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Abstract

Deep neural networks as image priors have been recently introduced for problems such as denoising,
super-resolution and inpainting with promising performance gains over hand-crafted image priors such as
sparsity and low-rank. Unlike learned generative priors they do not require any training over large datasets.
However, few theoretical guarantees exist in the scope of using untrained network priors for inverse
imaging problems. We explore new applications and theory for untrained network priors. Specifically, we
consider the problem of solving linear inverse problems, such as compressive sensing, as well as non-linear
problems, such as compressive phase retrieval. We model images to lie in the range of an untrained deep
generative network with a fixed seed. We further present a projected gradient descent scheme that can be
used for both compressive sensing and phase retrieval and provide rigorous theoretical guarantees for its
convergence. We also show both theoretically as well as empirically that with deep network priors, one
can achieve better compression rates for the same image quality compared to hand crafted priors.

1 Introduction

1.1 Motivation

Deep neural networks have led to unprecedented success in solving several problems, specifically in the domain
of inverse imaging. Image denoising [1], super-resolution [2], inpainting and compressed sensing [3], and
phase retrieval [4] are among the many imaging applications that have benefited from the usage of deep
convolutional networks (CNNs) trained with thousands of images.

Apart from supervised learning, deep CNN models have also been used in unsupervised setups, such as
Generative Adversarial Networks (GANs). Here, image priors based on a generative model [5] are learned
from training data. In this context, neural networks emulate the probability distribution of the data inputs.
GANs have been used to model signal prior by learning the distribution of training data. Such learned priors
have replaced hand-crafted priors with high success rates [3, 6, 7, 8]. However, the main challenge with these
approaches is the requirement of massive amounts of training data. For instance, super-resolution CNN
[2] uses ImageNet which contains millions of images. Moreover, convergence guarantees for training such
networks are limited [7].

In contrast, there has been recent interest in using untrained neural networks as an image prior. Deep
Image Prior [9] and variants such as Deep Decoder [10] are capable of solving linear inverse imaging problems
with no training data whatsover, while merely imposing an auto-encoder [9] and decoder [10] architecture as
a structural prior. For denoising, inpainting and super-resolution, deep image priors have shown superior
reconstruction performance as compared to conventional methodologies such as basis pursuit denoising
(BPDN) [11], BM3D [12] as well as convolutional sparse coding [13]. Similar emperical results have been
claimed very recently in the context of time-series data for audio applications [14, 15]. The theme in all
of these approaches is the same: to design a prior that exploits local image correlation, instead of global
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statistics, and find a good low-dimensional neural representation of natural images. However, most of these
works have very limited [16, 10] or no theoretical guarantees.

Neural networks priors for compressive imaging has only recently been explored. In the context of
compressive sensing (CS), [17] uses Deep Image Prior along with learned regularization for reconstructing
images from compressive measurements [18]. However, the model described still relies on training data
for learning appropriate regularization parameters. In concurrent work by a different set of authors [19],
For the problem of compressive sensing, priors such as sparsity [20] and structured sparsity [21] have been
traditionally used.

Phase retrieval is another inverse imaging problem in several Fourier imaging applications, which involves
reconstructing images from magnitude-only measurements. Compressive phase retrieval (CPR) models use
sparse priors for reducing sample requirements; however, standard techniques from recent literature [22]
suggest a quadratic dependence of number of measurements on the sparsity level for recovering sparse images
from magnitude-only Gaussian measurements and the design of a smart initialization scheme [23, 22]. If a
prior is learned via a GAN [7], [24], then this requirement can be brought down; however one requires sufficient
training data, which can be prohibitively expensive to obtain in domains such as medical or astronomical
imaging.

1.2 Our contributions

In this paper, we explore, in depth, the use of untrained deep neural networks as an image prior for inverting
images from under-sampled linear and non-linear measurements. Specifically, we assume that the image,
x∗d×1 has d pixels. We further assume that the image x∗ belongs to the range spanned by the weights of a
deep under-parameterized untrained neural network G(w; z), which we denote by S, where w is a set of the
weights of the deep network and z is the latent code. The compressive measurements are stored in vector
y = f(x∗), where f embeds either compressive linear (defined by operator A(·)) or compressive magnitude-only
(defined by operator |A(·)|) measurements. The task is to reconstruct image x̂ which corresponds to small
measurement error minx∈S kf(x)− yk22. With this setup, we establish theoretical guarantees for successful
image reconstruction from both measurement schemes under untrained network priors.

Our specific contributions are as follows:
• We first present a new variant of the Restricted Isometry Property (RIP) [18] via a covering number

argument for the range of images S spanned by a deep untrained neural network. We use this result to
guarantee unique image reconstruction for two different compressive imaging schemes.

• We propose a projected gradient descent (PGD) algorithm for solving the problem of compressive sensing
with a deep untrained network prior. To our knowledge this is the first paper to use deep neural network
priors for compressive sensing 1, which relies on no training data2. We analyze the conditions under which
PGD provably converges and report the sample complexity requirements corresponding to it. We also show
superior performance of this framework via empirical results.

• We are the first to use deep network priors in the context of phase retrieval. We introduce a novel
formulation, to solve compressive phase retrieval with fewer measurements as compared to state-of-art.
We further provide preliminary guarantees for the convergence of a projected gradient descent scheme to
solve the problem of compressive phase retrieval. We empirically show significant improvements in image
reconstruction quality as compared to prior works.

We note that our sample complexity results rely on the number of parameters of the assumed deep network
prior. Therefore, to get meaningful bounds, our network priors are under-parameterized, in that the total
number of unknown parameters of the deep network is smaller than the dimension of the image. To ensure
this, we build upon the formulation of the deep decoder [10], which is a special network architecture resembling
the decoder of an autoencoder (or generator of a GAN). The requirement of under-parameterization of deep

1While preparing this paper we became aware of the concurrent work in [19] which explores a similar approach for compressive
sensing; however our paper focuses theoretical guarantees rooted in an algorithmic procedure.

2[17] requires training data for learning a regularization function.
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network priors is natural; the goal is to design priors that concisely represent natural images. Moreover, this
also ensures that the network does not fit noise [10]. Due to these merits, we use select the deep decoder
architecture for all analyses in this paper.

1.3 Prior work

Sparsifying transforms have long been used to constrain the solutions of inverse imaging problems in the context
of denoising or inpainting. Conventional approaches to solve these problems include Basis Pursuit Denoising
(BPDN) or Lasso [11], TVAL3 [25], which rely on using ‘0, ‘1 and total variation (TV) regularizations on the
image to be recovered. Sparsity based priors are highly effective and dataset independent, however it heavily
relies on choosing a good sparsifying basis [26].

