization, BNN training is shown to be robust to
the selection of hyper-parameters including optimizer and
learning rate.

1. Introduction

Recent years have witnessed tremendous success of
Deep Neural Networks (DNNs) in various applications of
image, video, speech, natural language, etc [16, 31]. How-
ever, the increased computation workload and memory ac-
cess count required by DNNs pose a burden on latency-
sensitive applications and energy-limited devices. Since la-
tency and energy consumption are highly related to com-
putation cost and memory access count, there has been
a lot of research on reducing these two important de-
sign metrics [11, 41, 18, 6]. Binarized Neural Networks
(BNNs) [22] that constrain the network weights and acti-
vations to be 1 have been proven highly efficient on cus-
tom hardware [51]. We also show later in Sec. 3.1 that a
typical block of a BNN can be implemented in hardware
with merely a few logical operators including XNOR gates,
counters and comparators, and therefore greatly reduce the
energy consumption and circuit area, as shown in Table 1.

In addition to the computational benefit brought by mak-
ing the whole network binarized, another benefit of BNNs
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Figure 1: The basic Conv-BN-Act structure for BNN (Bin-
Conv: binary convolution; BN: batch normalization). The
pre-activation distribution may exhibit from degeneration,
saturation or gradient mismatch problem that causes diffi-
culty in training.

is the huge reduction of memory footprint due to their 1-
bit weights and activations. Prior work on extremely low-
bit DNNs [9, 12, 28, 4, 46, 10] mainly focuses on few-
bit weights and uses more bits for activations, while only
a few [22, 29] target 1-bit weights and activations. How-
ever, reading and writing intermediate results (activations)
generate a larger memory footprint than the weights [35].
For example, in the inference phase of a full-precision (32-
bit) AlexNet with batch size 32, 92.7% of the memory foot-
print is caused by activations, while only 7.3% is caused by
weights [35]. Therefore, the memory footprint of BNNs is
significantly reduced due to their binary activations.

However, training accurate BNNs requires careful hyper-
parameter selection [1], which makes the process more dif-
ficult than for their full-precision counterparts. Prior work
has shown that this difficulty arises from the bounded ac-
tivation function and the gradient approximation of the
non-differentiable quantization function [4]. Even for full-
precision DNNs, bounded activation functions (e.g., Sig-
moid or Tanh) usually lead to lower accuracy compared to
the unbounded ones (e.g., ReLU, leaky ReLU, or SELU)
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due to the gradient vanishing problem [13, 5]. For bina-
rized networks, a bounded activation (i.e., Sign function) is
used to lead to binary activations, and the HardTanh acti-
vation function is commonly used for gradient approxima-
tion [22, 38, 46]. As shown in Fig. 1, these bounded ac-
tivation functions bring the following challenges (we use a
convolutional layer as an example for illustration purposes):
(i) Degeneration: If almost all the pre-activations of a chan-
nel have the same sign, then this channel will output nearly
constant activations. In an extreme case, this channel de-
generates to a constant. (ii) Saturation: If most of the pre-
activations of a channel have a larger absolute value than
the HardTanh threshold (i.e., |a| > 1), then the gradients
for these pre-activations will be zero. (iii) Gradient mis-
match: If the absolute values of pre-activations are consis-
tently smaller than the threshold (i.e., |a| < 1), then this is
equivalent to using a straight-through estimator (STE) for
gradient computation [3]. While the STE generally per-
forms well in computing gradients of staircase functions
when training fixed-point DNNSs, using STE for computing
the gradient of Sign function causes larger approximation
error than staircase function, and therefore causes worse
gradient mismatch [4].

Due to the difficulty of BNN training, prior work along
this track has traded the benefit of extremely-low energy
consumption for higher accuracy. Hubara et al. largely in-
crease the number of filters/neurons per convolutional/fully-
connected layer [22]. Thus, while a portion of fil-
ters/neurons are blocked due to degeneration or gradient
saturation, there is still a large absolute number of fil-
ters/neurons that can work well. Similarly, Mishra et al.
also increase the width of the network to keep the BNN ac-
curacy high [35].

