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Abstract—We consider the problem of recovering a signal
x∗ ∈ Rn, from magnitude-only measurements, yi = |hai,x

∗i|
for i = {1, 2, . . . ,m}. This is a stylized version of the classical
phase retrieval problem, and is a fundamental challenge in nano-
and bio-imaging systems, astronomical imaging, and speech
processing. It is well known that the above problem is ill-posed,
and therefore some additional assumptions on the signal and/or
the measurements are necessary.

In this paper, we consider the case where the underlying
signal x∗ is s-sparse. For this case, we develop a novel recovery
algorithm that we call Compressive Phase Retrieval with Alternat-
ing Minimization, or CoPRAM. Our algorithm is simple and be
obtained via a natural combination of the classical alternating
minimization approach for phase retrieval with the CoSaMP
algorithm for sparse recovery. Despite its simplicity, we prove
that our algorithm achieves a sample complexity of O s2 logn
with Gaussian measurements ai, which matches the best known
existing results; moreover, it also demonstrates linear convergence
in theory and practice. An appealing feature of our algorithm is
that it requires no extra tuning parameters other than the signal
sparsity level s. Moreover, we show that our algorithm is robust
to noise.

The quadratic dependence of sample complexity on the spar-
sity level is sub-optimal, and we demonstrate how to alleviate
this via additional assumptions beyond sparsity. First, we study
the (practically) relevant case where the sorted coefficients of
the underlying sparse signal exhibit a power law decay. In this
scenario, we show that the CoPRAM algorithm achieves a sample
complexity of O (s logn), which is close to the information-
theoretic limit.

We then consider the case where the underlying signal x∗

arises from structured sparsity models. We specifically examine
the case of block-sparse signals with uniform block size of b and
block sparsity k = s/b. For this problem, we design a recovery
algorithm that we call Block CoPRAM that further reduces the
sample complexity to O (ks logn). For sufficiently large block
lengths of b = Θ(s), this bound equates to O (s logn).

To our knowledge, our approach constitutes the first fam-
ily of linearly convergent algorithms for signal recovery from
magnitude-only Gaussian measurements that exhibit a sub-
quadratic dependence on the signal sparsity level.

Index Terms—Phase retrieval, sparsity, non-convex optimiza-
tion, alternating minimization, structured sparsity, block-sparsity.
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I. INTRODUCTION

A. Motivation

IN this paper, we consider the problem of recovering a
high-dimensional vector x∗ ∈ Rn from (possibly noisy)

magnitude-only linear measurements (or samples). That is, for
ai ∈ Rn, if

yi = |hai,x∗i| , for i = 1, . . . ,m, (1)

then the task is to recover x∗ using the samples y and the
matrix A = [a1 a2 . . . am]>.

Problems of this kind arise in numerous scenarios in
machine learning, imaging, and statistics. For example, the
classical problem of phase retrieval is encountered in imaging
systems including diffraction imaging, X-ray crystallography,
ptychography, and astronomical imaging [2], [3], [4], [5], [6].
For such systems, the physics of light acquisition are such that
the optical sensors can only record the intensity of the light
waves but not its phase. In terms of our setup, the vector x∗

would correspond to an image (possessing a resolution of n
pixels) and the measurements correspond to the magnitudes
of its 2D Fourier transform coefficients. The goal is to stably
recover the image x∗ from the measurements, ideally with as
few observations (i.e., as small m as possible).

Despite the prevalence of several heuristic approaches [7],
[8], [9], [10] to solve (1), it is generally accepted that (1) is
a very challenging nonlinear, ill-posed inverse problem both
in theory and practice. Indeed, for generic ai and x∗, one
can show that (1) is NP-hard by reduction from certain well-
known combinatorial problems [11]. Therefore, additional
assumptions on the vector x∗ and/or the measurements ai are
necessary.

A recent line of breakthrough results [12], [13], [14] have
provided provably efficient algorithmic procedures for the spe-
cial case where the measurement vectors are randomly drawn
from certain multi-variate probability distributions (such as
i.i.d. Gaussian distributions). By convention, we will continue
to term such methods as “phase retrieval” algorithms. How-
ever, all these newer results require an “overcomplete” set
of observations, i.e., the number of observations m exceeds
the problem dimension n, sometimes by a significant amount.
This requirement can pose severe limitations on computation,
storage, and processing the measurements, particularly in the
high-dimensional regime when m and n are very large. Our
focus in this paper is to address the following:



2

Challenge: Can we solve the phase retrieval prob-
lem using very few samples (in particular, signifi-
cantly fewer samples than the problem dimension)?

A possible solution to the above challenge is to leverage
the fact that in many practical applications, x∗ often obeys
certain low-dimensional structural assumptions. A common
structural assumption used in imaging applications is that x∗

is s-sparse in some known basis, such as the identity or the
wavelet basis. For transparency, we assume that the sparsity
basis is the canonical basis throughout this paper, unless
otherwise specified. Similar structural assumptions form the
core of sparse recovery, compressive sensing, and streaming
algorithms [15], [16], [17], and it has been established that
only O s log n

s samples are necessary for stable recovery of
x∗; moreover, the dependence of the number of samples on n
and s is information-theoretically optimal [18].

Solving the sparsity-constrained version of (1) (sometimes
referred to as sparse phase retrieval in the literature) is there-
fore a natural next step, and numerous approaches have been
proposed in this regard. These include a variant of alternating
minimization [14], methods based on convex relaxation [19],
[20], [21], and iterative thresholding-based techniques [22],
[23]. However, all existing methods suffer from one (or more)
of the following drawbacks:

1) Somewhat curiously, all of the above algorithms incur
a sample complexity of Ω(s2 log n) for stable recov-
ery, which is quadratically worse than the information-
theoretic limit of O s log n

s
1.

2) Most algorithms suffer from a running time that is
quadratic (or worse) in the dimension of the signal [19],
[22].

3) Many algorithms require stringent assumptions on the
minimum (absolute) value of the nonzero signal coeffi-
cients [14], [23].

4) Typically, these algorithms require tuning of several
parameters for their proper functioning [19], [22], [23].

Finally, in specific applications, more refined structural as-
sumptions on x∗ beyond sparsity are applicable. For example,
point sources in astronomical images often produce clusters of
nonzero pixels in a given image, while wavelet coefficients of
natural images often can be organized as connected sub-trees.
Algorithms that leverage such structured sparsity assumptions
have been shown to achieve considerably improved sample-
complexity in statistical learning and sparse recovery prob-
lems [30], [31], [32]. Indeed, a plethora of algorithms for mod-
eling several types of structured sparsity constraints, including
block-sparsity [31], [33], tree sparsity [34], [31], [35], [36],
clusters [37], [33], [38], and graph-based models [39], [38],
[40]. However, a systematic approach that leverage structured
sparsity models in the context of phase retrieval does not seem
to have been studied in the literature.

1Exceptions to this rule are the approaches of [24], [25], [26], [27], [28],
[29], which indeed achieve near-optimal sample complexity and/or running
time; however, these schemes are applicable only for very carefully designed
measurements ai.

B. Our contributions
In this paper, we establish a flexible algorithmic framework

that systematically leverages (structured) sparsity-based signal
models for the phase retrieval problem. We rigorously show
that our approach matches the best available state-of-the-art
sparse phase retrieval2 methods both from a statistical as
well as computational viewpoint. Next, we show that it is
possible to extend this algorithm to the case where the signal
obeys certain types of block-sparsity structures, thereby further
lowering the sample complexity of stable signal recovery.