Instead of hand-picking the sparsifying transform, in dictionary learning one learns both the sparsifying
transform and the sparse code [27]. The dictionary captures global statistics of a given dataset 3. Multi-layer
convolutional sparse coding [16] is an extension of sparse coding which models a given dataset in the form of a
product of several linear dictionaries, all of which are convolutional in nature and this problem is challenging.

Generative adversarial networks (GAN) [5] have been used to generate photo-realistic images in an
unsupervised fashion. The generator consists of stacked convolutions and maps random low-dimensional
noise vectors to full sized images. GAN priors have been successfully used for inverse imaging problems
[6, 7, 28, 29, 8]. The shortcomings of this approach are two-fold: test images are strictly restricted to the
range of a trained generator, and the requirement of sufficient training data.

Sparse signal recovery from linear compressive measurements [18] as well as magnitude-only compressive
measurements [22] has been extensively studied, with several algorithmic approaches [20, 22]. In all of these
approaches, modeling the low-dimensional embedding is challenging and may not be captured correctly using
simple hand-crafted priors such as structured sparsity [21]. Since it is hard to estimate these hyper-parameters
accurately, the number of samples required to reconstruct the image is often much higher than information
theoretic limits [30, 6].

The problem of compressive phase retrieval specifically, is even more challenging because it is non-convex.
Several papers in recent literature [31, 32, 22] rely on the design of a spectral initialization scheme which
ensures that one can subsequently optimize over a convex ball of the problem. However this initialization
requirement results in high sample requirements and is a bottleneck in achieving information theoretically
optimal sample complexity.

Deep image prior [9] (DIP) uses primarily an encoder-decoder as a prior on the image, alongside an early
stopping condition, for inverse imaging problems such as denoising, super-resolution and inpainting. Deep
decoder [10] (DD) improves upon DIP, providing a much simpler, underparameterized architecture, to learn
a low-dimensional manifold (latent code) and a decoding operation from this latent code to the full image.
Because it is under parameterized, deep decoder does not fit noise, and therefore does not require early
stopping.

Deep network priors in the context of compressive imaging have only recently been explored [17], and only
in the context of compressive sensing. In contrast with [17] which extends the idea of a Deep Image Prior to
incorporate learned regularizations, in this paper we focus more on theoretical aspects of the problem and
also explore applications in compressive phase retrieval. To our knowledge the application of deep network
priors to compressive phase retrieval is novel.

2 Paper organization

This paper is organized as follows. In Section 3, we present relevant notation used throughout the paper. In
Section 4.1 we broadly formalize the inverse imaging problem under deep network prior. Further, in section
4.2 we discuss the observation model for the imaging setup and introduce our set restricted isometry property
result. In Sections 5 and 6 we address in detail the linear compressive sensing and compressive phase retrieval

3Local structural information from a single image can also be used to learn dictionaries, by constructing several overlapping
crops or patches of a single image.
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problems, respectively. In Section 8, we demonstrate empirical gains of our problem formulation. In Section
9 we provide an interpretation of our new sample complexity bound for inverse imaging. We accumulate all
proofs for the main theory in Section 10 with supporting lemmas and corollaries in Appendix A.

3 Notation

Throughout the paper, lower case letters denote vectors, such as v and upper case letters for matrices, such
as M . A set of variables subscripted with different indices is represented with bold-faced shorthand of the
following form: w := {W1,W2, . . .WL}. The neural network consists of L layers, each layer denoted as Wl,
with l ∈ {1, . . . L} and are 1× 1 convolutional. Up-sampling operators are denoted by Ul. Vectorization of a
matrix is written as vec(·). The activation function considered is Rectified Linear Unit (ReLU), denoted as
σ(·). Hadamard or element-wise product is denoted by ◦. Element-wise absolute valued vector is denoted by
|v|. Unless mentioned otherwise, kvk denotes vector ‘2-norm and kMk denotes spectral norm kMk2.

4 Problem setup

4.1 Deep network priors

In this paper we discuss the problem of inverting a mapping x→ y of the form:

y = f(x)

where x = vec(X)dk is a d-dimensional signal Xd×k (vectorized image), with k channels and f : x→ y ∈ Rn

captures a compressive measurement procedure, such as a linear operator A(·) or magnitude only measurements
|A(·)| and n < dk. We elaborate further on the exact structure of f in the next subsection (Section 4.2). The
task of reconstructing image x from measurements y can be formulated as an optimization problem of the
form:

min
x∈S
ky − f(x)k2 (1)

where we have chosen the ‘2-squared loss function and where S captures the prior on the image.
If the image x can be represented as the action of a deep generative network G(w; z) with weights w

on some latent code z, such that x = G(w; z), then the set S captures the characteristics of G(w; z). The
latent code z := vec(Z1) withZ1 ∈ Rd1×k1 is a low-dimensional embedding with dimension d1k1 dk and its
elements are generated from uniform random distribution.

When the network G(·) and its weights w := {W1, . . .WL} are known (from pre-training a generative
network over large datasets) and fixed, the task is to obtain an estimate x̂ = G(w; ẑ), which indirectly
translates to finding the optimal latent space encoding ẑ . This problem has been studied in [6, 7] in the
form of using learned GAN priors for inverse imaging.

In this paper however, the weights of the generator w are not pre-trained ; rather, the task is to estimate
image x̂ = G(ŵ; z) ≈ G(w∗; z) = x∗ and corresponding weights ŵ, for a fixed seed z, where x∗ is assumed to
be the true image and the true weights w∗ (possibly non-unique) satisfy w∗ = minw kx∗ −G(z; w)k22. Note
that the optimization in Eq. 1 is equivalent to substituting the surjective mapping G : w→ x, and optimizing
over w,

min
w
ky − f(G(w; z))k2, (2)

and estimate weights ŵ and corresponding image x̂.
Specifically, the untrained network G(w; z) takes the form of an expansive neural network; a decoder

architecture similar to the one in [10] 4. The neural network is composed of L weight layers Wl, indexed by

4Alternatively, one may assume the architecture of the generator of a DCGAN [33, 17].
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l ∈ {1, . . . , L} and are 1× 1 convolutions, upsampling operators Ul for l ∈ {1, . . . L− 1} and ReLU activation
σ(·) and is expressed as follows

x = G(w, z) = UL−1σ(ZL−1WL−1)WL = ZLWL, (3)

where σ(·) represents the action of ReLU operation, Zdi×ki
i = Ui−1σ(Zi−1Wi−1), for i = 2, . . . L, z = vec(Z1),

dL = d and WL ∈ RkL×k.
To capture the range of images spanned by the deep neural network architecture described above, we

formally introduce the main assumption in our paper through Definition 1. Without loss in generality, we set
k = 1 for the rest of this paper, while noting that the techniques carry over to general k.