In addition to increasing the number of network param-
eters, lots of work sacrifices BNNs’ pure-logical advantage
by relaxing the precision constraint. Rastegari ef al. approx-
imate a full-precision convolution by using a binary convo-
lution followed by a floating-point element-wise multiplica-
tion with a scaling matrix. [38]. Tang et al. use multiple-bit
binarization for activations, which requires floating-point
operators to compute the mean and residual error of activa-
tions [46]. Lin et al. approximate each filter and activation
map using a weighted sum of multiple binary tensors [29].
All these approaches use scaling factors for weights and
activations, making fixed-point multiplication and addition
necessary for hardware implementation. Liu ef al. added
skip connections with floating point computations to the
model [30]. While the models resulting from these ap-
proaches use XNOR convolution kernels, the extra multi-
plications and additions are not negligible. As shown in
Table. 2, the energy cost for a typical convolutional layer
of BNN is lower than the other binarized DNNs. The layer
setting and the proposed approach for energy cost estima-

Table 1: Computational energy consumption and circuit
area for different computation operators using a commer-
cial 65nm process design kit [44]. The multiplier and adder
are both 16-bit fixed-point operators.

Energy  Relative Area Relative
(p)) cost (um?) cost
XNOR 7.6x107%  1x 4.2 1x
Counter | 7.8x10™% 10x 52 12x
Comparator | 1.1x1072  14x 52 12x
Multiplier 1.6 2109 x 3.0x10%  718x
Adder 48x1072 64x 1.6x10? 37x

Table 2: Computational energy for a convolutional layer
with different types of binarizations.

Pure- Energy Relative
logical (ud) cost
BNN [22] Yes 1.42 Ix
XNOR-Net [38] No 4.34 3x
ABC-Net [29] No 24.6 17x

tion are introduced in Appendix 6.1. Furthermore, since the
hardware implementation of BNNs do not require digital
signal processing (DSP) units, they greatly save circuit area
and thus, can benefit IoT applications that have stringent
area constraint [14, 8].

In this paper, we propose a general framework for ac-
tivation regularization to tackle the difficulties encountered
during BNN training. While prior work on weight initializa-
tion [13] and batch normalization [24] also regularizes acti-
vations, it does not address the challenges mentioned earlier
for BNNS, as detailed in Sec. 4.2. Instead of regularizing the
activation distribution in an implicit fashion as done in prior
work [13, 24], we shape the distribution explicitly by em-
bedding the regularization in the loss function. This regu-
larization is shown to effectively alleviate the challenges for
BNNS, and consistently increase the accuracy. Specifically,
adding the distribution loss can improve the Top-1 accuracy
of BNN AlexNet [22] on ImageNet from 36.1% to 41.3%,
and improve the binarized wide AlexNet [35] from 48.3%
to 53.8%. In summary, this paper has the following key
contributions:

(i) To the best of our knowledge, we are the first to pro-
pose a framework for explicit activation regularization for
binarized networks that consistently improve the accuracy.

(i) Empirical results show that the proposed
distribution loss is robust to the selection of
training hyper-parameters. Code is available at:
https://github.com/ruizhoud/DistributionLoss.

2. Related Work

Prior work has proposed various approaches to regular-
ize the activation flow of full-precision DNNs, mainly to ad-
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dress the gradient vanishing or exploding problem. Ioffe e?
al. propose batch normalization to centralize the activation
distribution, accelerate training, and achieve higher accu-
racy [24]. Similarly, Huang et al. normalize the weights
with zero mean and unit norm followed by scaling fac-
tors [20]. Shang et al. extend the normalization idea to
residual networks using normalized propagation [42], while
Ba et al. and Salimans et al. normalize the activations of
Recurrent Neural Network (RNN) by layer-wise normaliza-
tion and weight reparameterization, respectively [2, 40]. In
addition, some prior work develops good initialization strat-
egy to regularize the activations in the initial state [33, 48],
or proposes new activation functions to maintain stable ac-
tivation distribution across layers [27, 32].

However, these approaches on full-precision networks
do not address the difficulty of training networks with bina-
rized activations. Prior work on binarized DNNs alleviates
this problem mainly by approximating the full-precision
activations with multiple-bit representations and floating-
point scaling factors [46, 4, 35, 37, 34, 12, 29, 19]. Tang et
al. introduced scaling layers and use 2 bits for activa-
tions [46]. Cai er al. use multi-level activation function
for inference and variants of ReLU for gradient computa-
tion to reduce gradient mismatch [4]. Polino et al. lever-
age knowledge distillation to guide training and improve the
accuracy with multiple bits for activations [37]. Lin et al.
approximate both weights and activations with multiple bi-
nary bases associated with floating-point coefficients [29].
While these approaches improve the accuracy for binarized
networks, they sacrifice the energy efficiency due to the in-
creased bits and the required DSP units for the additions and
multiplications.

