
Linearly Convergent Algorithms for Learning
Shallow Residual Networks

Gauri Jagatap and Chinmay Hegde
Iowa State University

Ames, Iowa, USA
Email: {gauri,chinmay}@iastate.edu

Abstract—We propose and analyze algorithms for training
ReLU networks with skipped connections. Skipped connections
are the key feature of residual networks (or ResNets) which
have been shown to provide superior performance in deep
learning applications. We analyze two approaches for training
such networks — gradient descent and alternating minimization
— and compare convergence criteria of both methods. We
show that under typical (Gaussianity) assumptions on the d-
dimensional input data, both gradient descent and alternating
minimization provably converge in a linearly convergent fashion,
assuming any good enough initialization; moreover, we show
that a simple “identity” initialization suffices. Furthermore, we
provide statistical upper bounds which indicate that n = eO(d3)
suffice to achieve this convergence rate. To our knowledge, these
constitute the first global parameter recovery guarantees for
shallow ResNet-type networks with ReLU activations.

A full version of this paper is accessible at: https://
gaurijagatap.github.io/assets/ISIT19.pdf

I. INTRODUCTION

Motivation. Deep neural networks have found considerable
success in a wide range of machine learning applications. This
has led to recent, renewed interest in analyzing (both new
and old) algorithms for training such networks [1]–[3]. In
particular, a class of neural networks called residual networks
(or ResNets [4]) have emerged that show improved training
performance when compared to standard dense architectures.
These networks utilize so-called skipped connections, and sev-
eral follow-up works such as DenseNets [5] and HighwayNets
[6] have shown the merits of such architectures. Moreover,
skipped connections lend to improved expressibility of neural
networks [7] and empirically lead to a simpler optimization
landscape with fewer local minima [8].

Our focus in this paper is on learning two-layer networks
with rectified linear unit (ReLUs) activations with skipped
connections. In general, two-layer ReLU networks are known
to have spurious local minima [9], and hence convergence
of first order methods to global optima such as (stochastic)
gradient descent is not necessarily guaranteed. Moreover, due
to the non-differentiability of ReLU activations, establishing
linear convergence (also referred as geometric convergence) of
gradient descent for shallow networks is challenging. Attempts
to show convergence of gradient descent for shallow networks
include strict assumptions on the smoothness of activation
function [3] (which excludes ReLUs), restriction to analyzing
population loss [10], [11], or requirement of strict orthogo-

nality of weight vectors [10]. Moreover, many existing results
for learning two-layer networks require computationally heavy
tensor-based initializations [3], [12] and high sample complex-
ity requirements [12], neither of which are practical.

Random initialization schemes pose their own set of chal-
lenges. Gradient descent can take exponential time to escape
saddle points [13] and requires exponentially many epochs in
terms of network depth under standard random initialization
[14]. For two-layer networks, global linear convergence has
only recently been established, albeit in the massively over-
parametrized regime [15].

Our contributions. In this paper, we study two-layer ReLU
networks with skipped connections, which are similar to those
used in ResNet literature 1. The contributions of this paper are
two-fold.

First, we develop analytical tools to prove that such net-
works can be provably learned (in the sense of parameter
estimation) with two algorithmic approaches: gradient descent
(GD), and a new technique based on alternating minimization
(AM). The building blocks of AM are reminiscent of that in
gradient descent. However, AM is parameter-free: it does not
involve any tuning parameters such as learning rate, damping
factor and dropout ratio; moreover, the epoch complexity
is also much lower. While GD is standard, the usage of
alternating minimization in the context of training neural
networks is non-standard, and to our knowledge, we are the
first to propose such an approach.

Second, we utilize structural properties of residual networks
to attest that an identity initialization is suitable for either
of the above algorithms to exhibit linear convergence to the
true parameters. Notably, we do not require any tensor based
initialization schemes [3], [12], which are data dependent and
instead rely on the specific structure of ResNet architectures.