1) We first consider the standard case where the underlying
signal x∗ is s-sparse (i.e. it has underlying model Ms,
where Ms consists of all s-sparse vectors of dimension
n). For this case, we develop a novel recovery algo-
rithm that we call Compressive Phase Retrieval with
Alternating Minimization, or CoPRAM. Our algorithm
is simple and be obtained via a natural combination
of the classical alternating minimization approach for
phase retrieval with the CoSaMP algorithm for sparse
recovery, together with a smart initialization. Despite
its simplicity, we prove that our algorithm achieves a
sample complexity of O s2 log n with Gaussian sam-
pling vectors ai in order to achieve linear convergence,
which matches the best among all available existing
results. An appealing feature of our algorithm is that
it requires no extra a priori information or tuning
parameters other than the signal sparsity level s, and that
it requires no assumptions whatsoever on the nonzero
signal coefficients. Finally, we show that our algorithm
is stable with respect to noise in the measurements. To
our knowledge, this is the first algorithm for sparse phase
retrieval that simultaneously achieves all of the above
properties3.

2) Next, following the setup of [20], we consider the case
where the signal coefficients exhibit a power-law decay.
Specifically, without loss of generality, suppose that the
indices of x∗ are such that |x∗

1| ≥ |x∗
2| ≥ . . . |x∗

s| >
0 and x∗

j
2 ≤ C(α)

jα . Then, we can prove that our
CoPRAM algorithm exhibits a sample complexity of
m > O (s log n), which is very close to the information
theoretic limit.

3) Finally, we consider the case where the underlying signal
x∗ belongs to an a priori specified structured sparsity
model. We specifically examine the case of block-sparse
signals with uniform block size b (i.e., the s non-zeros
can be equally grouped into k = s/b non-overlapping
blocks). We can equivalently say that the signal x∗ has
underlying model Mb

s. For this problem, we design a
recovery algorithm that we call Block CoPRAM. We
analyze this algorithm and show that leveraging block-
structure further reduces the sample complexity of stable
recovery to O (ks log n). For sufficiently large block
lengths of b = ω(s), or block sparsity k ≈ 1, this bound

2Note that we use the terms sparse phase retrieval and compressive phase
retrieval interchangeably throughout the course of this paper.

3During peer review, it was pointed out to us that a careful combination of
the techniques from [22] and [23] with additional analysis will also lead to
similar results.
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equates to O (s log n) which, again, is very close to the
information theoretic limit. We also demonstrate that the
more challenging case of overlapping blocks can also
be solved using our technique, with a constant factor
increase in sample complexity.

To our knowledge, this constitutes the first linearly con-
vergent series of algorithms for phase retrieval where the
(Gaussian) sample complexity has a sub-quadratic dependence
on the sparsity level of the signal. A comparative description
of the performance of our algorithms is presented in Table I.

C. Techniques

Sparse phase retrieval. Our proposed CoPRAM algorithm
is conceptually very simple. It integrates existing approaches
in stable sparse recovery (specifically, the CoSaMP algo-
rithm [41]) for sparse signal estimation with the alternating
minimization approach for phase retrieval proposed in [14]4.

A similar integration of sparse recovery with alternating
minimization was also introduced in the work of [14]; how-
ever, their approach only succeeds when the true support of the
underlying signal is accurately identified during initialization.
This can be fairly challenging to achieve in realistic situations
when the signal coefficients are of differing magnitudes.
Instead, CoPRAM permits the support of the estimate to
evolve across iterations, and therefore can iteratively “correct”
for any errors made during the initialization. Moreover, their
analysis requires using fresh samples for every new update
of the estimate, while our analysis succeeds in the (more
practically useful) setting of using all the available samples
at our disposal.

Our first challenge is to identify a good initial guess of
the signal. As is the case with most non-convex algorithmic
techniques, CoPRAM requires an initial estimate x0 that is
relatively close to the true vector x∗. To this end, we use
a variant of the spectral initialization procedure previously
proposed in [23]. The basic idea is to identify “important” co-
ordinates by constructing suitable biased estimators of each
signal coefficient, followed by a specific eigendecomposition.
However, the initialization in CoPRAM is far simpler than
the approach in [23]; we perform no pre-processing of the
measurements and our method requires no tuning parameters
other than the sparsity level s. We also provide a novel
analysis of this modified initialization procedure. A draw-
back of the theoretical results of [23] is that they impose a
minimum requirement on every non-zero entry of the true
vector x∗: x∗

min ≡ minj∈S |x∗
j | = C kx∗k2 /

√
s. However,

this assumption is equivalent to supposing that all nonzero
coefficients are approximately the same magnitude, which can
be unrealistic; in the case of real-world signal and image
data, the (sorted) coefficients usually obey a power-law decay,
which violates these constraints. Our analysis removes this
requirement; the high level idea in our approach is to show
that a coarse estimate of the support will suffice, since any
errors in support identification necessarily have to coincide

4It is worthwhile to note that the high level idea of alternately estimating
the phase and the signal is classical, dating back to the work of Gerchberg
and Saxton [7].

with small coefficients. Our approach also differs from the
method adopted in [22], which selects indices corresponding
to large coefficients based on a parameter-dependent threshold
value. The support estimation step of our algorithm, coupled
with the spectral decomposition method in [22] gives us a
suitable initialization. We prove that the sample complexity for
achieving this initial estimate of x∗ is O s2 log n , matching
that of the best available previous methods.

Our next challenge is to show that starting from a good
initial guess, an alternating procedure that switches between
estimating the phases and estimating the sparse signal (using
CoSaMP) converges rapidly to the desired solution. To this
end, we unpack the analysis of the CoSaMP algorithm pro-
vided in [41]. In particular, we show that any “phase errors”
made in the initialization step can be suitably controlled across
different estimates. As a key step in our analysis, we leverage a
recent result by [42] that shows sufficient decrease in the signal
estimation error using the generic chaining technique of [43],
[44]. Here too, our algorithm requires no tuning parameters
other than the sparsity level s.

Block-sparse phase retrieval. We can then use CoPRAM
to establish its extension Block CoPRAM, which is a novel
phase retrieval strategy for block sparse signals, which have
been sampled using generic Gaussian measurements. Again,
the algorithm is based on a suitable initialization followed
by an alternating minimization procedure, and the algorithmic
steps exactly mirror those of CoPRAM. To our knowledge,
this is the first results for phase retrieval under more refined
structured sparsity assumptions on the signal.

As above, the first challenge is to identify a good initial
guess of the solution in the first stage. We proceed as in
CoPRAM, but instead of identifying important co-ordinates,
we instead isolate blocks of nonzero coordinates. The high
level idea is to construct a different, specially chosen biased
estimator for the “mass” of each block. We prove that a good
initialization can be achieved using this procedure using only
O (ks log n) generic measurements. When the block-size is
large enough, the sample complexity of the initialization can
be sub-quadratic in the sparsity s. Specifically, for b = Θ(s)
the sample complexity is only a logarithmic factor away from
the information-theoretic limit O (s).

The second challenge is to demonstrate rapid descent to
the desired solution in the second stage. To this end, we
replace the CoSaMP sub-routine in CoPRAM with the model-
based CoSaMP algorithm of [31], specialized to block-sparse
recovery. The analysis proceeds analogously as above. To our
knowledge, this constitutes the first end-to-end linearly con-
vergent algorithm for phase retrieval (with generic Gaussian
measurements) that demonstrates a sub-quadratic dependence
on the sparsity level of the signal.