3. Activation Regularization

In this section, we first show that BNN blocks can be
implemented with pure-logical operators in hardware while
the other binarized networks (including XNOR-Net and
ABC-Net) based on scaling factors require additional full-
precision operations. Then, we propose a framework to ad-
dress the problems of activation and gradient flow incurred
in the training process of BNNs. Finally, we discuss the
effectiveness of this framework.

3.1. Binarized DNNs

Binarized DNNSs constrain the weights and activations to
be 41, making the convolution between weights and activa-
tions use only xnor and count operators. In this subsection,
we introduce the structure of three typical binarized DNNss,
and analyze their hardware implication.

BNN: As shown in Fig 2, the basic block for BNN [22]
is composed of a binary convolution, a batch normaliza-
tion (BN) and an optional max pooling layer, followed by a
sign activation function. Without changing the input-output
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Figure 2: Basic block for convolutional BNN [22]. The
activations I' and weights W are binarized to 1. The in-
ference of this block can be implemented on hardware with
only logical operators.

mapping of this block, we can reorder the max pooling layer
and the sign function, and then, combine the BN layer and
sign function to be a comparator of the convolution results
A and input-independent variables p + "75, where 1
and o are the moving mean and variance of per-channel ac-
tivations, which are obtained from training data and fixed
in the testing phase; $ and ~y are trainable parameters in
the BN layer. Therefore, the inference of this BNN block
can be implemented in hardware with pure-logical opera-
tors. This transformation can also be applied to binarized
fully-connected layers followed by BN, pooling and sign
function.

XNOR-Net: Different from BNN, XNOR-Net [38] ap-
proximates the activations A®™ after the BN layer with their
signs and scaling factors computed by the average of the
absolute values of these activations, as shown in Fig. 9 in
Appendix. Since the scaling factors are input-dependent,
the full-precision multiplications and additions cannot be
eliminated.

ABC-Net:  ABC-Net [29], shown in Fig. 10 in Ap-
pendix, approximates both weights and activations with a
linear combination of pre-defined bases, and therefore mak-
ing the convolution kernel binarized. However, the approx-
imation prior to binary convolution and the scaling opera-
tions after the convolution require full-precision multiplica-
tions and additions that cannot be eliminated.

3.2. Regularizing Activation Distribution

In this section we first introduce some notations and
formally define the difficulties encountered when training
BNNs. We denote A%"¢ as the pre-activations (activations
prior to the Sign function) for the c-th channel of the [-th
layer for the b-th batch of data. Thus, A*¢ is a 3D tensor
with size B x W x H where B is the batch size, W and
H are the width and height of the activation map. From
this point on, to avoid clutter, we will omit the superscript
of A whenever possible. A, denotes the ¢ quantile of A’s
elements where 0 < ¢ < 1. We define degeneration, satu-
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Figure 3: Motivation for adjusting regularization. The loss
function directly formulated from hypothesis (e.g., degen-
eration) relies on the minimum (or maximum) of the pre-
activations, and therefore is sensitive to outliers.

ration, and gradient mismatch as follows:

Degeneration: A(O) >0or A(l) <0
Saturation: |A|) > 1 (1)
Gradient mismatch: |A[) < 1

where [ A[(,) is the g quantile for |A[, and we use 1 because
it is the threshold of HardTanh activation shown in Fig. 1.

To alleviate the aforementioned problems, we propose
to add the distribution loss in the objective function to reg-
ularize the activation distribution. Using degeneration as an
example, an intuitive way of formulating a loss to avoid the
degeneration problem for Ais Lp = [(A(y) —0)4]*+[(0—
A(1))+]?, where (.); is the ReLU function. However, this
may lead to too loose regularization since a small outlier
can make this loss zero, as shown in Fig. 3. In addition,
this formulation of Lp is not differentiable w.r.t. the pre-
activations A.