Collectively, both the training algorithms can be supported
via a rigorous analysis. Specifically, we use a generative
modeling assumption where there is a “ground truth” (or
teacher) network with k-hidden neurons and scalar output, that
maps d-dimensional training samples x distributed according
to a standard multivariate Gaussian distribution to labels y.
We analyze the optimization of the empirical squared-error
loss using both GD and AM under our identity initialization

1ResNets conventionally skip two layers of weights before identity mapping
of the previous weights; in this paper we skip only one layer.

scheme and prove that Õ(dk2) are sufficient to achieve ge-
ometric convergence. Note that our analysis is much tighter,
and our sample requirements are much lower, when compared
to the only other known result in this regime Õ(dk9) from a
recent paper [12]; however, our analysis makes the “fresh”
resampling assumption in each iteration. Since we require
exact parameter recovery, the results also generalize on test
data drawn from the same distribution as training data.

Finally, we provide a range of numerical experiments that
support our theoretical analysis. Our experiments show that
both gradient descent and alternating minimization provide
comparable performances; however alternating minimization
has an improved epoch complexity and requires no cum-
bersome parameter tuning. We also compare our initializa-
tion against random initializations. Overall, our work can be
viewed as a first step towards a new algorithmic approach and
analysis for training ResNet-type ReLU networks.

Techniques. We first establish local linear convergence of
both GD and AM for training two-layer ReLU networks.
While (stochastic) gradient descent is popularly used in the
training of neural networks, to our knowledge we are the first
to introduce alternating minimization in this context.

At a high level, alternating minimization is based upon a
simple (but key) idea that we call the “linearization” trick.
Since ReLU networks simulate piecewise linear functions, if
we fix the state of each hidden neuron (“on" or 1 if active,
“off" or 0 if inactive), then the the mapping from x to the
label y can be approximated using a linear neural network.
We hence iteratively update the (i) “state" of ReLU neurons;
hence locally linearizing and (ii) weight estimates by solving
systems of linear equations 2 until convergence.

The conventional approach to showing linear convergence
of gradient descent (or alternating minimization) relies on
showing strong (marginal) convexity of the objective function
in the neighborhood of global minimum [16]. In the case of
ReLU networks, establishing this for empirical loss is not
straightforward primarily due to the non-smoothness of the
activation function. We circumvent this by borrowing key
analytical tools from the recent literature on phase retrieval
[17]–[19] which do not require any smoothness assumptions.
This is also different from the uniform convergence criterion
developed in [12] which requires a much higher sample
complexity, and only guarantees convergence to a factor of
statistical error that depends on the dimensionality of the net-
work. On the contrary, with our analysis, we show convergence
of both GD and AM to -small error in log(1/) iterations.

A key aspect in our analysis requires an independence
assumption between subsequent iterates of the weights and
the data matrix. In order to ensure this, a "re-sampling"
approach is employed, which uses a fresh batch of samples in
each iteration [3], [20], appending to the sample requirements
by a multiplicative factor of log(1/). This requirement is
somewhat unsatisfactory, and one might be able to the leave-

2These can be solved using LU/Cholesky decompositions or iterative
conjugate gradient solvers, depending on the size of the problem.

one-out trick introduced in [21] to circumvent this; we defer
this to future work.

We leverage skipped connections to constrain the set of
possible solutions I + W , to a smaller subset of the space of
optimization variables. We show that if the network weights
are initialized to zeros (i.e. an identity mapping)3 then both
AM and GD converge globally.

Comparison with prior work. For random initializations,
recent papers [10], [23] provide a symmetry-breaking conver-
gence analysis for 2-layer ReLU networks where the weight
vectors of the hidden layer possesses disjoint supports; more-
over they only analyze population loss. Linear convergence
guarantees for gradient descent for training two-layer networks
with smooth activations were developed in [3], where they an-
alyze empirical loss, along with a tensor initialization scheme
to ensure global convergence requiring Õ(dk2) samples. For
ReLU activation, a similar analysis is shown in [12], with uni-
form convergence arguments, but high sample requirements of
Õ(dk9) (however they do not require resampling). Similarly,
two-layer networks with skipped connections are studied in
[11], however they only analyze population loss and hence no
finite sample guarantees. Our convergence rate improves upon
those in [11] and additionally we also provide finite sample
guarantees for the same. A comparison of all algorithms and
analysis is presented in Table I.