D. Paper organization

The remainder of the paper is organized as follows. In
Section II we provide a brief overview of prior work. In
Section III, we present preliminaries and notation used for our
analysis. In Sections IV and V, we introduce the CoPRAM
and Block-CoPRAM algorithms respectively, and provide a



4

TABLE I: Comparison of our proposed methods with existing approaches for sparse phase retrieval using Gaussian measurements.
Here, n denotes signal length, s denotes sparsity, and k = s/b denotes block-sparsity. O (·) hides polylogarithmic dependence
on 1 .

Algorithm Sample complexity Running time Assumptions Parameters
AltMinSparse [14] O s2 logn+ s2 log3 s O s2n logn x∗min ≈ c√

s
kx∗k2 none

‘1-PhaseLift [19] O s2 logn O n3

2 none none

Thresholded WF [22] O s2 logn O n2 logn none stepsize µ,
thresholds
α, β

SPARTA [23] O s2 logn O s2n logn x∗min ≈ c√
s
kx∗k2 stepsize µ,

threshold γ

CoPRAM (this paper) O s2 logn O s2n logn none none
O (s logn) O (sn logn) power-law decay none

Block CoPRAM (this paper) O (ks logn) O (ksn logn) none none

theoretical analysis of their statistical as well as computational
performance. In Section VI we provide a series of numerical
experiments demonstrating the performance of our algorithms,
and in Section VII we provide concluding remarks.

II. RELATED WORK

A. Prior work

The phase retrieval problem has received significant atten-
tion in the past few years. Attempts to solve this problem
have mainly fallen into one of two broad solution approaches:
convex and non-convex.

Convex approaches involve linearizing the problem by lift-
ing the signal x∗ into a higher-dimensional space and solving
a constrained optimization problem. Popular methodologies to
solve the problem in the lifted framework include the seminal
PhaseLift approach and its variations [12], [45], [46]; along
similar lines is the PhaseCut approach [47] which proposes
a phase retrieval approach based on an SDP relaxation of
the MaxCut problem. However, most lifting based approaches
suffer severely in terms of computational complexity. A recent
convex approach that does not use the lifting procedure is
PhaseMax, which produces a novel relaxation of the phase
retrieval problem similar to basis pursuit [48]. While theoret-
ically sound, the empirical performance of PhaseMax is not
competitive with other lifting-based approaches.

On the other hand, nonconvex algorithms typically consist
of two stages: finding a good initial point, followed by
minimizing a loss function via a procedure similar to gradient-
descent. The loss function being minimized can be either a
function of a quadratic form involving the unknown signal, or
a function involving the modulus of the inner products with
the signal with the measurement vectors. Approaches based on
Wirtinger Flow (WF) [13], [49], [22], [50] popularly use the
quadratic form, while approaches based on Amplitude Flow
(AF) [51], [23] as well as stochastic algorithms based on the
Kaczmarz method [52] use the modulus form. In [53] Sun et
al. describe a polynomial-time trust-region algorithm that uses
arbitrary initializations to find the global optimum.

Recent works have adapted the phase retrieval framework
for the case when the underlying signal is sparse. Some

of the convex approaches include [19], [54], which uses a
combination of trace-norm and ‘-norm relaxation, to solve an
SDP problem. Constrained sensing vectors have been used
by Bahmani and Romberg [25] to effectively de-couple the
problem into a phase retrieval stage followed by a sparse signal
recovery stage, at optimal sample complexity of O s log n

s .
Fourier measurements have been studied extensively in [55]
in the convex setting. Similarly, non-convex approaches for
sparse phase retrieval include [14], [23], [22] which achieve
sample complexities of O s2 log n . Fourier measurements
have been evaluated in the non-convex setting in [56], where
they use a local search method to solve the sparse phase
retrieval problem. Separate from this line of work, Schniter and
Rangan in [57] have proposed an approximate message passing
algorithm to experimentally exhibit a sample complexity of
O s log n

s .
Going beyond sparsity, a natural approach is to refine the

assumptions on the nonzero signal coefficients so as to better
model various types of real-world phenomena. Structured
sparsity models have been proposed to leverage combinatorial
interactions such as groups, blocks, clusters, trees, and various
other refinements that can be used to model the signal of
interest. Applications of structured sparsity models have been
developed for sparse recovery [31], [32], [39], [38], [40],
[58], [34], [31], [35], [36] as well as in high-dimensional
optimization and statistical learning [30], [33]. However, to
the best of our knowledge, there has been no rigorous results
that explore the impact of structured sparsity models for the
phase retrieval problem.

B. Subsequent work

Since the initial appearance of this paper on Arxiv and
its subsequent conference publication [1], numerous re-
lated works have emerged. Of notable interest has been
Waldsperger’s new result for phase retrieval which shows that
standard alternating minimization provably converges without
any special initialization, albeit with much higher sample
complexity [59]. At the moment, we do not know how to
design initialization-free algorithms in the case of sparse
phase retrieval, and leave that as potential future work. Other
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recent works include re-weighted amplitude flow [60] and
convolutional phase retrieval [61].

From a theoretical standpoint, the motivation behind choos-
ing to analyze Gaussian measurements is well justified by the
numerous papers in literature [20], [49], [22]. Typically Gaus-
sian and sub-Gaussian measurements have proven to be easier
to analyze in terms of establishing theoretical guarantees, and
random Fourier-based variants [49] exist in literature that are
able to emulate the performance of these results and are more
realistic. However, from an application standpoint, the frame-
work proposed in this paper has spurred follow-up work in an
optical imaging application called Fourier ptychography with
promising improvements in sample complexity by utilizing the
underlying structure of signals; see [62], [63] for details.

Additionally, we were also able to extend our analysis for
phase retrieval of structured sparse signals for a general class
of sparsity models, with a specific extension to rooted tree
sparse signals [64].

III. PRELIMINARIES

We introduce some notation that will be used throughout the
paper. We use bold capital-case letters (A,P, etc.) to denote
matrices, bold small-case letters (x,y, etc.) to denote vectors,
and non-bold letters (α, c etc.) for scalars. We use x> and
A> to denote the transpose of the vector x and the matrix
A respectively. The diagonal matrix form of a column vector
y ∈ Rm is represented as diag(y), which is the matrix in
Rm×m with its diagonal elements as y and all off-diagonal
entries are zero. The cardinality of set S is expressed using
the operator card(S).

In this paper we use the standard Gaussian (or normal)
distribution over Rn (i.e., the elements of a are distributed
according to the distribution N (0, 1)). The vector ‘2 norm is
defined as kxk2, for a vector x. However, if the argument is
a matrix M, then, kMk2 denotes the spectral norm of the
matrix. We define sign (x) ≡ x

|x| for every x ∈ R, x 6= 0, with
the convention that sign (0) = 0. The distance between two
vectors x1,x2 ∈ Rn, can be expressed in terms of operator
dist (x1,x2) ≡ min(kx1−x2k2, kx1 + x2k2)5. The projection
of vector x ∈ Rn onto a set of coordinates S is represented
as xS ∈ Rn, xSj = xj for j ∈ S, and 0 elsewhere.
Projection of matrix M ∈ Rn×n onto S is MS ∈ Rn×n,
MSij = Mij for i, j ∈ S, and 0 elsewhere. For the
sake of improved computational complexity, for algorithmic
implementations, xS can be assumed to be a truncated vector
x ∈ Rs, discarding all elements in Sc. The element-wise
product (also called Hadamard product) of two vectors x1

and x2 ∈ Rn is represented as x1 ◦ x2. C has been used to
denote unspecified constants that are large enough. Similarly
δ has been used for small constants. The abbreviations wlog
and whp denote “without loss of generality” and “with high
probability” respectively.

