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ABSTRACT

In this paper, we introduce a novel algorithmic framework for
sub-diffractive super-resolution imaging of dynamic, time-
varying targets. We extend recent works in low rank Fourier
ptychographic imaging, to incorporate model-correction
schemes, which correct for errors propagated due to inac-
curacies in fitting an exact low rank model to the target video
acquired. Through our algorithm, we are able to demon-
strate superior reconstruction quality of video from phase-
less Fourier ptychographic measurements, at low sample
complexities, as compared to conventional ptychographic
setups.

Index Terms— Fourier, ptychography, phase retrieval,
low-rank, microscopic imaging.

1. INTRODUCTION
1.1. Motivation

The classical phase retrieval problem arises in standard
Fourier imaging practices, where an n-dimensional discrete-
time signal needs to be reconstructed from (noisy) obser-
vations of magnitudes of discrete Fourier transform (DFT)
coefficients. A generalized version of phase retrieval studies
a similar reconstruction problem with a class of linear mea-
surement operators, constructed by sampling vectors from
certain families of multivariate probability distributions, and
several theoretically sound algorithms have been developed
in this direction [1, 2, 3, 4, 5].

Applications of phase retrieval algorithms include imag-
ing applications such as X-ray crystallography and biomedi-
cal imaging [6, 7, 8], including Fourier ptychography, which
is a image super-resolution technique for diffraction-blurred
microscopic images. The imaging setup consists of a pro-
grammable coherent illumination source coupled with two
lenses, to capture the target scene. This is followed by an im-
age reconstruction scheme using phase retrieval algorithms,
to super-resolve images beyond the diffraction-limit of the ob-
jective lens in a microscope. The acquisition setup can consist
of either spatially translating a single camera aperture [9], or
can constitute an array of fixed cameras, each of which cap-
tures different portions of the Fourier spectrum of the desired
high-resolution image [10]. Recently, Holloway et al. have
demonstrated similar results in the context of long-distance

sub-diffraction imaging [11], which is guided by similar opti-
cal principles.

The sample complexity, in terms of the number of ob-
servations required for a single image frame, can be partic-
ularly high (Ω(n)), for Fourier ptychographic measurement
setups. To alleviate these issues, Fourier ptychography for
static scenes that obey intra-frame models on sparsity and/or
structured sparsity have been recently studied [12]. Further,
we consider the challenge of capturing a dynamic scene in-
volving a moving target using the ptychographic setup. Then,
for a video sequence with q images each with resolution n,
the number of observations must be at least Ω(nq), without
using any structural prior assumptions, which is computation-
ally challenging.

1.2. Our contributions

In this paper, we introduce a new algorithmic framework for
imaging of dynamic, time-varying targets, under the Fourier
ptychographic measurement setup. This setup was first intro-
duced in [13], and is based on the idea that if the dynamics
of the scene are sufficiently slow, then the underlying video
can be well-modeled by a low-rank matrix. This modeling
assumption has been successfully employed in a variety of
video acquisition, compression, and segmentation applica-
tions [14, 15, 16, 17, 18].

Specifically, we are given a video volume X ∈ Rn×q ,
with each column xk ∈ Rn representing a vectorized image
frame, q such consecutive frames. In this case, X is approxi-
mately rank-r, with r min(n, q).

In this paper, we demonstrate how we can recover high
resolution, approximately low-rank structured videos/ We
also compare the reconstruction quality to traditional frame-
by-frame image reconstruction methods, using fewer mea-
surements than previously demonstrated in a similar imaging
setup [13]. To this end, we propose a novel model-correction
scheme, which adjusts for any errors in reconstruction, that
may have propagated due to (i) incorrect selection of the
rank parameter r or (ii) data is not exactly, but approxi-
mately low rank. We utlize “under-sampling” strategies that
were originally devised in [13, 12], which we demonstrate,
can considerably reduce the sample complexity of low rank
video Fourier ptychography. We further extend the merits of
our previous work [13] on Low Rank Fourier Ptychography
(LRPtych) with a new reconstruction algorithm which fully



exploits the underlying low-rank structure of the target video
sequence, and also additionally allows for a modeling error
correction. Moreover, we present a number of simulation
experiments, which justify the superior properties of our new
algorithm.

