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ABSTRACT

Phaseless subspace tracking is the problem of recovering a
time sequence of discrete signals from magnitude-only mea-
surements of their linear projections, when the true signal lies
in a low-dimensional subspace that can change with time. A
typical assumption used in a lot of work is that the subspace
changes gradually over time. We define this as (i) the max-
imum principal angle between the old and new subspaces is
not too large (less than 90 degrees) or the number directions
that changes is few or both; and (ii) the delay between sub-
space change times is large enough. This paper presents a
novel algorithm, that we call PhaST, for model-free, mini-
batch and fast Phaseless Subspace Tracking. We show via ex-
periments that PhaST is significantly faster, and significantly
more memory-efficient, than an existing algorithm for low-
rank phase retrieval (which can be interpreted as a batch ver-
sion of phaseless subspace tracking that does not assume any-
thing about subspace changes). When fewer measurements
are available, it also has significantly better recovery perfor-
mance than both LRPR and single signal phase retrieval meth-
ods when its structural assumptions are valid.

Index Terms— Phase retrieval, PCA, low-rank

1. INTRODUCTION
The Phase Retrieval (PR) problem occurs in many applica-
tions such as ptychography, crystallography, astronomy. The
original PR problem involves recovering an n length signal `
from the magnitudes of its Discrete Fourier Transform (DFT)
coefficients. Generalized PR (see [1] and [2]) replaces DFT
by inner products with any set of measurement vectors, di.
Thus, the goal is to recover ` from |〈di, `〉|, i = 1, 2, . . . ,m.
It is clear that, without extra assumptions, PR will require
m ≥ n. In recent works, structural assumptions such as
sparsity (see [3, 4, 5]) or low-rank (see [2]) have been in-
corporated into the PR problem in order to reduce the number
of measurements m required for exact or accurate recovery.
Low-rank has been used in two ways. One is to assume that
a single signal re-arranged as a matrix (or a single image) is
itself approximately or exactly low-rank. The goal is to re-
cover this low-rank “signal” from its phaseless linear projec-
tions [6, 7]. The second is to assume that a time sequence
of signals (or vectorized images) together form a matrix that
is well modeled as being low-rank. Each signal/image is one
column of this matrix. The measurements are phaseless lin-

ear projections of each signal or image (each column of the
matrix) [2]. This problem has been referred to as “Low-Rank
Phase Retrieval (LRPR)” in [2] where it was first studied.

Another way to interpret the LRPR problem is as fol-
lows [2]. We need to recover a time sequence of signals `t,
t = 1, 2, . . . , d, that are assumed to be generated from an
unknown low dimensional subspace. Mathematically, `t =
Pat, where P is an n× r basis matrix (tall matrix with mu-
tually orthonormal columns) with r � n, and at is an r × 1
coefficients’ vector. For each `t, t = 1, 2, . . . , d, we have
access to m phaseless measurements, yi,t = |〈di,t, `t〉|, i =
1, 2, ...m, t = 1, 2, ...d. The goal is to either just recover the
subspace, span(P ), or to recover both span(P ) and the co-
efficients and hence recover the signals `t’s (equivalently, re-
cover the low-rank matrix L := [`1, `2, . . . , `d]).

This work studies the Phaseless Subspace Tracking prob-
lem. This can be simply understood as the dynamic or time-
varying subspace extension of LRPR. Thus, instead of the
subspace span(P ) being fixed, we assume that it can change
with time, albeit slowly. Time varying subspaces is a better
model (than just fixed subspace) for long data sequences, e.g.,
long image sequences or videos, because if one tries to use a
single low-dimensional subspace to represent the entire data
sequence, the required subspace dimension may end up being
quite large. This can be problematic because it means that the
resulting data matrix may not be sufficiently low-rank.