5For complex signals, the distance between two vectors x1 and x2 can
be expressed as dist (x1,x2) ≡ minϕ∈[0,2π) x1 − eiϕ · x2 2

where eiϕ

is a global phase error. In this paper, since we specifically study real-valued
measurements, ϕ takes discrete values, ϕ ∈ {0, π}.

Algorithm 1 CoPRAM: Initialization.

input A,y, s

Compute signal power: φ2 = 1
m

mP
i=1

y2
i .

Compute signal marginals: Mjj = 1
m

mP
i=1

y2
i a

2
ij ∀j.

Set Ŝ ← j’s corresponding to top-s Mjj’s.

v1= top singular vector of MŜ= 1
m

mP
i=1

y2
i aiŜai

>
Ŝ
∈ Rs×s.

x0 = φv, where v← v1 for Ŝ and 0 ∈ Rn−s for Ŝc.
output x0.

Algorithm 2 CoPRAM: Descent.

input A,y,x0, s, t0
Initialize x0 according to Algorithm 1.
for t = 0, · · · , t0 − 1 do
Pt+1 ← diag sign Axt ,
xt+1 = COSAMP( 1√

m
A, 1√

m
Pt+1y,s,xt).

end for
output z← xt0 .

IV. COMPRESSIVE PHASE RETRIEVAL

In this section, we propose a new algorithm for solving the
sparse phase retrieval problem and analyze its performance.
Later, we will show how to extend this algorithm to the case
of more refined structural assumptions about the underlying
sparse signal.

We first provide a brief outline of our proposed algorithm.
It is clear from the discussion in the introduction that the
recovery problem (1) is highly non-convex, and multiple
locally optimal solutions might exist. Therefore, as is typical
in modern non-convex methods [14], [23], [65] we use an
spectral technique to obtain a good initial estimate. This
technique itself is a modification of the initialization stage of
Algorithm 1 of [23]; however, as we discuss below, our method
requires no special tuning parameters except for knowledge of
the underlying sparsity s. Moreover, in contrast with [23] our
theoretical analysis requires no extra assumptions on the signal
coefficients.

Once an appropriate initial estimate is chosen, we then show
that a simple alternating-minimization algorithm will converge
rapidly to the underlying true signal. Our proposed algorithm
is new, and builds upon the original alternating-minimization
algorithm proposed in [14]. In a departure from existing sparse
phase retrieval methods [23], [22], our method is parameter
free except for knowledge of the sparsity level s.

We call our overall algorithm Compressive Phase Re-
trieval with Alternating Minimization (CoPRAM). As de-
scribed above, the algorithm is divided into two stages: an
Initialization stage and a Descent stage. The stages are pre-
sented in pseudocode form as Algorithms 1 and 2.

A. Initialization

The first stage of CoPRAM uses a similar approach as those
provided in previous sparse phase retrieval methods. The high
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level idea is to use the measurements yi to construct a biased
estimator of the (squared) absolute values of the true signal
coefficients. For the jth signal coefficient, the marginal Mjj

is given by:

Mjj =
1

m

mX
i=1

y2
i a

2
ij ,

and the set of all Mjj’s can be calculated in O (mn) time. The
marginals themselves do not directly produce the signal coef-
ficients, but the “weight” of each marginal (with sufficiently
many samples) can enable identification of the coordinates
of the true signal support. Once the support is accurately
identified, a spectral technique (e.g., the methods of [14], [23],
[22]) can be used to construct a good initial estimate x0.

However, accurate support identification can be tricky in
general, particularly in the presence of very small signal
coefficients. Indeed, to avoid this issue, earlier works [14], [23]
assume that the magnitudes of the nonzero signal coefficients
are all sufficiently large, i.e., Ω (kx∗k2 /

√
s). As discussed

earlier, this assumption can be unrealistic, violating the power-
decay law.

Our analysis resolves this issue by relaxing the requirement
of accurately identifying the support. The basic intuition is that
even a coarse estimate of the support suffices to achieve a good
estimate, since the errors are all going to correspond to small
coefficients anyway. Such “noise” in the signal estimate can
be controlled with a sufficient number of samples. A similar
argument has been made in the analysis of the initialization
stage of [22]; however, their estimate is a strict subset of
the true support and their method requires tuning of real-
valued parameters that can be hard to estimate in practice.
Instead, we use a simpler estimation procedure. Indeed, we
show that a simple pruning step that rejects the smallest (n−k)
coordinates, followed by the spectral procedure of [23], gives
us the initialization that we need.

Concretely, we leverage the following fact: if elements of
A are distributed as per standard normal distribution N (0, 1),
a weighted correlation matrix M can be constructed with
diagonal elements Mjj ,

M =
1

m

mX
i=1

y2
i aiai

>,

Mjj =
1

m

mX
i=1

y2
i a

2
ij . (2)

Then the expectation of this matrix M is,

E [M] = E

"
1

m

mX
i=1

y2
i aiai

>

#
, (3)

=

 
In×n + 2

x∗

kx∗k2
· x∗>

kx∗k2

!
kx∗k22,

where M,E [M] ∈ Rn×n. The diagonal elements of this
expectation matrix E [M] are given by:

E [Mjj ] =

(
kx∗k2 + 2x∗2

j for j ∈ S,

kx∗k2 for j ∈ Sc.
(4)

Intuitively, the signal marginals at locations on the diagonal
of M corresponding to j ∈ S are larger, on an average, than
those corresponding to the zero-locations (j ∈ Sc). Using
this as the baseline, we evaluate the diagonal elements of the
matrix M (which we refer to as marginals) and establish a
threshold value Θ which separates the indices j corresponding
to these marginals into sets S and Sc.

We formalize the above argument. Our first result shows
that given a sufficient number of measurements of the form
(5), this method produces an estimate that is close enough to
the true underlying signal.

Theorem IV.1. The output of Algorithm 1, x0 ∈ Ms is a
small constant distance 0 < δ0 < 1 away from the true signal
x∗ ∈Ms, i.e.,

dist x0,x∗ ≤ δ0 kx∗k2 ,

as long as the number of (Gaussian) measurements ‘m’
satisfies the following bound,

m ≥ Cs2 logmn, (5)

with probability greater than 1− 8
m .

This theorem is proved via Lemmas A.1 through A.4, and
the argument proceeds as follows. We evaluate the marginals
of the signal Mjj , in broadly two cases: j ∈ S and j ∈ Sc.
The key idea is to establish one of the following:

1) If there is a restriction on the minimum element of the
true x∗ (i.e., if it is bounded away from zero by a specific
amount), then there exists a clear separation between
the marginals Mjj for j ∈ S and j ∈ Sc, with high
probability. Then one would, whp, pick up the correct
support in Algorithm 1 (i.e. Ŝ = S). The top-singular
vector of the truncated matrix MS gives a good initial
estimate x0.

2) If there is no such restriction, even then the support
picked up in Algorithm 1, Ŝ, contains a bulk of the
correct support S. Some fraction of the elements picked
up in Ŝ are incorrect, but we prove that they induce
negligible error in estimating the initial vector x0.