Our algorithm builds upon techniques introduced in our
recent work on low rank phase retrieval under the Gaussian,
coded-diffraction patterned (CDP) [19], and Fourier Ptycho-
graphic [13] measurement setups . While [13] was specifi-
cally tailored for the Fourier ptychographic framework under
a strict low rank assumption, such an assumption can be un-
realistic for real videos. We therefore expand the utility of
LRPtych [13], for real videos, where the low-rank assump-
tion may be easily violated. To this end, we propose our new
algorithm, that we call Modified Low Rank Ptychography, or
MLRPtych. Our new reconstruction algorithm MLRPtych,
involves a non-convex, alternating minimization based esti-
mation procedure. The advantages of the overall algorithmic
setup are three-fold:

1. We utilize the novel initialization strategy from [13]
which improves upon standard initialization schemes
proposed in [11] to yield a good initial estimate for our
iterative image reconstruction procedure,

2. We demonstrate a significantly improved recovery for
under-sampled measurements, a model which is in gen-
eral, ill-posed. We propose a modeling error correction
methodology, to “undo” any errors that may have prop-
agated due to the strict low rankness assumption. This
contribution is significant, as it qualifies a wide vari-
ety of videos as suitable for our recovery strategy, not
just videos with strict underlying low-rankness. This
modeling-error correction improves the performance of
LRPtych greatly, which otherwise does not match up to
IERA [11] (a frame-by-frame reconstruction method),
when full or nearly full data is available. MLRPtych
however outperforms both LRPtych and IERA under
all under-sampling settings.

3. Our two under-sampling strategies, which have been
borrowed from [13, 12] do not require the apparatus
of the pre-existing setup in conventional Fourier pty-
chography [11], to be changed by much; in one such
strategy, one would simply need to turn off a fraction
of the cameras constituting the camera array.

We explain these three stages in detail in the Section 3.
We experimentally demonstrate that our new modified re-
construction algorithm MLRPtych, compares favorably in
terms of sample complexity as compared to the original al-
gorithm LRPtych [13], as well as existing “single-frame”
methods, such as the Iterative Error Reduction Algorithm
(IERA) [11], which does not utilize the low rank nature of
the video acquired. This paper focuses on Fourier ptycho-
graphic acquisition of dynamic scenes that are approximately
but not exactly low-rank. The assumption of an “approximate

Ai : x F Pi◦ F−1 Mi ŷi
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Fig. 1. Sequence of operations defined by Ai. Here the green
box indicates the extra sub-sampling step and i = [N ] denotes
the camera index.

low-rankness”, reduces sample complexity, additionally, the
model-correction strategy, rectifies for errors that must have
propagated due to inaccuracies in low-rank approximation.

2. PROBLEM SETUP
2.1. Optical setting

The sub-sampled Fourier ptychographic measurement proce-
dure, based on the setup of [13, 12] is described in Fig. 1.
The field of illumination at the aperture plane, under Fraun-
hofer approximation, can be written as the Fourier transform
(F(·)) of the image at the object plane (x). Light then passes
through an array of overlapping camera lenses, whose aper-
tures individually are limited in size (Pi(·), i spans index of
the cameras), but the collective array yields a large synthetic
aperture. The light then propagates to the plane of image sen-
sor, and this process can be represented by an inverse Fourier
transform operation (F−1(·)). The setup so far is similar to
that in [11]. At this point, we introduce a sub-sampling stage
(Mi(·)), which effectively discards some of the pixels cap-
tured by the sensing apparatus. As only the magnitude of a
light field can be recorded by the image sensors, all the phase
information gets discarded (y).

2.2. Mathematical description

We now describe the mathematical formulation of the setup
described above. We consider a high resolution video frame
at time instant k, denoted by xk. We define the video matrix
X , composed of frames xk for k ∈ [q] := {1, . . . q}:

X := [x1,x2, . . . ,xq], X ∈ Rn×q

We assume that the frames of video are changing sufficiently
slowly, and hence the rank of matrix X is no greater than
r, with r min(n, q). For each video frame xk, the pty-
chographic measurements yi,k ∈ Rn corresponding to the ith

camera location take the form:

yi,k = |Ai,k(xk)|, yk = [y1,k y2,k . . .yN,k]
> ∈ RN×n.