Therefore, we propose a three-stage framework consist-
ing of hypothesis formulation, adjusting regularization, and
enabling differentiability, to systematically formulate an
outlier-robust and differentiable regularization, as shown in
Fig. 4. First, based on the prior hypothesis about the acti-
vation distribution, we can formulate a loss function to pe-
nalize the unwanted distribution. Then, if this formulation
uses large-variance estimators (e.g., maximum or minimum
of samples), we can use relaxed estimators (e.g., quantiles)
to increase robustness to outliers. Finally, if the formulated
loss is not differentiable, we need to approximate it by as-
suming the type of parametric distribution (e.g., Gaussian),
and approximate the non-differentiable estimators with the
distribution parameters.

Degeneration. We first formulate the degeneration hy-
pothesis in the loss functionas Lp = [(A(p) —0)4]*+[(0—
A(1))+]?. To make the loss function more robust to outliers,
we adjust the regularization by using relaxed quantiles € and
1—e¢ with Lp = [(A(e) — 0)4_}2 + [(0 — A(l_e))_;,_]z. Then,
to make L p differentiable so that it can fit in the backpropa-
gation training, we first assume a parameterized distribution

Formulating Adjusting Enabling
hypothesis regularization differentiability
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Figure 4: Proposed framework for formulating the differ-
entiable loss function to regularize activation distribution.
Starting from the three hypotheses (“degeneration”, “satu-
ration” and “gradient mismatch”), we can formulate the loss
function Lp, Lg and Ly, for them, respectively. We omit

the superscript for A and L for better representation.

for the pre-activations A and then use its parameters to for-
mulate a differentiable L. Based on the heuristics from
prior art [28, 4, 36], we assume that the values of A fol-
low a Gaussian distribution A/ (y, (0)?), where the  and o
can be estimated by the sample mean and standard deviation
over the 3D tensor. Thus, we can formulate the € quantile
by u — k.o where k. is a constant determined by e. There-
fore, Lp = [(1n — keo — 0)4]* + [(0 — (1 + keo))4]* =
(Il = keo) 2.

Saturation. The saturation problem can be penalized by
Ls = [(|A](o) — 1)+]%, where | A| (o) is the minimum value
of |A]. By adjusting the regularization, we have Lg =
[(|A](e) — 1)+]?. Since Lp already eliminates the degen-
eration problem, we find that simply assuming A has a zero
mean (i.e., N'(0, (0)?)) works well empirically. Thus, the
loss function is formulated as Lg = [(k.o — 1)]?.

Gradient mismatch. When most of the activations lie in
the range of [-1,1], the backward pass is simply using a STE
for the gradient computation of the sign function, causing
the gradient mismatch problem. Therefore, we can formu-
late the loss as Ly, = [min(1 — Ay, Ay + 1)4+]*. Sim-
ilarly, relaxing the regularization leads to Ly, = [min(1 —
A=), A + 1),]2. With a Gaussian assumption, we
have Ly, = [min(l — p — keo, p — keo + 1)4]2 =
[(1 = ] = keo) 4 2.

Then, in the training phase, we add the distribution loss
for the b-th batch of input data:

Ly, =Y Ly = LY+ Le+ Ly, @

l,c l,c
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and the total loss for b-th batch is:
Ly = Lo + ALy, 3)

where L% p 1s the cross-entropy loss, and A is a coefficient
to balance the losses.

3.3. Intuition for the Proposed Distribution Loss

The distribution loss is proposed to alleviate training
problems for pure-logical binarized networks. In contrast
with full-precision networks, BNNs use a bounded activa-
tion function and therefore exhibit the gradient saturation
and mismatch problems. By regularizing the activations,
the distribution loss maintains the effectiveness of the back-
propagation algorithm, and thus, can speedup training and
improve the accuracy.

Since the distribution loss changes the optimization ob-
jective, one concern may be that it will lead to a configu-
ration far from the global optimal of the cross-entropy loss
function. However, prior theoretical [43, 25, 7] and empir-
ical [23] work has shown that a deep neural network can
have many high-quality local optima. Kawaguchi proved
that under certain conditions, every local minimum is a
global minimum [25]. Through experiments, Im ef al. show
that using different optimizers, the achieved local optima
are very different [23]. These insights show that adding
the distribution loss may deviate the training away from the
original optimal, but can still lead to a new optimal with
high accuracy. Moreover, the distribution loss diagnoses the
poor conditions of the activation flow, and therefore may
achieve higher accuracy. Our experiment results confirm
this hypothesis.