These approaches are illustrated in Figures 7 and 8 in
Appendix A. The marginals Mjj for j ∈ Sc are upper bounded
as stated in Lemma A.1. Similarly, the marginals Mjj for
j ∈ S are lower bounded as stated in Lemma A.2. The
identification of the support Ŝ (which provably contains a
significant chunk of the true support S) serves as a basis
to construct the truncated correlation matrix MŜ . The top
singular vector of this matrix MŜ , x0 gives us a good initial
estimate of the true signal x∗.

The final step of Algorithm 1 requires a scaling by a factor
φ. This ensures that the power of the initial estimate x0 is
close to the power of the true signal x∗ (this is required
because the calculation of the top-singular vector gives us a
normalized vector v). Provided sufficiently many samples, the
signal power kx∗k22 is well approximated by the average power
in the measurements φ2 which is defined as

φ2 =
1

m

mX
i=1

y2
i . (6)
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Using Lemma F.1 in Appendix F we can show that

1− δ ≤ φ2

kx∗k22
≤ 1 + δ,

for small constant 0 < δ 1 with probability greater than
1− 1

m .

B. Descent to optimal solution

Once we obtain a good enough initial estimate x0 such that
dist x0,x∗ ≤ δ0 kx∗k2, whp, we now construct a method
to accurately recovery the true x∗ ∈Ms. To achieve this, we
adapt the alternating minimization approach from [14].

We introduce some notation. The observation model in (1)
can be restated as follows:

sign (hai,x∗i) ◦ yi = hai,x∗i ,

for all i = {1, 2, . . .m}. We denote the phase vector p ∈ Rm

as a vector that contains the (unknown) signs of the measure-
ments, i.e., pi = sign (hai,xi) for all i = {1, 2, . . .m}. We
can also define a diagonal phase matrix P ∈ Rm×m, such that
P = diag (p). Then our measurement model gets modified as:

P∗y = Ax∗,

where P∗ denotes the true phase matrix. Consider minimizing
the loss function composed of two variables x and P,

min
kxk0≤s,P∈P

kAx−Pyk2 . (7)

Note that the problem above is not convex, because P is
restricted to be a diagonal matrix ∈ P , where P is a set of
all diagonal matrices with diagonal entries constrained to be
in {−1, 1}. Instead, we alternate between estimating P and x.
We perform two estimation steps:

1) If we fix the signal estimate x, then the minimizer P ∈
P is given in closed form as:

P = diag (sign (Ax)) . (8)

We call this the phase estimation step.
2) If we fix the phase matrix P ∈ P , the signal vector x

can be obtained by solving a sparse recovery problem,

min
x,kxk0≤s

kAx−Pyk2, (9)

if m < n (and each entry of A, aij is sampled from
independent Gaussian N (0, 1), such that A√

m
satisfies

the restricted isometry property). We call this the signal
estimation step.

We employ the CoSaMP [41] algorithm to (approximately)
solve (9). Note that since (9) itself is a non-convex problem
and exact minimization can be hard. However, we do not need
to explicitly obtain the minimizer but only show a sufficient
descent criterion, which we achieve by performing a careful
analysis of the CoSaMP algorithm. For analysis reasons,
we require that the entries of the input sensing matrix are
distributed according toN (0, I/

√
m). This can be achieved by

scaling down the inputs to CoSaMP: At,Pt+1y by a factor of√
m (see x-update step of Algorithm 2). Another distinction is

that we use a “warm start” CoSaMP routine for each iteration
where the initial guess of the solution to (9) is given by the
current signal estimate.

We now analyze our proposed descent scheme. We obtain
the following theoretical result:

Theorem IV.2. Given an initialization x0 ∈ Ms satisfying
dist x0,x∗ ≤ δ0 kx∗k2, for 0 < δ0 < 1, if we have number
of (Gaussian) measurements m > Cs log n

s , then the iterates
of Algorithm 2 satisfy:

dist xt+1,x∗ ≤ ρ0dist xt,x∗ , (10)

where 0 < ρ0 < 1 is a constant, with probability greater than
1− e−γm, for positive constant γ.

The proof of this theorem can be found in Appendix C.
Combining both stages, the number of measurements are

required to obey the following lower bound:

m0 > max C1s
2 logmn,C2s log

n

s
≡ Cs2 logmn, (11)

for the overall CoPRAM algorithm to succeed.

C. Robustness to noise

The above analysis assumes that the measurements are pris-
tine (noiseless). We can also demonstrate that the CoPRAM
algorithm are sufficiently robust in the presence of noise. This
is established in the following theorem.

Theorem IV.3. Given Gaussian measurements aij ∈ N (0, 1),
CoPRAM can recover the model sparse signal xt0 ∈Ms from
noisy measurements y of the form

y = |Ax∗|+ ,

where ∈ Rm is a scaled sub-exponential. This retains the
previously derived expression for sample complexity as in
Theorem IV.1 up to a constant factor. The algorithm converges
according to the iteration invariant:

xto − x∗
2
≤ c1 kx∗k2 + c2 k k2

where to is the number of outer iterations of CoPRAM and
Block CoPRAM, c1 < 1 and c2 = 200.

The proof for this theorem can be found in Appendix D.
An identical analysis holds for the block-sparse case which
we elaborate in more detail below.

D. Sparse signals exhibiting power law decay

The quadratic dependence of the sample complexity on the
signal sparsity level s, as derived in Theorem IV.1, is typical
(and also shared by the other works [49], [23]) but somewhat
problematic. In particular, if the signal sparsity exceeds the
square-root of the dimension n, the result becomes moot and
one may as well as standard phase retrieval techniques!

In this section, we demonstrate a method to break through
this quadratic barrier, albeit under somewhat more stringent
assumptions on the signal. Specifically, we analyze the sce-
nario hypothesized in [20] in which the signal x∗ follows a
power-law decay. That is, suppose that the signal coefficients
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Algorithm 3 Block CoPRAM: Initialization.

input A,y, b, k.
Compute signal power φ2 = 1

m

Pm
i=1 y

2
i .

Compute block marginals Mjbjb =qP
j∈jb

M2
jj ∀jb, where Mjj is as in (2).

Select Ŝb ← jb’s corresponding to top-k Mjbjb ’s, Ŝ is
signal support corresponding to blocks Ŝb.
Compute v1 ← top singular vector of MŜb

=
1
m

Pm
i=1 y

2
i aiŜai

>
Ŝ
∈ Rs×s.

Compute x0 ← φv where v ← v1 for Ŝ, and 0 ∈ Rn−s

for Ŝc.
output x0.

have been suitably re-indexed such that x∗
j

2, for j ∈ 1, 2, . . . , s
can be arranged in non-increasing order:

x∗
j

2 ≤ C(α)

jα
(12)

where and α > 1. Due to the isotropic nature of the Gaussian
measurement scheme, such a re-indexing can be assumed
without loss of generality.

We can show that this extra power-law decay assumption
results in far fewer samples, O (s log n) for the CoPRAM
initialization step to achieve a sufficiently good initial guess.
Combined with Theorem IV.2, we obtain the following result:

Theorem IV.4. Given Gaussian measurements aij ∈ N (0, 1),
then CoPRAM can recover the s-sparse signal xt0 ∈ Ms,
with kxt0 − x∗k2 ≤ δ kx∗k2, where t0 is the number of outer
iterations of CoPRAM, from m > Cs log n measurements, as
long as the coefficients of the signal follow a power-law decay
as described in (12).

The proof for this theorem can be found in Appendix E.