Definition 1. A given image x ∈ Rd is said to obey an untrained neural network prior if it belongs to a set
S defined as:

S := {x|x = G(w; z)}

where z is a (randomly chosen, fixed) latent code vector and G(w; z) has the form in Eq. 3.

4.2 Observation models and assumptions

We now discuss the compressive measurement setup in more detail. Compressive measurement schemes were
developed in [18] for efficient imaging and storage of images and work only as long as certain structural
assumptions on the signal (or image) are met. The optimization problem in Eq.1 is non-convex in general,
partly dictated by the non-convexity of set S. Moreover, in the case of phase retrieval, the loss function is
itself non-convex. Therefore unique signal recovery for either problems is not guaranteed without making
specific assumptions on the measurement setup.

In this paper, we assume that the measurement operation can be represented by the action of a Gaussian
matrix A which is rank-deficient (n < d). The entries of this matrix are such that Aij ∼ N (0, 1/n). Linear
compressive measurements take the form y = Ax and magnitude-only measurements take the form y = |Ax|.
We formally discuss the two different imaging schemes in the next two sections. We also present algorithms
and theoretical guarantees for their convergence. For both algorithms, we require that a special (S, γ, β)-RIP
holds for measurement matrix A, which is defined below.

Definition 2. (S, γ, β)-RIP: Set-Restricted Isometry Property with parameters γ, β:
For parameters γ, β > 0, a matrix A ∈ Rn×d satisfies (S, γ, β)-RIP, if for all x ∈ S,

γkxk2 ≤ kAxk2 ≤ βkxk2.

We refer to the left (lower) inequality as (S, γ)-RIP and right (upper) inequality as (S, β)-RIP.

The (S, 1− α, 1 + α) RIP is achieved by Gaussian matrix A under certain assumptions, which we state
and prove via Lemma 1 as follows.

Lemma 1. If an image x ∈ Rd has a decoder prior (captured in set S), where the decoder consists of
weights w and piece-wise linear activation (ReLU), a random Gaussian matrix A ∈ Rn×d with elements from

N (0, 1/n), satisfies (S, 1− α, 1 + α)-RIP, with probability 1− e−cα2n, as long as n = O k1

α2

LP
l=2

kl log d , for

small constant c and 0 < α < 1.

Proof sketch: We use a union of sub-spaces model, similar to that developed in [6] which was developed
for GAN priors, to capture the range of a deep untrained network.

Our method uses a linearization principle. If the output sign of any ReLU activation σ(·) on its inputs
were known a priori, then the mapping x = G(w; z) becomes a product of linear weight matrices and linear
upsampling operators acting on the latent code z. The bulk of the proof relies on constructing a counting
argument for the number of such linearized networks; call that number N . For a fixed linear subspace, the
image x has a representation of the form x = UZw, where U absorbs all upsampling operations, Z is latent

5



Algorithm 1 Net-PGD for compressed sensing recovery.

1: Input: y,A, z = vec(Z1), η, T = log 1

2: for t = 1, · · · , T do
3: vt ← xt − ηA>(Axt − y) {gradient step for least squares}
4: wt ← arg min

w
kvt −G(w; z)k {projection to range of deep network}

5: xt+1 ← G(wt; z)
6: end for
7: Output x̂← xT .

code which is fixed and known and w is the direct product of all weight matrices with w ∈ Rk1 . An oblivious
subspace embedding (OSE) of x takes the form

(1− α)kxk2 ≤ kAxk2 ≤ (1 + α)kxk2,

where A is a Gaussian matrix, and holds for all k1-dimensional vectors w, with high probability as long
as n = O(k1/α

2). We further require to take a union bound over all possible such linearized networks,
which is given by N . The sample complexity corresponding to this bound is then computed to complete the
set-restricted RIP result. The complete proof can be found in Section 10 and a discussion on the sample
complexity is presented in Section 9.

5 Linear compressive sensing with deep network prior

We now analyze linear compressed Gaussian measurements of a vectorized image x, with a deep network
prior. The reconstruction problem assumes the following form:

min
x

ky −Axk2 s.t. x = G(w; z), (4)

where A ∈ Rn×d is Gaussian matrix with n < d, unknown weight matrices w and latent code z which is fixed.
We solve this problem via Algorithm 1, Network Projected Gradient Descent (Net-PGD) for compressed
sensing recovery.

Specifically, we break down the minimization into two parts; we first solve an unconstrained loss minimiza-
tion of the objective function in Eq. 4 by implementing one step of gradient descent in Step 3 of Algorithm 1.
The update vt typically does not adhere to the deep network prior constraint vt 6∈ S. To ensure that this
happens, we solve a projection step in Line 4 of Algorithm 1, which happens to be the same as fitting a
deep network prior to a noisy image. We iterate through this procedure in an alternating fashion until the
estimates xt converge to x∗ within error factor .

We further establish convergence guarantees for Algorithm 1 in Theorem 1.

Theorem 1. Suppose the sampling matrix An×d satisfies (S, 1− α, 1 + α)-RIP with high probability then,
Algorithm 1 produces x̂ such that kx̂− x∗k ≤ and requires T ∝ log 1 iterations.

Proof sketch: The proof of this theorem predominantly relies on our new set-restricted RIP result
and uses standard techniques from compressed sensing theory. Indicating the loss function in Eq. 4 as
L(xt) = ky −Axtk2, we aim to establish a contraction of the form L(xt+1) < νL(xt), with ν < 1. To achieve
this, we combine the projection criterion in Step 4 of Algorithm 1, which strictly implies that

kxt+1 − vtk ≤ kx∗ − vtk

and vt = xt − ηA>(Axt − y) from Step 3 of Algorithm 1, where η is chosen appropriately. Therefore,

kxt+1 − xt + ηA>A(xt − x∗)k2 ≤ kx∗ − xt + ηA>A(xt − x∗)k2.

6



Algorithm 2 Net-PGD for compressive phase retrieval.

1: Input: A, z = vec(Z1), η, T = log 1 , x0 s.t. kx0 − x∗k ≤ δikx∗k.
2: for t = 1, · · · , T do
3: pt ← sign(Axt) {phase estimation}
4: vt ← xt − ηA>(Axt − y ◦ pt) {gradient step for phase retrieval}
5: wt ← arg min

w
kvt −G(w; z)k {projection to range of deep network}

6: xt+1 ← G(wt; z)
7: end for
8: Output x̂← xT .