The most general model for time-varying subspaces is to
allow the subspace to change at each time. However such a
model involves too many unknowns. An r dimensional sub-
space in n-dimensional ambient space is fully specified by nr
parameters. But the signal `t is an n×1 vector (has only n un-
knowns). Thus, allowing the subspace to change at each time
will result in an increase in the number of unknowns per time
instant from n to nr (rather than a decrease which is the pur-
pose of incorporating structure into the PR problem). A less
general model, but one that prevents an increase in the number
of unknowns, is to assume that the data subspace is piecewise
constant with time. This model has been extensively used in
the robust subspace tracking literature [8, 9, 10]. We will use
this model here as well. We explain it next.

Notation. ‖ · ‖ denotes the l2 norm of a vector or the
induced l2 norm of a matrix. For other lp norms, we use ‖·‖p.

A matrix with mutually orthonormal columns is referred
to as a “basis matrix”. For basis matrix P we let P⊥ to be
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a basis for the subspace orthogonal to subspace spanned by
P . For basis matrices P̂ ,P , the subspace error (SE) between
their respective column spans is quantified by SE(P̂ ,P ) :=
‖P̂⊥P ‖. This measures the sine of the principal angle be-
tween the subspaces.

For any two integers i1, i2, the interval [i1 : i2] denotes the
set of integer values {i1, i1 + 1, . . . , i2} and interval [i1 : i2)
denotes the set {i1, i1+1, . . . , i2−1}. Also, for integer values
of t and α we let [t;α] = {t− α+ 1, . . . , t}.

Problem Setting. For the identifiability reason explained
above, we assume a piecewise constant (with time) model on
subspace change. Denote the subspace change times by tj for
j = 1, 2, . . . , J and let t0 = 0. We assume that `t = Pjat for
all t = tj , tj + 1, tj + 2, . . . , tj+1 − 1. The goal is to recover
the `t’s and their subspaces from m phaseless measurements
at each time, i.e., from yi,t := |〈di,t, `t〉|, i = 1, 2, . . . ,m
for each t = 1, 2, . . . , d. Here, di,t is measurement vector
and we let Dt = [d1,t,d2,t, . . . ,dm,t] to be measurement
matrix at time t. Similarly, we define phaseless measurement
vector yt = [y1,t, y2,t, . . . , ym,t]

′ at time t. Then, yt can be
presented as yt = |D′t`t|.

We assume that the subspace changes are gradual or
“slow”. This means the following:

• SE(Pj−1,Pj) ≤ ∆ � 1, or only a few subspace di-
rections change at each tj , or both (we need at least one
of these two assumptions to hold);
• and the delay between subspace change times, qj :=

minj(tj+1 − tj), is large enough. Of course this delay
needs to be at least r to even compute the subspace even
when `t’s are directly available.

Under this model, the question is when can one solve this
problem either using a smaller m per signal than what is
needed for LRPR? Moreover, can we get a faster and more
memory-efficient mini-batch solution instead of the LRPR
algorithm which is a batch one (and hence slow and memory-
intensive)?

The LRPR work [2] has demonstrated that just exploiting
the low-rank assumption enables a reduction in the required
m compared to simple PR done for each signal `t individ-
ually. However, the time complexity of LRPR is roughly r
times higher than that of simple PR; while its memory re-
quirement is equal to the size of the entire batch of data.
This can be prohibitive for large-sized image sequences. This
work aims to achieve a significant speed up while also signifi-
cantly reducing the memory complexity of the resulting mini-
batch approach. Moreover, we also show empirically that our
proposed algorithm, which we call “fast Phaseless Subspace
Tracking (PhaST)”, needs a smaller m or accurate recovery
when compared with LRPR (and of course with simple PR,
e.g., the truncated Wirtinger Flow (TWF) algorithm of [1].

Algorithm 1 An overview of the proposed PhaST algorithm;
for simplicity we present a version of the algorithm that as-
sumes tj known; we explain the approach to detect tj in the
text. Our actual code used for all our experiments does not
assume tj known.