II. MATHEMATICAL MODEL

a) Notation: Some of the notation used in the entirety of
this paper are enlisted below. Scalars and vectors are denoted
by small case letters, and matrices are denoted by upper
case letters, with elements of both indexed by subscripts.
The operation of ReLU is represented as σ(·). Indicator
vector p stores the missing sign information from prior to
the ReLU operation. The matrix P = diag(p) represents
the matrix with the elements of p along its diagonal and
zero elsewhere. The symbol ‘◦’ denotes the element-wise
product. Vectors and matrices with superscript ‘*’ denote the
ground truth. Vectorization (or flattening) of a matrix M is
represented as vec(M). Small constants are represented by δ
and large constants by C. The indicator function is denoted
as ✶{v≥0} := sign(v)+1

2 = σ0(v), where each entry

✶{v≥0}i =

(
1, vi ≥ 0

0, vi < 0
,

for all i ∈ {1 . . . n}, I is the identity matrix.
In each of the ReLU network architectures considered

below, we assume that the training data consists of n i.i.d.
samples {(x1, y1), . . . , (xn, yn)}, where each input xi ∈ Rd

is constructed from N (0, I), and the output yi (scalar) obeys
the generative model: yi = f∗(xi) where f∗ denotes the
architecture. We denote the network weights by W ∗ and
effective weights of the forward model are W ∗ + I, due to

3While preparing this paper we became aware of the work in [22], that also
utilizes an identity initialization to train deep residual networks. However, their
analysis only holds for linear neural networks.

TABLE I: Comparison of algorithms and analysis for 1-hidden layer networks. Here, d, k, n denote dimensions of the data and
hidden layer, number of samples, respectively. O (·) hides polylogarithmic dependence on 1 . Alternating Minimization and
(Stochastic) Gradient descent are denoted as AM and (S)GD respectively. “*" indicates re-sampling assumption.

Alg. Paper Sample complexity Convergence rate Initialization Type Parameters
SGD [11] × (population loss) O 1 Random ReLU ResNets step-size η
GD [22] × (population loss) O log 1 Identity Linear step-size η

GD∗ [3] O dk2 · poly(log d) O log 1 Tensor Smooth (not ReLU) step-size η
GD [12] O dk9 · poly(log d) O log 1 Tensor ReLU step-size η

GD∗ (this paper) O dk2 · poly(log d) O log 1 Identity ReLU ResNets step-size η
AM∗ (this paper) O dk2 · poly(log d) O log 1 Identity ReLU ResNets none

skipped connections. The number of hidden units k are equal
to the input dimension d, due to skipped connections.

b) Two-layer ReLU networks: The problem of learning
two-layer networks, with d-dimensional samples and k neu-
rons in the hidden layer, can be expressed as a forward model:
f∗(X) =

Pk
q=1 v

∗
qσ(Xw∗

q) where we have the weight matrix
corresponding to the first layer W ∗ := [w∗

1 . . . w
∗
q . . . w

∗
k] ∈

Rd×k, where each w∗
q ∈ Rd, and we consider the second

layer to be fixed, with entries v∗q ∈ {+1,−1} such that
v∗ = [v∗1 . . . v

∗
q . . . v

∗
k]> ∈ Rk.

A special formulation of this problem is when there is a
skipped connection between the network output and input. In
such problems, the dimension at the input and output of the
residual block is the same, and therefore W ∗ ∈ Rd×d is a
square matrix with k = d columns. The effective mapping is

f∗
res(X) =

dX
q=1

v∗qσ(X(w∗
q + eq)) = σ(X(W ∗ + I)v∗, (1)

where we the weight matrix for the first layer W ∗ ∈ Rd×d

and eq represents the qth column of the d-dimensional identity
matrix. In this paper, we focus on this formulation.

The learning problem essentially comprises of recovering
the underlying mapping fres (or f), from outputs y, such that
fres(X) estimates y = f∗

res(X). This can be formulated as a
minimization of the following form,

min
W

L (W) = min
W

1

2n
kfres(X) − yk2

2 (2)

where empirical risk L (W) is the ‘2-squared loss function.