Furthermore, we utilize (S, 1 − α, 1 + α)-RIP and its Corollary 1 (refer Appendix A) which apply to
x∗, xt, xt+1 ∈ S, to show that

L(xt+1) ≤ νL(xt)

and subsequently the error contraction kxt+1 − x∗k ≤ νokxt − x∗k, with ν, νo < 1 to guarantee linear
convergence of Net-PGD for compressed sensing recovery. This convergence result implies that Net-PGD
requires T ∝ log 1/ iterations to produce x̂ within -accuracy of x∗. The complete proof of Theorem 1 can be
found in Section 10. In Section 7 we provide some exposition on the projection step (line 4 of Algorithm 1).

6 Compressive phase retrieval under deep image prior

In compressive phase retrieval, one wants to reconstruct a signal x ≈ x∗ ∈ S from measurements of the form
y = |Ax∗| and therefore the objective is to minimize the following

min
x

ky − |Ax|k2 s.t. x = G(w; z), (5)

where n < d and A is Gaussian, z is a fixed seed and weights w need to be estimated. We propose a
Network Projected Gradient Descent (Net-PGD) for compressive phase retrieval to solve this problem, which
is presented in Algorithm 2.

Algorithm 2 broadly consists of two parts. For the first part, in Line 3 we estimate the phase of the
current estimate and in Line 4 we use this to compute the Wirtinger gradient [31] and execute one step for
solving an unconstrained phase retrieval problem with gradient descent. The second part of the algorithm is
(Line 5), estimating the weights of the deep network prior with noisy input vt. This is the projection step
and ensures that the output wt and subsequently the image estimate xt = G(wt; z) lies in the range of the
decoder G(·) outlined by set S.

We highlight that the problem in Eq. 5 is significantly more challenging than the one in Eq. 4. The
difficulty hinges on estimating the missing phase information accurately. For a real-valued vectors, there are
2n different phase vectors p = sign(Ax) for a fixed choice of x, which satisfy y = |Ax|, moreover the entries of
p are restricted to {1,−1}. Hence, phase estimation is a non-convex problem. Therefore, with Algorithm 2
the problem in Eq.5 can only be solved to convergence locally; an initialization scheme is required to establish
global convergence guarantees. We highlight the guarantees of Algorithm 2 in Theorem 2.

Theorem 2. Suppose the sampling matrix An×d with Gaussian entries satisfies (S, 1− α, 1 + α)-RIP with
high probability, gradient descent solves Eq. 5 via Algorithm 2, such that kx̂− x∗k ≤ , as long as the weights

are initialized appropriately and the number of measurements is n = O k1
LP

l=2

kl log d .

Proof sketch: The proof for Theorem 2 relies on two important results; (S, 1−α, 1+α)-RIP and Lemma
2 which establishes a bound on the phase estimation error. Formally, the update in Step 4 of Algorithm 2
can be re-written as

vt+1 = xt − ηA> Axt −Ax∗ ◦ sign(Ax∗) ◦ sign(Axt) = xt − ηA> Axt −Ax∗ − ηεtp

7



where εtp := A>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt)) is phase estimation error.
If sign(Ax∗) ≈ sign(Axt), then the above resembles the gradient step from the linear compressive sensing

formulation. Thus, if x0 is initialized well, the error due to phase mis-match εtp can be bounded, and
subsequently, a convergence result can be formulated.

Next, Step 4 of Algorithm 2 learns weights wt that produce xt = G(wt; z), such that

kxt+1 − vtk ≤ kxt − vtk

for t = {1, 2, . . . T}. Then, the above projection rule yields:

kxt+1 − vt+1 + vt+1 − x∗k ≤ kxt+1 − vt+1k+ kx∗ − vt+1k ≤ 2kx∗ − vt+1k,

Using the update rule from Eq. 11 and plugging in for vt+1:

1

2
kxt+1 − x∗k ≤ k(1− ηA>A)htk+ kεtpk

where η is chosen appropriately. The rest of the proof relies on bounding the first term via matrix norm
inequalities using Corollary 2 (in Appendix A) of (S, 1− α, 1 + α)-RIP as k(1− ηA>A)htk ≤ ρokhtk and the
second term is bounded via Lemma 2 in Appendix A as kεtpk ≤ δokxt − x∗k as long as kx0 − x∗k ≤ δikx∗k.
Hence we obtain a convergence criterion of the form

kxt+1 − x∗k ≤ 2(ρo + ηδo)kxt − x∗k := ρkxt − x∗k.

where ρ < 1. Note that this proof relies on a bound on the phase error kεtpk which is established via Lemma
2. The complete proof for Theorem 2 can be found in Section 10. In Secion 7 we provide some exposition on
the projection step (line 5 of Algorithm 2). In our experiments (Section 8) we note that a uniform random
initialization of the weights w0 (which is common in training neural networks), to yield x0 = G(w0; z) is
sufficient for Net-PGD to succeed for compressive phase retrieval.

7 Projection to deep network prior

The projection steps in both Algorithms 1 and 2 represent the problem of fitting an image to an untrained
neural network representation. This is the original setting for denoising and compression applications in [9]
and [10]. The algorithmic approach to solving this problem is via standard solvers such as gradient descent
(GD) or Adam. The problem takes the form:

min
w
L(w; z, v) := min

w
kv −G(w; z)k2, (6)

where v is typically a noisy variant of the original image x∗. The problem in Eq.6 is non-convex due to the
structure of G(w; z). Convergence guarantees for deep neural network formulations of this form that exist are
highly restrictive [34, 35]. There exist several papers in recent literature which allude to (linear) convergence
of gradient descent for solving the two-layer neural networks; however all of the results rely on moderate or
extreme overparameterization of the neural network. Therefore, these results do not apply to our paper and
deriving convergence guarantees for the denoising problem in 6 is an interesting direction for future work.

8 Experimental results

All experiments were run on a Nvidia GeForce GPU with 8GB RAM.
Dataset: We use images from the MNIST database and CelebA database to test our algorithms and

reconstruct 6 grayscale (MNIST, 28× 28 pixels (d = 784)) and 5 RGB (CelebA) images. The CelebA dataset
images are center cropped to size 64× 64× 3 (d = 12288). The pixel values of all images are scaled to lie
between 0 and 1.
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Figure 1: (CS) Reconstructed images from linear measurements (at compression rate n/d = 0.1) with (a)
n = 78 measurements for examples from MNIST, (b) n = 1228 measurements for examples from CelebA, and
(c) nMSE at different compression rates f = n/d for MNIST.