V. BLOCK-SPARSE PHASE RETRIEVAL

The analysis of the proofs mentioned so far, as well
as experimental results suggest that we can reduce sample
complexity for successful sparse phase retrieval by exploiting
further structural information about the signal. We assume that
the true signal x∗, is block sparse with uniform block length b
and effective block sparsity k = s

b . We introduce the concept
of block marginals, a block-analogue to signal marginals,
which can be analyzed to crudely estimate the block support
of the signal in consideration. We use this formulation, along
with the alternating minimization approach that uses model-
based CoSaMP [31] to descend to the optimal solution. In the
next subsections, we discuss the initialization and descent of
the Block CoPRAM algorithm. The pseudo-code for Block
CoPRAM is stated in Algorithms 3 and 4.

A. Initialization

Block-sparse signals x∗, can be said to be following a
sparsity model Mb

s, where Mb
s describes the set of all block-

sparse signals with s non-zeros being grouped into uniform
pre-determined blocks of size b, such that block-sparsity

Algorithm 4 Block CoPRAM: Descent.

input A,y,x0, b, k, t0
Initialize x0 according to Algorithm 3.
for t = 0, · · · , t0 − 1 do

Pt+1 ← diag sign Axt .
xt+1 ← argminx∈Rn Ax−Pt+1y

2
=

BlockCoSaMP( 1√
m
A, 1√

m
Pt+1y,b,k,xt).

end for
output z← xt0 .

k = s
b . The effective sparsity of the signal is still s, however

the non-zero elements are constrained to appear in blocks. We
use the index set jb = {1, 2 . . . k}, to denote block-indices.

Analogous to the concept of marginals defined above, we
introduce block marginals Mjbjb , where Mjj is defined as in
(2). For block index jb, we define:

Mjbjb =

sX
j∈jb

M2
jj , (13)

to develop the initialization stage of our Block CoPRAM
algorithm. Similar to the proof approach of CoPRAM, we
show that there exists a threshold that separates the block
marginals Mjbjb , for jb ∈ Sb and Mjbjb , for jb ∈ Sc

b

respectively. Here, Sb represents the “block support”, i.e., the
set of active block-indices. We can then evaluate the block
marginals, and use the top-k such marginals to obtain a crude
approximation Ŝb of the true block support Sb. This support
can be used to construct the truncated correlation matrix MŜb

.
The top singular vector of this matrix MŜb

gives a good initial
estimate x0 for the Block CoPRAM algorithm (Algorithm 4).
Through the evaluation of block marginals, we proceed to
prove that the sample complexity required for a good initial
estimate (and subsequently, successful signal recovery of block
sparse signals) is given by O (s2/b) log n = O (ks log n).
This essentially reduces the sample complexity of signal
recovery by a factor equal to the block-length b over the
sample complexity required for standard sparse phase retrieval.

Formally, we obtain the following result:

Theorem V.1. The initial vector x0 ∈Mb
s, which is the output

from Algorithm 3, is a small constant distance away from the
true signal x∗ ∈Mb

s, i.e.

dist x0,x∗ ≤ δb kx∗k2 ,

for 0 < δb < 1, as long as the number of measurements satisfy

m ≥ C
s2

b
logmn,

with probability greater than 1− 8
m .

The proof can be found in Appendix B, and carries for-
ward intuitively from the proof of the sparse phase-retrieval
framework.

B. Descent to optimal solution

For the descent of Block CoPRAM to optimal solution, the
phase-estimation step is the same as that in CoPRAM (8).



9

For the signal estimation step, we attempt to solve the same
minimization as in (9), except with the additional constraint
that the signal x∗ is block sparse,

min
x∈Mb

s

kAx−Pyk2, (14)

where Mb
s describes the block sparsity model. In order to

approximate the solution to (14), we use the model-based
CoSaMP approach of [31]. This is a straightforward special-
ization of the CoSaMP algorithm and has been shown to
achieve improved sample complexity over existing approaches
for standard sparse recovery.

Similar to Theorem IV.2 above, we obtain the following
result:

Theorem V.2. Given an initialization x0 ∈ Mb
s, satisfying

dist (xt,x∗) ≤ δb kx∗k2, where 0 < δb < 1, if we have
number of measurements m ≥ C s + s

b log n
s , then the

iterates of Algorithm 4 satisfy:

dist xt+1,x∗ ≤ ρbdist xt,x∗ . (15)

where 0 < ρb < 1 is a constant, with probability greater than
1− e−γm, for positive constant γ.

The proof of this theorem can be found in Appendix C.

C. Extension to blocks of non-uniform sizes

The analysis so far has been made for uniform blocks of size
b. However the same algorithm can be extended to the case
of sparse signals with non-uniform blocks. Such a model is
particularly useful for time-series signals where the nonzeros
occur in “bursts” of variable lengths and start times.

Formally, consider the clustered sparsity model for 1D
signals in Rn, comprising signals with s non-zeros that occur
in no more than kc non-overlapping blocks (clusters), each
of which exhibit potentially unknown sizes and locations.
The above analysis does not immediately apply to this case;
however, by the analysis approach of [37], we can show that
any such clustered-sparse signal with parameters (s, kc) can be
simulated using a uniform block-sparse signal with parameters
(s, 3kc).

This can be demonstrated as follows. Assuming that the
non-zeros coefficients exist in kc non-overlapping clusters, in
the best case, all kc clusters are uniformly sized. In the worst
case, we would have (kc − 1) clusters with 2− coefficients
lying on either side of the boundary of two uniform block
supports (therefore corresponding to two active blocks). The
remaining s− 2(kc− 1) coefficients constitute the last cluster.
In this case, the number of active blocks can be bounded as:

k ≤ 2 · (kc − 1) +
s− 2(kc − 1)

s/kc
≤ 3k

where k is effective block sparsity, and uniform blocks of size
b = s/kc are considered.

Therefore, the only price to be paid is a tripling of the
block sparsity parameter k. Provided we are willing to tolerate
this increase, we can use exactly the same Block CoPRAM
algorithm (including both the initialization as well as the

(a) Thresholded WF (b) SPARTA

(c) CoPRAM (d) Block CoPRAM

Fig. 1: Phase transition plots for different algorithms, with
signal length n = 3000, having uniform block length of b = 5.

descent stages) as described above, with only a constant factor
increase in the sample complexity.

We note that this argument is only applicable to block-
sparse 1D signals (such as time-domain signals); extending
this argument to general clustered-sparse images and higher-
dimensional data is much more involved, and we leave this to
future work.

VI. NUMERICAL EXPERIMENTS

In this section, we present the results of a range of simula-
tions supporting our algorithms and demonstrate their benefits
over the state-of-the-art in sparse phase retrieval. All numerical
experiments were conducted using MATLAB 2016a on a
desktop computer with an Intel Xeon CPU at 3.3GHz and
8GB RAM.

Our experiments explores the performance of the CoPRAM
and Block CoPRAM algorithms on synthetic data. The non-
zero elements of the test signal x∗ ∈ Rn, with n = 3, 000
are generated using zero-mean Gaussian distribution N (0, 1)
and normalized, such that kx∗k = 1. The elements of sensing
matrix A ∈ Rm×n, aij are also generated using the zero-
mean Gaussian distribution N (0, 1). The sparsity levels s are
chosen in steps of 5 with a maximum value of s = 50 such
that n = 3000 & 502 (for values of s >

√
n, the effect

of sparsity is minimal and standard non-sparsity based phase
retrieval algorithms perform equally well). A block length of
b = 5 is considered for all generated signals in experiments in
Figures 1, 2, and 4. The number of measurements m is swept
from m = 200 to m = 2, 000 in steps of 200. We repeated
each of the experiments (fixed n, s,m) in Figures 1, 2, and 4
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Fig. 2: Phase transition graph for (a) s = 20 and (b) s = 30,
for a signal of length n = 3, 000 and block length b = 5.

for 50 independent Monte Carlo trials, and the experiments in
Figure 3 for 200 independent Monte Carlo trials.