III. ALGORITHM AND ANALYSIS

In this section, we establish two key algorithms, and lay
groundwork for establishing their convergence.

First, we establish an observation. ReLU is a piece-wise
linear transformation. In any iterative algorithm which es-
timates W ∗, if W is the current weight estimate, and wq

represent the columns, one can represent a “linearized" map-
ping as follows. We introduce an new diagonal matrix Pq =
diag(✶{X(wq+eq)>0}),∀q which stores the state of qth hidden
neuron for all samples. Then,

fres(X) = [v∗1P1X . . . v∗dPdX]n×d2 · vec(W + I)d2×1,

:= [A1 . . . Ad] · vec(W + I) := B · vec(W + I).

Note that the mapping is not truly linear, as B depends on W .

A. Gradient descent

The equation in (2) can be minimized via gradient descent.
Since gradient descent is a first order approach, a careful
initialization is desirable to ensure convergence to global
minimum (which, in this case, is the teacher network param-
eters W ∗). For the purpose of this description, we assume
that an appropriate initialization W 0 exists, ensuring that
k(W 0 + I) − (W ∗ + I)kF ≤ δkW ∗ + IkF . We discuss the
initialization in further detail, in subsequent section III-D.

Now, the loss function can be written as:

L (W) =
1

2n
ky − σ(X(W + I)) · v∗k2

2

=
1

2n

nX
i=1

yi −

dX

q=1

v∗qσ(x>
i (wq + eq))

!!2

Hence the gradient of loss function ∂L (W)
∂wj

is

nX
i=1

−yi +

dX
q=1

v∗qσ(x>
i (wj + ej))

!
σ0(x>

i (wq + eq))v∗jxi

= −
v∗j
n
X>Pj(y − σ(X(W + I)) · vv∗)

Or alternatively,

∇L (vec(W)) = − 1

n
B>(y −B · vec(W + I)).

The gradient descent update rule is as follows:

vec(W t+1) = vec(W t) − η∇L (vec(W t))

= vec(W t) +
η

n
Bt>(y −Bt vec(W t + I)), (3)

where η is appropriately chosen step size and Bt is:

Bt = [v∗1Pt
1X . . . v∗dPt

qX . . . v∗dPt
dX],

where Pt
q = diag(✶X(wt1+e1)≥0), for q = {1, . . . d}.

B. Alternating minimization

An alternating minimization-based approach can also be
adopted to learn shallow networks with ReLU activations using
a ‘2 loss function. At a high level, our algorithm rests on
the following idea: given the knowledge of the correct signs
of the input to each ReLU (B∗), the forward models can be
linearized. Therefore, the weights vec(W) can be estimated as
in the case of any other linear model (e.g., via least-squares).
The update rules are designed as follows:

Bt0 = [v∗1diag(✶X(wt
0

1 +e1))X . . . v∗ddiag(✶X(wt
0
d +ed))X],

vec(W t0+1) = arg min
vec(W)

Bt0 · vec(W + I) − y
2

2
, (4)

where Pt0

q = diag(✶X(wt
0

1 +e1)≥0), for q = {1, . . . d}.
We now discuss our main theorem establishing convergence

for both gradient descent (update rule (3)) and alternating
minimization (update rule (4)).

C. Algorithmic guarantees

Our main theorem establishes that both gradient descent and
alternating minimization can train a two layer ReLU network
with linear convergence to the weights of the teacher network.

Theorem 1. Given an initialization W 0 satisfying kW 0 −
W ∗kF ≤ δ kW ∗ + IkF, for 0 < δ < 1, if we have number
of training samples n > C · d · k2 · poly(log k, log d, t), then
with high probability 1 − ce−αn − d−βt, where c, α, β are
positive constants and t ≥ 1, the iterates of Gradient Descent
(3) satisfy:

W t+1 −W ∗
F ≤ ρGD W t −W ∗

F . (5)

and the iterates of Alternating Minimization (4) satisfy:

W t+1 −W ∗
F ≤ ρAM W t −W ∗

F . (6)

where and 0 < ρAM < ρGD < 1.