Deep network architecture: We first optimize the deep network architecture which fit our example images
such that x∗ ≈ G(w∗; z) (referred as “compressed” image). For MNIST images, the architecture was
fixed to a 2 layer configuration k1 = 15, k2 = 15, k3 = 10, and for CelebA images, a 3 layer configuration
with k1 = 120, k2 = 15, k3 = 15, k4 = 10 was sufficient to represent most images. Both architectures
use bilinear upsampling operators each with upsampling factor of 2, U↑2

l , l = {1, 2, 3}. The outputs after
each ReLU operation are normalized, by calling for batch normalization subroutine in Pytorch. Finally a
sigmoid activation is added to the output of the deep network, which smoothens the output; however this
is not mandatory for the deep network configuration to work. Note that both of these architectures are
underparameterized, unlike the configurations in [9]. The random seed Z1 is fixed and picked from uniform
random distribution 5. We plot the “compressed” representations of each image, G(w; z) in all Figures for
reference.

Measurement setup: We use a Gaussian measurement matrix of size n × d with n varied such that (i)
n/d = 0.08, 0.1, 0.15, 0.2, 0.25, 0.3 for compressive sensing and (ii) n/d = 0.1, 0.2, 0.3, 0.5, 1, 3 for compressive
phase retrieval. The elements of A are picked such that Ai,j ∼ N (0, 1/n) and we report averaged reconstruction
error values over 10 different instantiations of A for a fixed image (image of digit ‘0’ from MNIST), network
configuration and compression ratio n/d .

8.1 Compressive sensing

Algorithms and baselines: We implement 4 schemes based on untrained priors for solving CS, (i) gradient
descent with deep network prior which solves Eq.2 (we call this Net-GD), similar to [17] but without learned
regularization (ii) Net-PGD, (iii) Lasso (‘1 regularization) with sparse prior in DCT basis and finally (iv)
TVAL3 [25] (Total Variation regularization). The TVAL3 code only works for grayscale images, therefore we
do not use it for CelebA examples. The reconstructions are shown in Figure 1 for images from (a) MNIST
and (b) CelebA datasets.

Implementation details: For CS recovery with deep network priors, both Net-GD and Net-PGD were
implemented using the PyTorch framework with Python 3 and using GPU support. For Net-GD, SGD
(alternatively, Adam) optimizer is used. For Net-PGD, SGD (alternatively, Adam) optimizer is used for
the projection step and SGD optimizer for the gradient step in Step 3 of Alg. 1 and Step 4 of Alg.
2. For implementing Lasso algorithm, Python’s sklearn.linear model library was used and we set the

5Gaussian distributed entries as well as randomly picked rows of Hadamard matrices also work.
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Original Compressed Net-GD Net-PGD Sparta
n/d = 0.5

n/d = 0.1

0 1 2 3

0

0.5

compression ratio f

n
M

S
E

Net-GD

Net-PGD

Sparta

(a) (c) (c)

Figure 2: (CPR) Reconstructed images from magnitude-only measurements (a) at compression rate of
n/d = 0.3 for MNIST, (b) at compression rates of n/d = 0.1, 0.5 for CelebA with (row 1,3) Net-GD and (row
2,4) Net-PGD, (c) nMSE at different compression rates f = n/d for MNIST.

regularization factor α = 10−5. The MATLAB code for TVAL3 [25] made available on the author’s website
was used with its default settings.

Performance metrics: We compare reconstruction quality using normalized Mean-Squared Error (nMSE),
which is calculated as kx̂− x∗k2/kx∗k2. We plot the variation of the nMSE with different compression rates
f = n/d for all the algorithms tested averaged over all trials for MNIST in Figure 1 (c). We note that both
Net-GD and Net-PGD produce superior reconstructions as compared to state of art.

Running time: We also report the average running times for different algorithms across different mea-
surement levels for examples from MNIST is 5.86s (Net-GD), 5.46s (Net-PGD), 2.43s (Lasso-DCT), 0.82s
(TVAL3). We note that the running time of both GD and PGD for CS-UNP are competitive.

8.2 Compressive phase retrieval

Algorithms and baselines: We implement 3 schemes based on untrained priors for solving CPR , (i) Net-GD
(ii) Net-PGD and finally (iii) Sparse Truncated Amplitude Flow (Sparta) [23], with sparse prior in DCT basis
for both datasets. The reconstructions are shown in Figure 2 for (a) MNIST and (b) CelebA datasets. We
plot nMSE at varying compression rates for all algorithms averaged over all trials for MNIST in Figure 2(c)
and note that both Net-GD and Net-PGD outperform Sparta.

Implementation details: For compressive phase retrieval with deep network priors, both Net-GD and
Net-PGD were implemented using the PyTorch framework with Python 3 and using GPU support. All
optimization procedures were implemented using SGD optimizer. For implementing Sparta algorithm, the
algorithm from [23] was implemented in MATLAB.

Running time: We report the average running times for different algorithms across different measurement
levels for examples from MNIST is 25.59s (Net-GD), 28.46s (Net-PGD), 3.80s (Sparta-DCT).

Goodness of random initialization: Our theoretical guarantees for phase retrieval hold only as long as the
initialization x0 is close to the ground truth x∗. We perform rigorous experiments to assert that uniform
random initialization of the weights w0 of the neural network, ensure that the initial estimate x0 = G(w0; z)
is good. We denote the distance of initialization as δi = kx0 − xT k/kxT k (xT = x̂) and report the values of
δi for the trials in which kxT − x∗k/kx∗k < 0.1. We plot the average values of δi in Table 1.

From our observation, uniform random initialization suffices to ensure that the conditions for Theorem 2
are met and δi < 1.
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Table 1: Distance of initial estimate x0

n/d d channel configuration nMSE of x̂ average δi values
0.2 784 (MNIST) 15, 15, 10 0.098 0.914
0.5 784 (MNIST) 15, 15, 10 0.018 0.942
0.4 12288 (CelebA) 120, 15, 15,10 0.020 0.913
0.6 12288 (CelebA) 120, 15, 15,10 0.015 0.915

9 Discussion on sample complexity

In compressive imaging literature, for s-sparse signals of dimension d, the sample complexity for compressive
sensing is n = O(s log d) and compressive phase retrieval is n = O(s2 log d), when Gaussian measurements are
considered. If structural constraints are imposed on the sparsity of images, such as block sparsity, the sample
requirements can be brought down to n = O(s/b log d) and n = O(s2/b log d) for CS and CPR respectively,
where b is the block length of each sparse block [22]. However these gains come at the cost of designing the
signal priors carefully.

In contrast, the sample requirements with deep network priors, as we show in this paper is n =
O(k1

PL
l=2 kl log d). In both datasets that we tested, relatively shallow architectures were sufficient. Therefore

the effective sample complexity is of the order of k1, which is typically much smaller than the dimension
d. We have empirically demonstrated in Section 8 that the sample requirement with deep network priors
is significantly lower than that for the sparse prior setting. Moreover, the design of the prior is fairly
straightforward, and applies for a wide class of images.