For our simulations, we compared our algorithms CoPRAM
and Block CoPRAM with two other sparse phase retrieval
algorithms: Thresholded Wirtinger Flow [22] and SPARTA
[23]. For our set of generated signals, the AltMinSparse
method mentioned in [14] does not recover the signal in
most cases (if the initialization stage fails to pick the correct
support, the subsequent AltMinPhase procedure can never give
a good solution). We therefore do not include this algorithm
for comparisons.

For Thresholded WF, we set parameters which were opti-
mized based on a number of trial cases and were kept constant
throughout all experiments, with values α = 1.5, µ = 0.23 and
β = 0.3. Similarly, for SPARTA, we set the parameters to be
γ = 0.7, µ = 1 and card(Io) = dm6 e as mentioned in their
paper. For the first experiment, we generated phase transition
plots by evaluating the probability of successful recovery, i.e.
number of trials out of 50, that gave a relative error in retrieval
kxt0−x∗k2

kx∗k2
< 0.05. We let each of the algorithms to run for a

total of t0 = 30 iterations. The recovery probability for varying
values of s and m has been illustrated in Figure 1 through
phase transition diagrams. It can be noted that CoPRAM
(1(c)) and SPARTA (1(b)) perform comparably, while Block
CoPRAM (1(d)) performs the best among all four algorithms,
in terms of sample complexity.

The phase transition graphs for s = 20 and s = 30 for the
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b = 20, k = 1
b = 10, k = 2
b = 5, k = 4
b = 2, k = 10
b = 1, k = 20

Fig. 3: Variation of phase transition for Block CoPRAM at s =
20 and b = 20, 10, 5, 2, 1 for a signal of length n = 3, 000.

four algorithms is displayed in Figure 2.
It can be noted that increasing the sparsity of signal shifts

the phase transitions to the right (sample complexity of m
has a quadratic dependence on s for CoPRAM, SPARTA and
Thresholded WF). However the phase transition for Block
CoPRAM has a less apparent shift, as compared to other
algorithms (sample complexity of m has sub-quadratic de-
pendence on s). It can be noted that as sparsity s increases,
the gap between the phase transition of Block CoPRAM and
other algorithms in consideration, increases. As demonstrated
in Figure 1, the Block CoPRAM approach exhibits lowest
sample complexity for the phase transitions in both cases (a)
and (b) of Figure 2.

The mean running time of the algorithms for different
algorithms is tabulated in Table II. It can be noted that
the running times of our algorithms CoPRAM and Block
CoPRAM are at par with SPARTA and Thresholded WF.

TABLE II: Mean run time of different algorithms at s = 25.

Algorithm CoPRAM Block CoPRAM SPARTA ThWF
m at phase trans 1,600 1,400 1,800 2,000
mean run time (s) 0.4000 0.3258 0.3080 0.5808

Leveraging block-sparsity. For the second experiment, we
study the variation of phase transition with block-length, for
Block CoPRAM (refer Figure 3). For this experiment we fixed
a signal of length n = 3, 000, sparsities s = 20, k = 1 for a
block length of b = 20. We observed that the phase transitions
improve with increase in block length (used to estimate the
signal in the algorithm) up to a point. At block sparsities s

b =
20
10 = 2 and s

b = 20
20 = 1, there is little difference in the phase

transitions, as the regime of the experiment is very close to
the information theoretic bound of s log n

s .
Effect of noise. For our third experiment, we study the effect

of noise on the measurements of the form:

yi = |hai,x∗i|+ i,

for i ∈ {1, 2 . . .m}, to verify the claims in Theorem IV.3.
The noise vector ∈ Rm is sampled from a zero-mean
Gaussian distribution N (0, σ2), where σ2 is determined using
the input noise-signal-ratio (NSR). We compared CoPRAM,
Block CoPRAM and SPARTA to analyze robustness to noisy
measurements for amplitude only measurements (ThWF is
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Fig. 4: Variation of mean relative error in signal recovered v/s
input NSR at s = 20 and b = 5, k = 4 for a signal of length
n = 3, 000, and number of measurements m = 1, 600.

excluded because they use quadratic measurements). We vary
the input NSR = σ2/ kx∗k22, from 0.1 to 1 in steps of 0.1.
We fix signal parameters n = 3, 000, s = 20, b = 5, k = 4
and number of measurements to m = 1, 600. This experiment
was run for 50 independent Monte Carlo trials. The variation
of mean relative error kxt0 − x∗k2 / kx∗k2 can be seen in
Figure 4. We observe that Block CoPRAM exhibits greater
robustness to noise compared to CoPRAM and SPARTA in
all cases considered.
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Fig. 5: Variation of phase transition for CoPRAM at (a) s =
20 and (b) s = 30 at decay rates α = 2, 4, 8, for a signal of
length n = 3, 000, compared to standard s-sparse signal with
coefficients picked random normally.

Power-law decay. For our fourth experiment, we verify the
claims in Theorem IV.4. We set the signal length to n = 3, 000.
We analyze the effect of power law decay on signals with
sparsities s = 20 and s = 30 for different rates of decay
α = 2, 4, 8 and compare this to the case with no power law
decay (coefficients picked random normally). We observe an
improvement in sample complexity with respect to the “no
powerlaw decay” case, as seen in Figure 5. The improvement
is more prominent as we increase the sparsity from s = 20 to
s = 30.

Experiments on real images. For our final experiment, we
evaluated the performance of our algorithm on a real image,
with induced sparsity in the wavelet basis (db1). We used a
128 × 128 image of Lovett Hall, and used the thresholded
wavelet transform (using Haar wavelet) of this image as the
sparse signal with s = 0.09n. This image was reconstructed
using m = 16, 384 samples, using CoPRAM and the standard
AltMinPhase algorithm described in [14]. We used signal-to-
noise ratio (SNR) to quantify quality of reconstruction. In
Figure 6, we demonstrate how enforcing a sparsity constraint
enables recovery of the same image using fewer samples and
better reconstruction quality.

(a) Original (b) AltMinPhase (c) CoPRAM
SNR=-0.71dB SNR=82.86dB

Fig. 6: Reconstruction of the original Lovett (a) image using (b)
AltMinPhase for m = 16, 384, (c) CoPRAM for m = 16, 384
measurements, where f = m/n.

VII. DISCUSSION

In this paper, we have introduced a set of new algorithmic
approaches for sparse as well as structured sparse phase re-
trieval. Our algorithms are conceptually simple and indeed are
reminiscent of classical heuristics for phase retrieval; however,
our analysis also shows an asymptotic reduction in sample
complexity when additional structures on top of standard
sparsity are leveraged within the reconstruction process.

In this paper, we chose to study real-valued Gaussian
measurements, however this study can plausibly be extended to
complex-valued Gaussian measurements as well. In this case,
the initialization stage, would remain as is, as it essentially
bounds the norm of the sine of angle between x0 and x∗

(refer proof of Lemma (A.4)). However, there exist additional
challenges in analyzing the descent stage of our algorithm,
explicitly in bounding the phase error term, which we intend
to address in future work.