Here, we introduce the operator Ai,k to represent overall pty-
chographic measure operation, where the index i ∈ [N ] cor-
responds to different camera positions, and the index k = [q]
indicates the time stamp. In terms of various stages of the



acquisition process, the operator Ai,k can be expressed as:

Ai,k(·) =Mi,kF−1Pi ◦ F(·),

whereMi,k represents the subsampling mask corresponding
to ith camera and kth frame. The subsampling mask itself,
can follow two different configurations: (i) random pixel sub-
sampling: Mi,k : Rn → Rn is such that the effective op-
eration choses pixels of its argument uniform randomly and
applies a mask of 0s and 1s based on the under-sampling ratio
desired, (ii) random camera sub-sampling: for a fixed frame
k, the camera position i is chosen uniform randomly, and all
of the pixels corresponding to the ith camera are assigned 0s
or 1s, similar to the measurement setup in [13, 12].

Under this assumption, we first recover the low rank solu-
tion X̃ to the non-convex optimization problem:

X̃ := argmin
X

qX
k=1

NX
i=1

kyi,k − |Ai,k(xk)|k22, (1)

s.t. rank(X) = r.

In the second stage, we invoke the model correction subrou-
tine, to fix any errors that may have propagated due to in-
accuracy in selecting the rank r, from the standard LRPtych
algorithm. This stage constitutes the modification, and is the
main element on the Modified Low Rank Ptychography (or
MLRPtych) algorithm. Mathematically, this represents the
following optimization problem:

X̂ := X̃ + argmin
E

qX
k=1

NX
i=1

kyi,k − |Ai,k(xk + ek)|k22 (2)

where E = [e, e, . . . eq], E ∈ Rn×q is the modeling error.

3. ALGORITHM

To solve the two stage problem in Equations 1 and 2, we de-
ploy the Modified Low Rank Ptychopgraphy (MLRPtych) al-
gorithm, modeled on the base algorithm from [13]. It consists
of three different stages: (i) the initialization, (ii) an alternat-
ing minimization based low rank matrix recovery, and finally
(iii) a modeling error correction procedure which corrects any
error in the recovered video that arises due to inaccurate low-
rank estimation of the video. This algorithm is described in
Alg.1.

3.1. Initialization
In recent phase-retrieval literature there has been significant
attention on designing initialization schemes which benefit
the phase recovery strategy by (i) reducing the number of iter-
ations required for convergence (ii) ensuring convergence to
the true solution. We utilize the novel initialization strategy
from [13], which can be found in lines 1-7 of Alg. 1.

Algorithm 1 Modified Low Rank Ptychography (MLRPtych)

(Initialization)
1: Input: yk,Ai,k, r
2: for k = 1, 2, . . . , q do
3: x0

k ←
q

1
L

PL
i=1 yi,k

2

4: end for
5: [U0,S0,V 0]← ReducedSV D((X

0
), r)

6: for k = 1, 2, . . . , q do
7: b0k ← (S0V 0>)k
8: end for

(Low-rank matrix recovery stage)
9: for t = 1, 2, . . . , T do

10: a) Ct
k ← diag(phase(Ak(U

t−1bt−1
k ))), k = [q]

11: b) U tmp ← argminŨ
P

k Ct
kyk −Ak(Ũbt−1

k )
2

12: c) U t ← QR(U tmp)

13: d) btk ← argminb̃k
Ct

kyk −Ak(U
tb̃k)

2

, k = [q]

14: end for
(Modeling-error correction stage)

15: for k = 1, 2, . . . , q do
16: x̃k

0 = UT bTk
17: x̂0

k = x̃k
0 + e0k

18: for t = 1, 2, . . . , T 0 do
19: e) Ct

k ← diag(phase(Ak(x̂k
t)))

20: f) etk← argmine( Ct
kyk −Ak(x̂k

t + e)
2

2
+τkek22)

21: g) x̂k
t+1 = x̂k

t + etk
22: end for
23: end for
24: Output: X∗ = X̂T 0+1

3.2. Alternate recovery of phase and low rank matrix

Inspired by early works in phase retrieval literature and our
base papers[19, 13], we adapt the Low Rank Phase Retrieval
(LRPR) algorithm for the Fourier ptychographic setup [13].
This stage (lines 8-14 of Alg. 1) consists of alternatingly (i)
estimating the phase (step (a) of Alg. 1) and (ii) estimating
the low rank matrix (step (d) of Alg. 1).