10 Proofs of main lemmas and theorems

In this section we proofs for the main theorems and lemmas discussed in the main body of this paper.
We first discuss the set-restricted restricted isometry property.
The (S, γ, β) RIP holds for Gaussian matrix A with high probability, as long as certain dimensionality

requirements are met. We show this via Lemma 1 as follows:

Lemma 1. If an image x ∈ Rd has a decoder prior (captured in set S), where the decoder consists of
weights w and piece-wise linear activation (ReLU), a random Gaussian matrix A ∈ Rn×d with elements from

N (0, 1/n), satisfies (S, 1− α, 1 + α)-RIP, with probability 1− e−cα2n, as long as n = O k1

α2

LP
l=2

kl log d , for

small constant c and 0 < α < 1.

Proof. We first describe the two layer setup.
Consider the action of measurement matrix A defined on vector h, where h := U1σ(ZW1)W2 below:

u = Ah = AU1σ(Z1W1)W2.

where W k1×k2
1 , W k2×1

1 and Ud×d1
1 with d > d1.

We would like to estimate the dimensionality of A, required to ensure that the action of A on set restricted
vector h ∈ S, is bounded as:

γkhk2 ≤ kAhk2 ≤ βkhk2

with high probability. To establish this, consider the following argument which is similar to the union of
subspaces argument from [6].

The action of ReLU on input (Z1W1) partitions the input space of variable W1 into a union of linear
subspaces. In particular, consider a single column of w1,j of W1, indexed by j, which is k1 dimensional.

Then, σ(Z1w1,j) partitions the k1-dimensional input space into (dk1
1 ) k1-spaces (Lemma 3 in Appendix A).

Since there are k2 such columns, effectively the k1 × k2 dimensional space of W1 is partitioned into (dk1
1 )k,

(k1 × k2)-spaces.
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Then, we can consider the union of dk1k2
1 subspaces with linearized mappings of the form:

u1 = AU1(Z1W
0
1)W2

where W 0
1 belongs to one of the dk1k2

1 subspaces and u1 is the mapping corresponding to that.
If the dimensionalities are chosen such that they satisfy d > k2, and A,U1, Z1 are known matrix operators,

then the effectively wk1×1 := W 0
1W2 represents the accumulated action of the weights, belonging to one

of the dk1k2
1 subspaces, (U1Z1)d×k1 is a linear transformation from a lower dimensional space to a higher

dimensional space. Then, if A is designed as an oblivious subspace embedding (OSE) (Lemma 4 in Appendix
A) of U1Z1w, for a single k1-dimensional subspace of w, one requires m = O k1

α2 samples to embed the
vector w, as

(1− α)khk2 ≤ kAhk2 ≤ (1 + α)khk2, (7)

with probability 1− e−cα2
1n, for constant α1 < α. Since there are dk1k2

1 such subspaces, then for the OSE

to hold for all subspaces, one requires to take a union bound as 1−dkik
i e−cα2

1n. Therefore the expression in Eq.

7 holds for all h ∈ S, with probability 1− e−cα2
2n and α2 < α1. Therefore, one requires n = O k1k2 log d1

α2
1

,

to ensure that A satisfies (S, 1− α, 1 + α)-RIP with probability 1− e−cα2
2n.

Multiple layers: A similar argument can be extended for multiple layers. Consider an L layer formulation:

u = AUL−1σ(. . . σ(U1σ(Z1W1)W2)W3 . . . )WL

with W kL×1
L and U

d×dL−1

L−1 .

The first non-linearity partitions the space into dk1k2
1 k1 × k2-dimensional spaces. Thus we have the

part-linearized mapping of the form:

u1 = AUL−1σ(· · ·U2σ(U1Z1W
0
1W2)W3 · · · )WL

and there are dk1k2
1 of these.

The second non-linearity acts on input (U1Z1)d2×k1 · (W 0
1W2)k1×k3 of each of these partitions, and creates

more partitions; dk1k3
2 partitions of the k1×k3 space. This creates effectively dk1k2

1 ×dk1k3
2 ≤ d

k1(k2+k3)
2 (since

d2 > d1) partitions in total and these constitute linearized embeddings of the form:

u = AUL−1σ(. . . σ(U2U1Z1W
0
1W

0
2)W3 . . . )WL

where W 0
1W

0
2 belong to one of the dk1k2

1 · dk1k3
2 subspaces.

Extending the same argument to all subsequent non-linearities (total (L− 1) such) and linearizing, we
have mappings of the form

uL−1 = AUL−1(. . . (U2U1Z1W
0
1W

0
2)W 0

3 . . . )WL

hL−1 =

  
L−1Y
l=1

Ul

!
Z1

!
·

 
LY

l=1

Wl

!
= B · w (8)

where B :=
QL−1

l=1 Ul Z1 and w :=
QL

l=1 Wl ∈ Rk1 . The total number of partitions are dk1k2
1 ×

dk1k3
2 . . . dk1kL

L−1 ≤ dk1
PL

l=2 kl , since d > dL−1 > . . . d1, via upsampling operations. Effectively we consider a

union of dk1
PL

l=2 kl subspaces of dimension k1.
Repeating the argument from the analysis for two layers, if A is designed as an oblivious subspace

embedding (OSE) (Lemma 4 in Appendix A) of B · w, for a single k1-dimensional subspace of Bw, one

requires m = O k1

α2 samples to embed the vector w, with the bound in Eq. 7 with probability 1− e−cα2
1n,

for constant α1 < α.
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Therefore, the embedding from Eq. 7 holds for

h = UL−1σ(. . . σ(U1σ(ZW1)W2)W3 . . . )WL,

as long as n = O
k1

PL
l=2 kl log d

α2
1

, with probability 1− e−cα2
on, which implies that A satisfies (S, 1−α, 1 +α)-

RIP with high probability.

In Appendix A, we present some corollaries (Corollary 1 and 2) of the above result which will be useful
for proving some of our theoretical claims.

Next, we discuss the convergence of Net-PGD for compressed sensing recovery via Theorem 1.

Theorem 1. Suppose the sampling matrix An×d satisfies (S, 1− α, 1 + α)-RIP with high probability then,
Algorithm 1 produces x̂ such that kx̂− x∗k ≤ and requires T ∝ log 1 iterations.