Proof. We outline the proof technique for both methods as
follows. We refer to Appendix A for key lemmas, which can
be found in the full paper. Let Bt := [v∗1Pt

1X, . . . , v∗kPt
kX] :=

[A1, . . . , Ak] = B, where Pt
q = diag(ptq), for q = {1, . . . k}.

Note: Since we consider skipped connections, k = d.
a) Gradient descent: The update rule (3) requires:

vec(W t+1) = vec(W t) +
η

n
Bt>(y −Bt vec(W t + I)).

Taking the difference between the learned weights and the
weights of the teacher network,

vec(W t+1) − vec(W ∗) = vec(W t+1) − vec(W ∗)

+
η

n
B>(y −B vec(W t + I)).

Taking the vector ‘2 norm on both sides,

W t+1 −W ∗
F

≤ I− η

n
(B>B)

2
W t+1 −W ∗

F

+
B>
√
n 2

1√
n

(B∗ −B) vec(W ∗ + I)
2

,

≤ σ2
max − σ2

min

σ2
max + σ2

min

W t+1 −W ∗
F + ησmax

kX
q=1

kEqk2 ,

= ρ4 W t −W ∗
F + ησmaxρ3 W t −W ∗

F ,

= ρGD W t −W ∗
F , (7)

where Eq := (B − B∗) vec(W ∗ + I)/
√
n and σmin, σmax

are the minimum and maximum singular values of B√
n

,
respectively and are bounded via Lemma 1 in Appendix A,
with probability (1 − d−βt), as long as n > C · d · k2 ·
poly(log k, log d, t). Also,

I− η
B>B

n 2

≤ max |1 − ησ2
min|, |1 − ησ2

max| = ρ4

and, we pick η = 2/(σ2
min + σ2

max) which minimizes param-
eter ρGD = ρ4 + ησmaxρ3, for faster convergence.

Note that in utilizing this Lemma 1, we assume that the
current weight matrix W t, which composes matrix B, is
independent of the samples X . This in general is not true,
as the previous updates of W , also depends on the same data
matrix. Hence this analysis only holds if fresh samples are
drawn in each iteration of the algorithm.

Now, the error
Pk

q kEqk2, is bounded as follows:

Eq =
1√
n

(Aq −A∗
q)(w∗

q + eq) =
v∗q√
n

(Pt
q − P∗

q)X(w∗
q + eq).

kEqk2
2 =

mX
i=1

(x>
i (w∗

q + e∗q))2 · 1i,q

n
≤ ρ2

2,q wt
q − w∗

q
2

2
.

kX
q=1

kEqk2
2 ≤

kX
q=1

ρ2
2,q wt

q − w∗
q 2

≤ max
q

ρ2
2,q W t −W ∗ 2

F ,

where 1i,q := 1{(x>
i (w∗

q+e∗q))(x>
i (wtq+eq))<0} is an indicator

and we use (v∗q)2 = 1, the final bound is obtained via Corollary
1 in Appendix A, which holds with probability greater than
(1 − ce−αn) as long as n > C · d · k2 · log k. Subsequently,

kX
q=1

kEqk2

!2

≤ k

kX
q=1

kEqk2
2 ≤ k max

q
ρ2

2,q W t −W ∗ 2

F

kX
q=1

kEqk2 ≤
√
k max

q
(ρ2,q) W t −W ∗

F = ρ3 W t −W ∗
F ,

Each iteration of GD holds with probability (1 − ce−αn −
d−βt). Explicitly ρGD = κ−1

κ+1 + 2κρ3

σmax·(κ+1) , with κ =
σ2
max

σ2
min

.

b) Alternating minimization: Since the minimization in
(4) can be solved exactly, we get:

vec(W)t+1 = (B>B)−1B>y

= (B>B)−1B>B∗ vec(W ∗ + I)

= (B>B)−1B>B vec(W ∗ + I)+

(B>B)−1B>(B∗ −B) vec(W ∗ + I).