Input: {yt,Dt}, K, α, TP = 2, Ta.
1: Initialize: j ← 0, k ← 1.
2: P̂0 ← LRPR algorithm with {yt,Dt}t=0:ttrain

3: for t > ttrain do
4: if t = tj + α then
5: P̂ new

j,1 ← top r eigenvectors of ỸP (P̂j−1) with
ỸP (P̂ ) as given in (3).

6: P̂ init
j,1 ← [P̂j−1, P̂

new
j,1 ]

7: for τ ∈ [t;α] do
8: âinitτ ← top eigenvector of Ya(P̂ init

j,1 ) with
Ya(P̂ ) defined in (2).

9: for v ∈ [1 : Ta] do
10: Ĉτ ← Phase(Dτ P̂

init
j,1 âτ )

11: âinitτ ← arg minã ‖Ĉτyτ −Dτ P̂
init
j,1 ã‖2

12: end for
13: end for
14: L̂init = P̂ init

j,1 Âinit
t;α

15: P̂
(0)
j,1 ← top r singular vectors of L̂init

16: else if t = tj + kα, k = 2, . . . then
17: P̂

(0)
j,k ← P̂j,k−1.

18: end if
19: if t = tj + kα, k = 1, . . . then
20: if k = 1 set Tp ← 3 else if k = 2, . . . ,K set

Tp ← 2
21: for v = 1, . . . , Tp do
22: for τ ∈ [t;α] do
23: âτ ← top eigenvector of Ya(P̂

(v−1)
j,k )

24: end for
25: for u = 1, . . . , Ta do
26: for τ ∈ [t;α] do
27: Ĉτ ← Phase

(
D′τ P̂

v−1
j,k âτ

)
28: âτ ← arg mina ‖Ĉτyτ −

Dτ P̂
v−1
j,k a‖2

29: end for
30: end for
31: P̂

(v)
j,k ← arg minP

∑
τ∈[t;α]

∑m
i=1 ‖Ĉτyτ −

Dτ
′P âτ‖2

32: end for
33: P̂j,k ← P̂

(Tp)
j,k

34: if t = tj+1 then
35: P̂j ←− P̂

(Tp)
j,k , k ← 0, j ← j + 1

36: end if
37: k ← k + 1
38: end if
39: Output: L̂j,k := P̂

(1)
j,k Âj,k with Âj,k := [âτ ][t;α]

40: end for
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Our Contribution. This work takes the first steps to-
wards a mini-batch and model-free phaseless subspace track-
ing algorithm that we call “fast Phaseless Subspace Track-
ing (PhaST)”. We show via experiments that PhaST is signif-
icantly faster, and significantly more memory-efficient than
LRPR, while still being more accurate than LRPR when m is
small. Of course this holds only when the slow changing sub-
space assumption holds. Under this assumption, it also needs
a smaller m than simple (single signal) PR methods. These
methods needm ≥ n, while both LRPR and PhaST can toler-
ate smaller m’s because they exploit structural assumptions.

We studied a preliminary model-based version of the
phaseless subspace tracking problem in [11]. That work
assumed a very specific model on subspace change: it re-
quired that only one subspace direction change at each time
while the rest of the subspace needed be fixed. Moreover,
it needed a very accurate estimate of the previous subspace
before it could detect or track changes; and it did not pro-
vide any experimental verification of a true tracking approach
with multiple subspace changes. This work removes all of
these requirements and demonstrates automatic detection and
tracking of subspace changes.

2. FAST PHASELESS SUBSPACE TRACKING
(PHAST)

Our proposed algorithm, which we term “PhaST”, consists
of two parts. The first part is to detect if there has been any
change in the subspace. The second part is to update (obtain
better and better estimates of) the changed subspace on-the-
fly (in a mini-batch fashion).