Proof. Using the definition of loss as L(xt) = ky −Axtk2,

L(xt+1)− L(xt) = (kAxt+1k2 − kAxtk2)− 2(y>Axt+1 − y>Axt)

= kAxt+1 −Axtk2 − 2(Axt)>(Axt) + 2(Axt)>(Axt+1)

− 2(y>Axt+1 − y>Axt)

= kAxt+1 −Axtk2 − 2(y −Axt)>(Axt+1 −Axt) (9)

We want to establish a contraction of the form L(xt+1) < νL(xt), with ν < 1.
Step 3 of Algorithm 1 is solved via gradient descent:

vt = xt − ηA>(Axt −Ax∗) (10)

Subsequently, Step 4 of Algorithm 1 learns weights wt that produce xt = G(wt; z), which lies in the range of
the decoder G(·) and is closest to the estimate vt.

Step 4 of Algorithm 1 produces an update of wt satisfying:

kG(wt; z)− vtk ≤ kG(w∗; z)− vtk

Denoting G(wt; z) := xt and G(w∗; z) := x∗, and using the update rule in Eq. 10,

kxt+1 − vtk2 ≤ kx∗ − vtk2

kxt+1 − xt + ηA>A(xt − x∗)k2 ≤ kx∗ − xt + ηA>A(xt − x∗)k2

kxt+1 − xtk2 + 2η(A(xt − x∗))>A(xt+1 − x∗) ≤ kxt − x∗k2 − 2ηkA(xt − x∗)k2

1

η
kxt+1 − xtk2 + 2(A(xt − x∗))>A(xt+1 − x∗) ≤ 1

η
kxt − x∗k2 − 2L(xt)

=⇒ L(xt+1) + L(xt) ≤ 1

η
kxt − x∗k2 − 1

η
kxt+1 − xtk2

+ kA(xt+1 − xt)k2

where we have used the expansion in Eq. 9. We now use (S, γ, β)-RIP. If a Gaussian measurement matrix is
considered then γ = 1− α and β = 1 + α.

Using (S, γ)-RIP on the first term on the right side,

kx∗ − xtk2 ≤ 1

γ
kA(x∗ − xt)k2

13



Second, using (S, β)-RIP on the last term on the right side,

kA(xt+1 − xt)k2 ≤ βkxt+1 − xtk2

Accumulating these expressions and substituting,

L(xt+1) + L(xt) ≤ 1

ηγ
L(xt) + β − 1

η
kxt+1 − xtk2

βη<1

≤ 1

ηγ2
L(xt)

=⇒ L(xt+1) ≤ νL(xt)

=⇒ L(xT ) ≤ νTL(x0)

where 0 < ν < 1 and ν = 1
ηγ2 − 1 and picking η < 1/β. Invoking (S, γ, β)-RIP again,

kxT − x∗k2 ≤ 1

γ
ky −AxT k2 ≤ νT

γ
ky −Ax0k2 :=

Hence to reach - accuracy in reconstruction, one requires T iterations where

T = logα

ky −Ax0k2

γ
.

Note that the contraction L(xt+1) ≤ νL(xt) coupled with (S, γ, β)-RIP implies a distance contraction
kxt+1 − x∗k ≤ νokxt − x∗k, with νo = ν

p
β/γ.

Step 4 of Algorithm 1, which is essentially the case of fitting a noisy image to a deep neural network prior
can be solved via gradient descent. We discuss this projection in further detail in Section 7.

Next, we discuss the main convergence result of Net-PGD for compressive phase retrieval in Theorem 2.

Theorem 2. Suppose the sampling matrix An×d with Gaussian entries satisfies (S, 1− α, 1 + α)-RIP with
high probability, gradient descent solves Eq. 5 via Algorithm 2, such that kx̂− x∗k ≤ , as long as the weights

are initialized appropriately and the number of measurements is n = O k1
LP

l=2

kl log d .

Proof. Step 4 of Algorithm 2 is solved via a variant of gradient descent called Wirtinger flow [36], which
produces updates of the form:

vt+1 = xt − ηA> Axt −Ax∗ ◦ sign(Ax∗) ◦ sign(Axt)

= xt − ηA> Axt −Ax∗ − ηA>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt))

= xt − ηA> Axt −Ax∗ − ηεtp (11)

where εtp := A>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt)) is phase estimation error.
If sign(Ax∗) ≈ sign(Axt), then the above resembles the gradient step from the linear compressed sensing

formulation. Thus, if x0 is initialized well, the error due to phase mis-match εtp can be bounded, and
subsequently, a convergence result can be formulated.

Next, Step 5 of Algorithm 2 learns weights wt that produce xt = G(wt; z), which lies in the range of the
decoder G(·) and is closest to the estimate vt. We discuss this projection in further detail in Appendix 7.

Step 5 of Algorithm 2 produces an update of wt satisfying:

kG(wt; z)− vtk ≤ kG(w∗; z)− vtk
≡ kxt − vtk ≤ kx∗ − vtk
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for t = {1, 2, . . . T}. Then, the above projection rule yields:

kxt+1 − vt+1 + vt+1 − x∗k ≤ kxt+1 − vt+1k+ kx∗ − vt+1k ≤ 2kx∗ − vt+1k

Using the update rule from Eq. 11 and plugging in for vt+1:

1

2
kxt+1 − x∗k2 ≤ k(xt − x∗)− (ηA> Axt −Ax∗ + ηεtp)k2

Defining ht+1 = xt+1 − x∗ and ht = xt − x∗, the above expression is

1

2
kht+1k ≤ kht − ηA>Aht − ηεtpk ≤ k(1− ηA>A)htk+ ηkεtpk (12)

We now bound the two terms in the expression above separately as follows. The first term is bounded
using matrix norm inequalities Using Corollary 2 (in Appendix A) of (S, γ, β)-RIP:

k(1− ηA>A)htk ≤ max{1− ηλmin, ηλmax − 1}khtk

where λmin and λmax are the minimum and maximum eigenvalues of A>A restricted on set S, and via
Corollary 2, λmin = (1− α), λmax = (1 + α).

Hence the first term in the right side of Eq.12 is bounded as:

k(1− ηA>A)htk ≤ ρokhtk.

where ρo = max{1− η(1− α), η(1 + α)− 1}. The second term in Eq.12 is bounded via Lemma 2 as follows:

kεtpk ≤ δokxt − x∗k

as long as kx0 − x∗k ≤ δikx∗k.
Substituting back in Eq.12,

kxt+1 − x∗k ≤ 2(ρo + ηδo)kxt − x∗k := ρkxt − x∗k.

Then, if we pick constant η = 1
1+α+1−α = 1 that minimizes ρ := 2(max{1− η(1− α), η(1 + α)− 1}+ ηδo), to

yield ρ = 2(α + δo) then we obtain the linear convergence criterion as follows:

kxt+1 − xk ≤ ρkxt − xk.