3.3. Modeling-error correction

Finally, we proceed to the modeling error correction stage
(lines 15-20 of Alg.1). In Alg. 1, X̃0 is the estimate of a low
rank video from the LRPtych stage. However, for most real
videos, the low-rank model assumption, is often inconsistent,
and cannot describe the video characteristics precisely. Here,
we introduce new notation, to demarcate the real video X∗.
In the modeling error correction stage, we produce X̂t0 →
X∗. We initialize this stage as X̂0 = X̃0 + e0 where X̃0

is the output from the previous stage, and e0 = 0 initializes
the model error on real videos. From line 13 to 15, we use an
alternative minimization method to estimate this model error,
by alternatively updating C (step (e) of Alg. 1) and E (step
(f), and subsequently step (g) of Alg. 1, X̂). We impose an
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Fig. 2. Comparison of algorithms for ptychography using ran-
dom pixel under-sampling.

‘2 regularization on ek to ensure that the error term is min-
imized. In the next section we describe some experimental
results based on our MLRPtych algorithm.

4. EXPERIMENTAL RESULTS
We apply Alg. 1 for two different patterns of under-sampling.
The settings used for this experiment are as follows: the data
is sized as 180× 180× q, where q varies for different videos:
q = 112 for “Bacteria” (B) video, q = 148 for “Sleeping-
Dog” (D) video, q = 140 for “Fish” (F) video. The aperture
diameter of each camera considered is 40 pixels, overlap be-
tween consecutive cameras is of factor 0.48 and number of
cameras in the camera array is 81 (9 × 9). We run lines 8-13
of MLR-Ptych algorithm for 5 iterations (T = 5) and 10 iter-
ations of lines 16-19 (T 0 = 10). We run IERA for 250 outer
iterations. In addition, we run original LR-Ptych algorithm
(lines 8-13 of Alg. 1) for 5 iterations, as a comparison. The
rank considered for all videos for is r = 20.

In the first set of experiments (refer Fig. 2), we consider
random pixel under-samplingMi,k, where a fraction of pix-
els are “on” and are picked uniform randomly, according to
the required sub-sampling ratio. In Fig. 3, we provide a vi-
sual comparison between the three algorithms (MLRPtych,
IERA, LRPtych) that we tested in the experiment, for a fixed
frame of “fish” (F) video.

In the second set of experiments (refer Fig. 4), we con-
sider a simpler and more feasible under-sampling strategy
Mi,k of turning a fraction of cameras from the camera ar-
ray “on”. We see similar trends of improved performance of
MLRPtych w.r.t. IERA and LRPtych, in terms of SSIM, in
both sets of experiments. It is also interesting to note that
even under the scenario where we consider all measurements
(f = 1), we see an improved recovery for the MLRPtych al-
gorithm w.r.t. IERA. A visual comparison of the performance
of both algorithms on “Bacteria” (B) video can be seen in 5.

5. CONCLUSIONS

A model-correction strategy largely benefits the low rank
Fourier ptychographic image reconstruction procedure. Sig-
nificant improvements were noted, in terms of SSIM, imply-

Original MLRPtych,f=0.5

LRPtych,f=0.5 IERA,f=0.5

Fig. 3. Visual comparison of algorithms for ptychography
using random pixel under-sampling ratio f .
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Fig. 5. Visual comparison of algorithms for ptychography
using random camera under-sampling ratio f .

ing better quality reconstructions, at lower sampling rates,
hence extending the efficacy of our algorithmic framework
for real video applications.
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