Taking the difference between the learned weights and the
weights of the teacher network,

vec(W)t+1 − vec(W ∗) = (B>B)−1B>(B∗ −B) vec(W ∗ + I).

Taking the vector ‘2 norm on both sides,

W t+1 −W ∗
F

= (B>B)−1B>(B∗ −Bt) vec(W ∗ + I)
2
, (8)

≤ n(B>B)−1
2

B>
√
n 2

1√
n

(B∗ −Bt) vec(W ∗ + I)
2

,

≤ σmax

σ2
min

· ρ3 W t −W ∗
F < ρAM W t −W ∗

F (9)

where, σmin, σmax are the minimum and maximum singular
values of B√

n
, respectively and are bounded via Lemma 1 in

Appendix A and
Pk

q=1 kEqk2 is bounded via Corollary 1 in

Appendix A. Explicitly, ρGD = κρ3

σmax
, with κ =

σ2
max

σ2
min

.

Comparison: ρGD = κ−1
κ+1 + 2ρAM

κ+1 . Number of epochs TGD

GD
random

AM
random

GD
identity

AM
identity

500 1,000 1,500

0

0.5

1

Number of samples n

Pr
ob

ab
ili

ty
of

re
co

ve
ry

0 20 40 60 80 100
−20

−15

−10

−5

Epoch t
lo

g(
L

)
(a) (b)

Fig. 1: (a) Successful parameter recovery for d = 20, with identity
and random initializations; (b) training (solid) and testing (dotted)
losses for fixed trial with n = 1700.

and TAM required for -accuracy satisfy TGD
TAM

= log(1/ρAM)
log(1/ρGD) .

Therefore AM outperforms GD in terms of epoch complexity
and enjoys faster convergence rate.

D. Techniques for initialization

To prove convergence of both algorithms, we require that the
initial weights W 0 are such that kW 0−W ∗kF ≤ δ kW ∗ + IkF
for small enough constant δ. A common assumption in the
literature is that kW ∗kF ≤ γ [11], [22], [24]. Now, suppose
there exists some architecture satisfying kW ∗kF ≤ γ ≤ δ

√
d

1+δ ,

δ kW ∗ + IkF ≥ δ(kIkF − kW ∗kF) ≥ δ
√
d− δ2

√
d

1 + δ
≥ kW ∗kF ,

then W 0 = 0 satisfies the initialization requirement for The-
orem 1. Additionally, we assume that the individual column
norms of W ∗ are roughly balanced: c(γ2

d) ≤ kw∗
qk2

2 ≤ C(γ2

d)
for positive constants c, C for all q.

IV. EXPERIMENTS

For experimental validation, we select the training data
X ∈ Rn×d, with d = 20, and entries picked from a normal
N (0, 1/

√
n) distribution. We use y = fres(W

∗) to generate
labels, with kW ∗kF = γ = 2. We use identity initialization
W 0 = 0, such that kW ∗kF ≤ 0.8 kW ∗ + IkF for training the
network with both AM and GD, and learn weights WT at
the end of T epochs. We compare the training against that
with random initialization, where vec(W 0) = N (0, I)/d. The
number of training samples n was swept from 200 to 1700 in
steps of 500. We repeat this experiment over 10 trials with each
trial being a random instantiation of X . Recovery is said to be
successful if kWT−W ∗kF /kW ∗ + IkF < 0.01 and the phase
transition plot is presented in Fig. 1 (a), where the fraction
of successful trials are plotted against number of training
samples. We observe that the performance of our identity
initialization matches that with random initialization, and GD
and AM perform comparably. For d = 20, n = 1200 samples
suffice for successful parameter recovery across all trials. AM
also has lower epoch complexity (Fig. 1 (b)), requiring about
10 epochs to achieve the same training loss as that for GD in
1000 epochs. For n = 1700, we also plot test loss in 1 (b),
where 500 test samples have entries from N (0, I/

√
500) and

labels constructed according to fres(W
∗). Constant step size

η for GD is chosen by inspection.