4. Experimental Results

In this section, we first evaluate the accuracy improve-
ment by the proposed distribution loss on CIFAR-10,
SVHN, CIFAR-100 and ImageNet. Then, we visualize the
histograms of the regularized activation distribution. Fi-
nally, we analyze the robustness of our approach to the
hyper-parameter selection.

4.1. Accuracy Improvement

Training configuration. We use fully convolutional
VGG-style networks for CIFAR-10 and SVHN, and ResNet
for CIFAR-100. All of them use the ADAM optimizer [26]
as suggested by Hubara et al. [22]. For the BNN trained
with distribution loss (BNN-DL), we compute the loss with
the activations prior to each binarized activation function
(i.e., Sign function that uses HardTanh for gradient com-
putation). Unless noted otherwise, we set the coefficient k.
tobe 1,0.25 and 0.25 for Lp, Lg and L)/, respectively, and
set A to be 2. To show the statistical significance, all the ex-
periments for CIFAR-10 and SVHN are averaged over five

experiments with different parameter initialization seeds.
The details of the network structure and training scheme for
each dataset is as follows:

CIFAR-10. The network structure can be formulated
as:  xC-xC-MP-22C-20:C-MP-42C-42C-10C-GP, where
2C indicates a convolutional layer with z filters, MP and
GP indicate max pooling and global pooling layers, respec-
tively. 3 x 3 filter size is used for all the convolutional lay-
ers. We vary the x to different values ({128, 179, 256, 384})
to explore the trade-off between accuracy and energy cost,
which are shown in Table 3 as networks 2-5. We also train
a small BNN without the two 4zC layers for CIFAR-10,
which is network 1 in Table 3. Each convolutional layer
has binarized weights and is followed by a batch normal-
ization layer and a sign activation function. The learning
rate schedule follows the code from BNN authors [21]. All
networks are trained for 200 epochs.

SVHN. The network structure for SVHN is the
same as CIFAR-10, except that the z is varied from
{51,64,96, 128}, shown by networks 6-9 in Table 3. The
initial learning rate value is le-2, and decays by a factor of
10 at epochs 20, 40 and 45. We train 50 epochs in total.

CIFAR-100. We use the full pre-activation variant of
ResNet [17] with 20 layers for CIFAR-100. Prior work
has shown the difficulty of training ResNet-based BNNs
without scaling layers [49]. Since in ResNet-based BNNs
the main path activations and residual path activations do
not have matching scales, directly adding the two activa-
tions will cause difficulty in training. Therefore, we add
two batch normalization layers after these two activations to
maintain stable activation scales. Similar to CIFAR-10 and
SVHN, we also vary the number of filters per layer. Details
on the network structure are included in Appendix 6.3. The
initial learning rate is set to le-4, and reduced by a factor of
3 every 80 epochs. The networks are trained for 300 epochs.

Results on CIFAR-10, SVHN and CIFAR-100. As
shown in Table 3, the accuracy for BNN-DL is consistently
higher than the baseline BNN. The accuracy gap between
BNN and BNN-DL is generally larger than their standard
deviations. Using t-test, the p-values for all the network 1-
9 are smaller than 0.005, which demonstrates the statistical
significance of our improvements. In addition to accuracy
results, we also show the computational energy cost for each
network, obtained by summing up the energy of each oper-
ation for the inference of a single input image. Note that
this cost excludes the energy of memory accesses, which
is the same for BNN and BNN-DL in the inference phase.
We also visualize the trade-off between accuracy and energy
cost in Fig. 5. In most cases, the BNN-DL with a smaller
model size can achieve the same or higher accuracy than the
BNN with a larger size.

The use of the distribution loss improves the testing ac-
curacy mostly because it regularizes the activation and gra-
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Table 3: Accuracy improvement with distribution loss. Network depth is defined as the number of convolutional layers, while
the network width is defined as the number of filters in the largest layer. The best results are shown in bold face. All the
accuracy for CIFAR-10 and SVHN is averaged over five experiments with different weight initialization.