To understand the main idea of the update steps, first as-
sume that tj is known. We split the update step into recover-
ing α-consecutive-column-sub-matrices of L at a time. Let
Lt;α := [`t−α+1, `t−α+2, . . . , `t] to be one α column in-
terval in [tj : tj+1). Then Lt;α := PAt;α in this inter-
val with P = Pj . For each such sub-matrix, we have ac-
cess to m measurements per column, i.e., we have yi,τ :=
|di,τ ′Pjaτ |, i ∈ [1 : m], τ ∈ [t;α]; and we also have access
to a subspace estimate P̂ available from the previous interval.
Recall that [t;α] := [(t−α+ 1) : t]. Suppose SE(P̂ ,P ) ≤ b
with b small. We would like to solve for P̃ , ã that minimize∑

τ∈[t;α]

∑
i∈[1:m]

|yi,τ − |di,τ ′P̃ ãτ ||2, (1)

subject to the constraint that SE(P̂ ,P ) ≤ b. Alternatively
when b is unknown, we could instead try to solve the La-
grangian (unconstrained) version of this problem. In either
case, if we tried to develop an alternating minimization (alt-
min) solution that alternates over P , aτ ’s, and the measure-
ments’ phase matrices Cτ := diag(phase(Dτ

′Paτ )), we
would not get a closed-form update rule for P . One trick that
is often used in such situations is the following: an indirect
way to impose a constraint of the form distance(x0,x) ≤ b
(small) when minimizing a cost function over x is to start the

alt-min algorithm with initialization x0 and then to run only
one (or a few) iterations of alt-min for the unconstrained prob-
lem over x. In our setting, this means we initialize the alt-min
algorithm with P̂ , and run only one or two iterations of alt-
min to minimize (1) over P ; of course for each value of P ,
we run many iterations of alt-min over aτ ’s and Cτ ’s. This
also needs init for aτ ’s. Given a P̂ , we initialize aτ using
the approach introduced for LRPR [2]: compute aτ as the top
eigenvector of

Ỹa(P̂ ) := P̂ ′

(
1

m

m∑
i=1

y2
i,tdi,td

′
i,t

)
P̂ . (2)

When b is not small, but the subspaces are still close in
other metrics (for example, if a large part of the subspace
does not change at all, c.f. the model of [11]), we can still
leverage knowledge of P̂ as follows. We initialize the alt-
min solution not with P̂ , but with a spectral initialization step
that uses P̂ to first find the “newly added subspace” (basis
for P̂⊥′P ), followed by using a simple trick to delete the
removed directions. Let Padd denote a basis for P̂⊥′P . Us-
ing a simple modification of the idea developed in our earlier
work [11], our spectral initialization step computes P̂add as
the top r eigenvectors of the matrix

ỸP (P̂ ) :=

(I − P̂ P̂ ′)

 1

mα

∑
τ∈[t;α]

∑
i∈[1:m]

yi,τdi,τdi,τ
′

 (I − P̂ P̂ ′).

(3)

We then let P init,temp := [P̂ , P̂add]. Notice here that be-
cause of the initialization approach, P̂ init,temp is a n × 2r
matrix. Using this we initialize the coefficient vectors, aτ ,
(which are now 2r length vectors) as explained above but
with P̂ is replaced by P̂ init,temp followed by obtaining im-
proved estimates via minimizing (1) by alt-min over aτ and
Cτ (phase matrix) with P̂ held constant at P̂ init,temp. We
then set L̂init,tempt;α := P̂ init,tempÂ. By compute its top r
left singular vectors, we get a good r-dimensional initializa-
tion of the subspace. We denote this by P̂ init.

The complete algorithm is summarized in Algorithm 1. It
splits the matrix L into α-consecutive column intervals, fol-
lowed by recursively getting better and better estimates of the
subspace P := Pj . When a subspace change is detected,
the subspace change is assumed to be large (b is not small
enough) and hence at this time the above initialization step
is needed. After at least one estimate of the new subspace is
computed, it assumes b is small enough and P can be initial-
ized just with the previous final subspace estimate.