REFERENCES

[1] K. Kawaguchi, “Deep learning without poor local minima,” in Advances
in Neural Information Processing Systems, pp. 586–594, 2016.

[2] M. Soltanolkotabi, A. Javanmard, and J. Lee, “Theoretical insights
into the optimization landscape of over-parameterized shallow neural
networks,” IEEE Transactions on Information Theory, 2018.

[3] K. Zhong, Z. Song, P. Jain, P. Bartlett, and I. Dhillon, “Recovery guaran-
tees for one-hidden-layer neural networks,” in International Conference
on Machine Learning, pp. 4140–4149, 2017.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[5] G. Huang, Z. Liu, L. van der Maaten, and K. Weinberger, “Densely con-
nected convolutional networks,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2261–2269, IEEE, 2017.

[6] R. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv
preprint arXiv:1505.00387, 2015.

[7] H. Lin and S. Jegelka, “Resnet with one-neuron hidden layers is a
universal approximator,” in Advances in Neural Information Processing
Systems, pp. 6172–6181, 2018.

[8] H. Li, Z. Xu, G. Taylor, and T. Goldstein, “Visualizing the loss landscape
of neural nets,” arXiv preprint arXiv:1712.09913, 2017.

[9] I. Safran and O. Shamir, “Spurious local minima are common in two-
layer relu neural networks,” arXiv preprint arXiv:1712.08968, 2017.

[10] Y. Tian, “Symmetry-breaking convergence analysis of certain two-
layered neural networks with relu nonlinearity,” 2017.

[11] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks
with relu activation,” in Advances in Neural Information Processing
Systems, pp. 597–607, 2017.

[12] X. Zhang, Y. Yu, L. Wang, and Q. Gu, “Learning one-hidden-layer
relu networks via gradient descent,” Proc. Int. Conf. Art. Intell. Stat.
(AISTATS), 2018.

[13] S. Du, C. Jin, J. Lee, M. Jordan, A. Singh, and B. Poczos, “Gradient
descent can take exponential time to escape saddle points,” in Advances
in Neural Information Processing Systems, pp. 1067–1077, 2017.

[14] O. Shamir, “Exponential convergence time of gradient descent
for one-dimensional deep linear neural networks,” arXiv preprint
arXiv:1809.08587, 2018.

[15] S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent prov-
ably optimizes over-parameterized neural networks,” arXiv preprint
arXiv:1810.02054, 2018.

[16] P. Jain and P. Kar, “Non-convex optimization for machine learning,”
Foundations and Trends R in Machine Learning, vol. 10, no. 3-4,
pp. 142–336, 2017.

[17] H. Zhang and Y. Liang, “Reshaped wirtinger flow for solving quadratic
system of equations,” in Adv. Neural Inf. Proc. Sys. (NIPS), pp. 2622–
2630, 2016.

[18] G. Jagatap and C. Hegde, “Fast, sample efficient algorithms for struc-
tured phase retrieval,” in Adv. Neural Inf. Proc. Sys. (NIPS), pp. 4924–
4934, 2017.

[19] G. Jagatap and C. Hegde, “Towards sample-optimal methods for solving
random quadratic equations with structure,” in 2018 IEEE International
Symposium on Information Theory (ISIT), pp. 2296–2300, IEEE, 2018.

[20] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating
minimization,” in Adv. Neural Inf. Proc. Sys. (NIPS), pp. 2796–2804,
2013.

[21] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit regularization in
nonconvex statistical estimation: Gradient descent converges linearly
for phase retrieval, matrix completion and blind deconvolution,” arXiv
preprint arXiv:1711.10467, 2017.

[22] P. Bartlett, D. Helmbold, and P. Long, “Gradient descent with identity
initialization efficiently learns positive definite linear transformations by
deep residual networks,” arXiv preprint arXiv:1802.06093, 2018.

[23] A. Brutzkus and A. Globerson, “Globally optimal gradient descent for a
convnet with gaussian inputs,” in International Conference on Machine
Learning, pp. 605–614, 2017.

[24] M. Hardt and T. Ma, “Identity matters in deep learning,” Int. Conf.
Learning Representations (ICLR), 2017.