Accuracy (mean = std) (%)

Dataset Network ID  Depth/width  Params storage  Energy cost (uJ) BNN BNN-DL
1 51256 0.4 MB 0.30 80.61 +£0.49 83.33 +0.32
2 7/512 0.6 MB 0.47 87.54 +£0.38 89.13 + 0.23
CIFAR-10 3 71716 1.1 MB 0.93 88.99 £0.13 90.28 + 0.28
4 7/1024 2.3 MB 1.89 90.09 £ 0.10  91.01 £ 0.09
5 7/1536 3.8 MB 4.23 90.68 = 0.11 91.56 + 0.16
6 71204 0.09 MB 0.08 96.23 £ 0.15 96.57 + 0.12
SVHN 7 71256 0.15 MB 0.12 96.53 £ 0.11 96.95 + 0.10
8 7/384 0.3 MB 0.27 97.15 £0.15 97.34 + 0.05
9 71512 0.6 MB 0.47 97.34 £ 0.07 97.51 + 0.03
10 20/1024 5.6 MB 53.7 60.40 68.17
CIFAR-100 11 20/1536 12.6 MB 120.9 64.57 71.53
12 20/2048 22.3 MB 215.0 66.07 73.42
NP - R e - W““ NG
g *,)’ -4- BNN 297 ¥x /:f- BNN geo - t;»“;;i\i;'"“* "'s'\\m = ::::-DL HKE = ::::-DL
558y - BNN-DL B ¥ k- BNN-DL Z, - BNN-DL "o s s w0 s w0 1m0 20 0 s w0 1m0 200 s o o 0

2 4 0.2 0.4 50 100 150 200

Computation energy (LLJ) Computation energy (1J) Computation energy (LLJ)

Figure 5: Accuracy and energy Pareto-optimal curve for
CIFAR-10, SVHN and CIFAR-100. The error bars for
CIFAR-10 and SVHN show the standard deviation of test-
ing accuracy.

dient flow in the training phase, so that the networks can
better fit the dataset. As shown in Fig. 6, the training loss
for BNN-DL is consistently lower than the BNN baseline
after a few epochs. For most of the experiments, distribu-
tion loss is found to converge to a very small number (e.g.,
1/10000 of the initial value) in the first few epochs. This
indicates that the network can be easily regularized by the
distribution loss, which then improves the rest of the train-
ing process.

Comparison with prior art. We also compare our results
with prior work on binarized networks as shown in Table 4.
For CIFAR-10 and SVHN, we follow the same network
configuration by Hou ef al., and also split the dataset into
training, validation and testing sets as they do [19]. Ta-
ble 4 shows that by just applying the distribution loss when
training BNNs can achieve higher accuracy than the base-
line BNN [22], XNOR-Net [38] and LAB [19]. We also
show the normalized energy cost for the models. Since
XNOR-Net and LAB use scaling factors for the weights
and activations, which introduces the need for full-precision
operations, XNOR-Net and LAB require 4.5x energy cost
than BNN and BNN-DL. We use 16-bit fixed-point mul-
tipliers and adders instead of 32-bit floating-point opera-

Epoch Epoch Epoch

(a) CIFAR-10, network-1 (b) CIFAR-10, network-5

NN BNN
N BNN-DL
0.

0 20 40 0 2 40
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(¢) SVHN, network-6

(d) SVHN, network-9
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(e) CIFAR-100, network-10 (f) CIFAR-100, network-12

Figure 6: Training loss and testing accuracy curves for
different networks with or without distribution loss. The
widths of the curves for CIFAR-10 and SVHN are 2 stan-
dard deviation ranges.

tors to estimate the energy cost of these full-precision op-
erations because prior quantization work shows that 16-bit
fixed-point operation is generally enough for maintaining
accuracy [15]. For CIFAR-100, the closest work that re-
ports 1-bit weights and low-bit activations is by Polino et
al. [37], where they use a 7.9MB ResNet with 2-bit activa-
tions for CIFAR-100, which presumably has larger energy
cost than our 5.6MB model with 1-bit activations, and our
results on accuracy surpass theirs by a large margin.

Results on ImageNet. Having shown the effectiveness of
the distribution loss on small datasets, we extend our analy-
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Table 4: Comparison with prior art using 1-bit weights and activations, in terms
of accuracy and computation energy on different datasets. The best results are

shown in bold face.