Here, if we set α = 0.1 and δo = 0.36 from Lemma 2, then ρ = 0.92 < 1. Note that this proof relies on a
bound on the phase error kεtpk which is established via Lemma 2 as follows:

Lemma 2. Given initialization condition kx0 − x∗k ≤ δikx∗k, then if one has Gaussian measurements

A ∈ Rn×d such that n = O k1
LP

l=2

kl log d , then with probability 1− e−c2n , the following holds:

kεtpk = kA>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt))k ≤ δokxt − x∗k

for constant c2 and δo = 0.36.

Proof of Lemma 2 can be found in Appendix A.
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A Supplementary lemmas

Corollary 1. For parameter α > 0, if a matrix A ∈ Rn×d satisfies (S, 1 − α, 1 + α)-RIP with probability

1− e−cα2
on, for all x ∈ S, then for x1, x2 ∈ S,

(1− α)kx1 − x2k2 ≤ kA(x1 − x2)k2 ≤ (1 + α)kx1 − x2k2,

holds with probability 1− e−c2α
2
on, where c2 < c.

Proof. Since x1, x2 ∈ S, both x1, x2 lie in the union of k1-dimensional subspaces, the difference vector
x3 = x1 − x2 ∈ S 0, lies in a union of 2k1-dimensional subspaces. For (S, 1− α, 1 + α)-RIP to hold for the

difference set, one continues to require n = O
k1

PL
l=2 kl log d

α2
1

.

Corollary 2. If A satisfies set-restricted RIP and ht = xt − x∗, with xt, x∗ ∈ S then

k(1− ηA>A)htk ≤ max{1− ηλmin, ηλmax − 1}khtk

with λmin = (1− α) and λmax = (1 + α).

Proof. Consider h ∈ S 0, where h = ht = xt − x2 and xt, x∗ ∈ S. Then from Set-RIP and Corollary 1,

(1− α)khk2 ≤ kAhk2 ≤ (1 + α)khk2.

From Eq. 8, if x1, x2 ∈ S, then it is possible to write h to arise from a union of 2k1-dimensional subspaces of
the form h = Bw. Then,

(1− α)kBwk2 ≤ kABwk2 ≤ (1 + α)kBwk2 (13)

where w ∈ R2k1 . We need to evaluate the eigenvalues of kA>Ak restricted on set S 0, which we can do by
inducing a projection on the union of subspaces B as

kA>Ahk = kB>A>ABwk

Therefore, the minimum and maximum eigenvalues of kA>Ak restricted on set S 0 are

σmin(AB) ≤ kB>A>AB̄k2 ≤ σmax(AB)

Then, using Eq.13, (1− α)σmin(B) ≤ kB>A>ABk2 ≤ (1 + α)σmax(B).
Since B predominantly consists of a product of upsampling matrices and latent code Z1, which can be

always chosen such that σmax(Z1) ≈ σmin(Z1), therefore σmax(B) ≈ σmin(B) ≈ 1.

Lemma 2. Given initialization condition kx0 − x∗k ≤ δikx∗k, then if one has Gaussian measurements

A ∈ Rn×d such that n = O k1
LP

l=2

kl log d , then with probability 1− e−c2n , the following holds:

kεtpk = kA>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt))k ≤ δokxt − x∗k

for constant c2 and δo = 0.36.

Proof. We adapt the proof of Lemma C.1. of [30] as follows.
We define indicator function 1(a>

i xt)(a>
i x∗)<1 = 1

2 (1−sign(Ax∗)◦sign(Axt)) with zeros where the condition
is false and ones where the condition is true.

Then we are required to bound the following expression:

kεtpk2 = 2

nX
i=1

(a>i x
∗)2 · 1(a>

i xt)(a>
i x∗)<1 ≤ δ2okxt − x∗k2
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Following the sequence of arguments in Lemma C.1. of [30] (or Lemma C.1 of [37]), one can show that for
a given xt,

kεtpk2 ≤ δ2o + κ +
3c1κ

δi
< 0.13 + κ +

3c1κ

δ
(14)

with high probability, 1− e−cnκ2

, for small constants c, c1, δ, as long as kxt−x∗k ≤ 0.1kx∗k2. Here the bound

on δ2o (in this case 0.13) is a monotonically increasing function of the distance δti = kxt−x∗k2

kx∗k2
.

If the projected gradient scheme produces iterates satisfying

kxt+1 − x∗k < ρkxt − x∗k

with ρ < 1, then the condition in Eq. 14 is satisfied for all t = {1, 2, . . . T} as long as the initialization x0

satisfies kx0 − x∗k ≤ 0.1kx∗k2 (i.e. δ0i := δi = 0.1).
Now, the expression in Eq. 14 holds for a fixed xt. To ensure that it holds for all possible x ∈ S, we need

to use an epsilon-net argument over the space of variables spanned by S. The cardinality of S is

card(S) < dk1
PL

l=2 kl

as seen from the derivation of RIP in Lemma 1. Therefore,

kεtpk ≤ 0.13 + κ +
3c1κ

δi

with probability 1− dk1
PL

l=2 kle−cnκ2

for small constant c. To ensure that high probability result holds for
all x ∈ S,

ek1
PL

l=2 kl log de−cnκ2

< e−c2n

k1

LX
l=2

kl log d− cnκ2 < −c2n

n >
1

cκ2 − c2
k1

LX
l=2

kl log d > c3k1

LX
l=2

kl log d

for appropriately chosen constants c, c2, c3.

Note that this Theorem requires that the weights are initialized appropriately, satisfying kx0−x∗k ≤ δikx∗k.
In Section 8 we perform rigorous experiments to show that random initialization suffices to ensure that δi is
small.

We state the partitioning argument, which is borrowed from Lemma 8.3 of [6] directly, as follows.

Lemma 3. Number of partitions [6]. Consider d different k − 1 dimensional hyperplanes in Rk. Then, the
number of k-dimensional partitions (also called k-faces) such that relative to each partitioning hyperplane, all
points inside a partition are on the same side, is O(dk).

Finally we state the statement for Oblivious Subspace Embedding, which is the core theoretical lemma
required for proving our RIP result.

Lemma 4. Oblivious subspace embedding (OSE) [38]. A (k, α, δ)-OSE is a random matrix Πn×d such that
for any fixed k-dimensional subspace S and xd×1 ∈ S, with probability 1− δ, Π is a subspace embedding for S
with distortion α, where n = O(α−2(k + log( 1

δ ))).

The failure probability is δ = e−cnα2+ck, for small constant c and the embedding satisfies:

(1− α)kxk2 ≤ kΠxk2 ≤ (1 + α)kxk2.
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