3. EXPERIMENTS
This section provides two distinct set of experiments. To
generate the data we adopt a similar approach as in [11]
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Fig. 1: Subspace error of Pj vs. time for n = 500, m = 400,
r = 10, radd = 10, and θ = 15. Here, J = 3, α = 300, and
t0 = 0, t1 = 3300, t3 = 6300. LRPR-α shows subspace error when
it is fed with one mini-batch at each time. LRPR-whole shows error
when data of all time sequences is fed to LRPR and the obtained
error is repeated for the time to simplify the representation in this
case. Average time taken per column and the memory complexity is
reported in the legend. Memory needed by PhaST and LRPR-α is
nα = 300n. TWF needs smaller memory of size n and is faster.

for a general case with more than one direction is chang-
ing. Let Pj−1,chg denote directions from span(Pj−1) that
changes at tj and let Pj,chd denote its changed version, then
span(Pj−1) can be written as span([Pj−1,fix,Pj−1,chg]) and
span(Pj) as span([Pj−1,fix,Pj,chd]), where Pj−1,fix is an
n × (r − radd) matrix corresponding to the fixed part of the
subspace at tj . This model allows only a part of the subspace
to change. In our experiments here, we generate Pj,chd as
Pj,chd = Pj,add sin θj − Pj−1,chg cos θj with a single angle
for all changed columns (only for simplicity). Here Pj,add

contains a set of radd ≤ r directions from span(Pj−1
⊥).

Beginning with t0 = 0, the subspace changes at t1 = 3300
and t2 = 6300. All experiments are averaged over 50 Monte-
Carlo repeats.

To illustrate the performance of proposed method, we
consider two different scenarios. The first scenario models
situations where the change is very small and aims at evalu-
ating robustness of PhaST for cases with small values of θ.
The second scenario is designed to show performance of the
algorithm with larger values of θ. Both experiments are done
for the setting with n = 500, m = 400, r = 10. PhaST uses
K = 3, α = 300, TP = 2, Ta = 10. Detection is done
with a similar approach as in [11]. The algorithm assumes
that the subspace remains unchanged at least for three α time
sequences. After three α time intervals of the last detected
change, detection phase of the algorithm starts. Threshold
constant for detection is set to 1.75 for both experiments.
Figure 1 illustrates simulation results for the first scenario
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Fig. 2: Subspace error of Pj vs. time for n = 500, m = 400,
r = 10, radd = 4, and θ = 75. Here, J = 3, α = 300, and t0 = 0,
t1 = 3300, t3 = 6300. Average time taken per column is reported

with θ = 15 and radd = 10. As figure suggests, PhaST
is robust to small changes. Figure 2 belongs to the second
scenario with θ = 75, radd = 3, and shows the ability of
PhaST to detect larger changes.

To demonstrate the superiority of proposed algorithm, we
compare it with two other existing state of the art PR meth-
ods, namely, LRPR and TWF. Comparison with LRPR can be
done in two different ways. First is to feed LRPR with data
of all time sequences. Hence q =

∑
j qj for LRPR. Although

more measurements are available in this case, LRPR is unable
to recover the subspace.

Another way of evaluating LRPR is to feed it with data of
one mini-batch at each time. Since LRPR does not take ad-
vantage of the previous subspace estimates, it shows almost
the same performance for different such batches. On the other
hand TWF is also not taking advantage of the previous knowl-
edge and hence its performance is almost the same for every
column. Therefore since these approaches do not work for all
time sequences as it can be seen in Fig. 1, we just report the
average error of first 5 mini-batches for 50 independent tri-
als in Fig. 2. Number of loop iterations for LRPR and TWF
are 20. Number of power method iterations used in TWF ini-
tialization is 50 and parameter settings are the same as sug-
gested in [1]. Simulation results confirm that PhaST needs
less number of measurements to track the subspace than what
is needed by TWF and LRPR. Besides it makes shorter delay
than LRPR.

4. CONCLUSION
This paper proposed a novel algorithm for model-free, mini-
batch and fast Phaseless Subspace Tracking and provided first
simulation results for complete PST algorithm. Experiments
show that PhaST is memory efficient and needs less sample
complexity in comparison with existing PR methods. Provid-
ing convergence analysis and real world applications will be
part of the future work.
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