Table 5: Robustness to the selection
of optimizer, learning rate, and net-
work structure. CIFAR-10 is used for

Dataset Model Pure-logical Energy cost Accuracy illustrating the results.
BNN [22] Yes 1x 87.13%
CIFAR-10 XNOR-Net [38] No 4.5% 87.38% BNN  BNN-DL
LAB [19] No 4.5% 87.72% Momentum 66.02%  89.37%
BNN-DL Yes 1x 89.90 % Nesterov 68.66%  89.22%
BNN [22] Yes 1x 96.50% Adam 88.12%  89.62%
SVHN XNOR-Net [38] No 4.5% 96.57% RMSprop ~ 87.39%  90.24%
LAB [19] No 4.5x 96.64% Iripg=le-1 ~ 82.19%  89.60%
BNN-DL Yes 1x 97.23% Iripi=5e-3  88.12%  89.62%
BNN [22] No 1 x 60.40% Irni=2e-4  85.62%  88.73%
CIFAR-100 DQ-2bit [37] No - 49.32% VGG 88.12%  89.62%
BNN-DL No Ix 68.17 % ResNet-18  85.71%  90.47%

sis to a larger image dataset - ImageNet ILSVRC-2012 [39].
We consider AlexNet, which is the most commonly adopted
network in prior art on binarized DNNs [22, 38, 52, 46, 35].
We compare our BNN-DL with the baseline BNN [22],
XNOR-Net [38], DoReFa-Net [52], Compact Net [46], and
WRPN [35]. The BNN uses binarized weights for the whole
network [22], while XNOR-Net and DoReFa-Net keep the
first convolutional layer and last fully-connected layer with
full-precision weights [38, 52]. Compact Net uses full-
precision weights for the first layer but binarizes the last
layer, and uses 2 bits for the activations [46]. WRPN dou-
bles the filter number of XNOR-Net, and uses full-precision
weights for both the first and last layers [35]. Also, BNN
uses 64 and 192 filters while the other networks use 96
and 256 filters (or doubling these numbers as WRPN does)
for the first two convolutional layers. We train our BNN-
DL using the same settings as prior work, except that we
use 1-bit activations instead of 2-bit when comparing with
Compact Net. The learning rate policy follows prior imple-
mentations [21], but starts from 0.01. As shown in Table 6,
BNN-DL consistently outperforms the accuracy of the base-
line models. All baseline models except BNN use scaling
factors to approximate activations while we keep them bina-
rized. Therefore, our model also has lower energy cost than
the prior models. In addition, we highlight that our BNN-
DL can outperform Compact Net though we use fewer bits
for activations.

4.2. Regularized Activation Distribution

To show the regularization effect of the distribution loss,
we plot the distribution of the pre-activations for the base-
line BNN and for our proposed BNN-DL. More specifically,
we conduct inference for network 2 on CIFAR-10, and ex-
tract the (floating-point) activations right after the batch nor-
malization layer prior to the binarized activation function
of the fourth convolutional layer with 256 filters. There-

Table 6: Comparison with prior art on ImageNet with
AlexNet-based topology. We use the same model structure
as prior work, except that Compact Net uses 2 bits for acti-
vations while we only use 1 bit. Training with distribution
loss outperforms prior work consistently.

Baseline Ours
Model Top-1  Top-5 | Top-1  Top-5
BNN [22] 36.1% 60.1% | 41.3% 65.8%
XNOR-Net [38] | 442% 692% | 47.8% 71.5%
DoReFa-Net [52] | 43.5% - 478% 71.5%
Compact Net [46] | 46.6% 71.1% | 47.6% 71.9%
WRPN [35] 48.3% - 53.8% 77.0%

fore, for each of the 256 output channels, we get its values
across the whole dataset. Then, for illustration purposes, we
select four channels from baseline BNN and our proposed
BNN-DL, respectively, and plot the histogram of these per-
channel values, as shown in Fig. 7. The four channels’ acti-
vation distributions for the baseline BNN are picked to show
the degeneration, gradient mismatch, and saturation prob-
lems, while the distributions for BNN-DL are randomly se-
lected. From Fig. 7a we can see that the good weight initial-
ization strategy [13] and batch normalization [24] adopted
for BNNs do not solve the distribution problems.

To show that BNN-DL alleviates these challenges, we
compute the standard deviation of activations for each of
these 256 channels, as well as their positive ratio, which
is the proportion of positive values. As shown in Fig. 8,
the standard deviation of BNN-DL is more regularized and
centralized than that of BNN. The channel with very small
standard deviation like the middle two histograms in Fig. 7a
is rarely seen in BNN-DL, while BNN has a long tail in the
area of small standard deviations. This indicates that with-
out explicit regularization, the scale factors of batch nor-
malization layer could shrink to very small values, causing
the gradient mismatch problem. From Fig. 8, we can also
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(a) Baseline BNN
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(b) BNN trained with distribution loss

Figure 7: Activation distribution for BNN trained (a) with-
out or (b) with distribution loss. Each histogram refers to
the activations of one channel. In (a), the channel in the
left histogram shows a generation problem, the middle two
show gradient mismatch, and the right one shows saturation
problem. o is standard deviation, and “positive” refers to
the ratio of positive activations.
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Figure 8: Histogram of standard deviation and positive ratio
of per-channel activations.

observe that the positive ratio of BNN has more extreme
values (i.e., those close to O or 1) than BNN-DL. This indi-
cates that the degeneration problem is reduced by distribu-
tion loss. Interestingly, we can see that the positive ratio of
BNN-DL also deviates away from 0.5. We conjecture that
this is because the activations centered at 0 are more prone
to gradient mismatch, and thus, be penalized by L.

4.3. Robustness to Hyper-parameter Selection
Another benefit of the distribution loss is its robustness
to the selection of the training hyper-parameters. Prior
work [1] has shown that the accuracy of BNNS is sensitive
to the training optimizer. We observe the same phenomenon
by training BNNs with different optimizers including SGD
with momentum, SGD with Nesterov [45], Adam [26] and
RMSprop [47]. However, when training BNN with distri-
bution loss, these optimizers can be consistently improved,
as shown in Table 5. We use CIFAR-10 for the experi-
ments in this subsection. We use the same weight decay
and learning rate schedule as Zagoruyko et al. [50] for Mo-
mentum and Nesterov, and change the initial learning rate
to le-4 for RMSprop. We use the same setting as Hubara
et al. [21] for Adam. Each model is trained for 200 epochs,
and the best testing accuracy is reported. Then, we vary
the learning rate schedule of Hubara et al.’s implementa-
tion [21] by scaling the learning rate at each epoch by a
constant. Table 5 shows that BNN-DL is more robust to the
selection of learning rate values. Furthermore, we show that
the BNN-DL can work well for both VGG-style networks
with stacked convolutional layers and ResNet-18 which in-

Table 7: Accuracy for BNN-DL on CIFAR-10 with varied
regularization levels. A = 0 indicates the baseline BNN.

A 0 0.2 2 20 200 2000

Acc. (%) 87.39 90.12 90.16 90.18 90.61 90.20

cludes skip connections. The VGG-style network uses the
network 2 in Table 3. The ResNet-18 structure uses the pre-
activation variant [17] with added batch normalization lay-
ers as described in Sec. 4.1. Since BNN has non-regularized
activations, maintaining the activation flow in the training
process requires more careful picking of hyper-parameter
values. However, the distribution loss applies regulariza-
tion to the activations, making the network easier to train,
and therefore reduces the sensitivity to hyper-parameter se-
lection.

We also show that the distribution loss is robust to the
selection of the introduced hyper-parameter, A coefficient,
which indicates the regularization level of the distribution
loss. As shown in Table 7, by varying A from 0.2 to 2000,
the accuracy for BNN-DL is consistently higher than the
baseline BNN. As mentioned in Sec. 4.1, the distribution
loss quickly decays to a small magnitude in the first few
epochs, and we find that this holds for a wide range of \.
The robustness analysis indicates that the distribution loss
is a handy tool to regularize activations, without the need of
much hyper-parameter tuning.

5. Conclusion

In this paper, we tackle the difficulty of training BNNs
with 1-bit weights and 1-bit activations. The difficulty
arises from the unregularized activation flow that may cause
degeneration, saturation and gradient mismatch problems.
We propose a framework to embed this insight into the
loss function by formulating our hypothesis, adjusting reg-
ularization and enabling differentiability, and thus, explic-
itly penalizing the activation distributions that may lead to
the training problems. Our experiments show that BNNs
trained with the proposed distribution loss have regular-
ized activation distribution, and consistently outperform the
baseline BNNs. The proposed approach can significantly
improve the accuracy of the state-of-the-art networks us-
ing 1-bit weights and activations for AlexNet on ImageNet
dataset. In addition, this approach is robust to the selection
of training hyper-parameters including learning rate and op-
timizer. These results show that distribution loss can gener-
ally benefit the training of binarized networks which enable
latency and energy efficient inference on mobile devices.
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