Similarly, several open questions remain, including expand-
ing our analysis to more sophisticated sparsity models, such
as clusters, trees, groups, and graphical models [58]; this has
in part been examined in our follow-up work [64]. Moreover,
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our analysis only applies to the case of Gaussian samples, and
extending our results to more realistic measurement schemes
such as Fourier samples and coded diffraction patterns [46]
will be an interesting direction of future study; indeed, our
preliminary experimental results in [62], [63] have shown
the empirical benefits of our algorithms for such challenging
measurement setups.

APPENDIX A
COPRAM INITIALIZATION

In this section we state the proofs related to the initialization
in Algorithm 1, for compressive phase retrieval. This includes
the proofs of Lemmas A.1 - A.4 which complete the proof of
Theorem IV.1.

The outline of the proof is sketched out as follows. Using
Lemma A.1, we can find an upper bound on marginals Mjj

for j ∈ S. Consequently,

max
j∈Sc

Mjj ≤

 
1 + 11

r
logmn

m

!
kx∗k22 = Θ1 (16)

with probability greater than 1− 5
m . Marginals Mjj for j ∈ S

can be evaluated in two ways:
1) Assuming a bound on the minimum element of x∗:

x∗2
min ≡ minj∈S x∗2

j = C
s kx

∗k22. The proof then carries
forward from the work in [23], where they arrive at the
lower bound on the minimum marginal for j ∈ S, with
probability greater than 1− 1

m ,

min
j∈S

Mjj ≥ kx∗k22 + x∗2
min

= 1 +
C

s
kx∗k22 = Θ2,

given that m ≥ C0s
2 log(mn). This proof is similar

to that mentioned in Lemma A.2. Piecing these two
together,

min
j∈S

Mjj ≥ 1 +
C

s
kx∗k2

>

 
1 + 11

r
logmn

m

!
kx∗k22

≥ max
j∈Sc

Mjj .

which implies that the support picked up using the top
s-marginals Mjj is the true support with probability
greater than 1 − 6

m , given m ≥ C0s
2 log(mn), as

long as there is a clear separation between Θ1 and
Θ2. They proceed to show that with a high probability,
kx0 − x∗k2 ≤ δ0 kx∗k2, using Proposition 1 of [51],
completing the proof of Theorem IV.1.

2) If there is no such assumption on the minimum entry
x∗2
min, we proceed with a longer proof, as stated below

using Lemmas A.2-A.4. The idea is to show that x∗ ≈
x∗
Ŝ

and subsequently x∗
Ŝ
≈ x0, effectively implying that

x0 ≈ x∗.
This idea and the partition of support sets used in the proof

have been illustrated in Figures 7 and 8.

|Sc| = n− s |S| = s

low Mjj high MjjΘ2Θ1

bottom (n− s) marginals top s marginals

Fig. 7: Partition of supports considered for analysis of proof
approach 1: assumption on x∗

min.

|Sc − S2| = n− s− s2 |S2| = s2

|S− − S1| = s− s0 − s1 |S1| = s1

|S+| = s0

low Mjj high MjjΘ

bottom (n− s) marginals top s marginals

Fig. 8: Partition of supports considered for analysis of proof
approach 2.

Lemma A.1. For all j ∈ Sc, with probability greater than
1− 5

m , the corresponding marginals are upper-bounded as

Mjj ≤

 
1 + 11

r
logmn

m

!
kx∗k22 = Θ. (17)

Proof. Evaluating the marginals:

Mjj − φ2 =
1

m

mX
i=1

y2
i a2

ij − 1 ,

where yi is independent of aij for all j ∈ Sc. Evaluating the
tail bound in terms of a series of tail bounds for independent
random variables yi and aij , one can use Lemma 4.1 of [66]
for the χ2

1 variables a2
ij with weights y2

i (here p ≡ n− s):

P

 mX
i=1

y2
i a2

ij − 1 > 2
√
t1

 
mX
i=1

y4
i

! 1
2

+ 2 max
i

y2
i t1


≤ exp(−t1) =

1

mp
.

where t1 is chosen large enough, such that exp(−t1) = 1/mp.
Further, using the Chebyshev’s inequality for y2

i :

P

"
mX
i=1

y4
i

kx∗k42
> 3m +

√
96mt2

#
≤ 1

t22
=

1

mp
.

Using the Gaussian tail bound for y2
i followed by union bound:

P

"
max

i

y2
i

kx∗k22
> t2

#
≤ 2m exp

−t2
2

=
2

mp2
≤ 2

mp
.

where t2 is chosen to be large enough, such that exp(−t2/2) =
1/(mp)2.
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With probability at most 4
mp , for each j ∈ Sc, using a union

bound on these three tail bounds,

1

m

mX
i=1

y2
i (a2

ij − 1) > 2

q
3 +

p
96p kx∗k22

r
logmp

m

+ 8 kx∗k22
(logmp)

2

m
,

> 2

q
3 +
√

96 kx∗k22

r
logmp

m

+ 8 kx∗k22
(logmp)

2

m
.

Using a union bound for all j ∈ Sc (p such), with probability
at least 1− 4

m ,

1

m

mX
i=1

y2
i (a2

ij − 1) ≤ 2

q
3 +
√

96 kx∗k22

r
logmp

m

+ 8 kx∗k22
(logmp)

2

m
,

≤ 8

r
logmp

m
kx∗k22 .

Using Lemma F.1, for m > C, and using the fact that p ≤ n:

Mjj =
1

m

mX
i=1

y2
i a

2
ij ≤ 8

r
logmn

m
kx∗k22 + φ2,

Mjj ≤

 
1 + 11

r
logmn

m

!
kx∗k22 = Θ, (18)

which establishes the upper bound on marginals associated
with the zero-locations j ∈ Sc, with probability greater than
1− 5

m .

Lemma A.2. For j ∈ S+ ⊂ S, with probability greater than
1− 2

m , the corresponding marginals are lower-bounded as

Mjj ≥

 
1 + 11

r
logmn

m

!
kx∗k22 = Θ, (19)

where S+ is defined as

S+ =

(
j ∈ S | x∗2

j > 15

r
logmn

m
kx∗k22

)
. (20)

Subsequently, we can define S− as

S− =

(
j ∈ S | x∗2

j ≤ 15

r
logmn

m
kx∗k22

)
, (21)

with S+ and S− forming a partition of S and the correspond-
ing energy in the elements xj , j ∈ S− is lower-bounded as

x∗
S−

2

2
≤ 15

r
s2 logmn

m
kx∗k22 . (22)

Proof. Evaluating the marginals:

Mjj − φ2 =
1

m

mX
i=1

y2
i a2

ij − 1 . (23)

For j ∈ S, yi and aij are dependent random variables. The
marginal Mjj can be evaluated through a concentration bounds

on the two terms that compose the RHS of (23): 1
m

Pm
i=1 y

2
i a

2
ij

and 1
m

Pm
i=1 y

2
i . This can be done by evaluating the expecta-

tion values:

E y2
i = kx∗k22 ,

E y2
i a

2
ij = kx∗k22 + 2x∗

j
2,

E y4
i a

4
ij = 105x∗

j
4 + 90x∗

j
2 kx∗k22 − x∗

j
2

+ 9 kx∗k22 − x∗
j

2
2

.

Constructing variable Xi = kx∗k22 + 2x∗
j

2 − y2
i a

2
ij which is

upper bounded, with zero mean and bounded variance, we
can use Lemma F.3 to establish a concentration bound with
parameters:

Xi ≤ kx∗k22 + 2x∗
j

2 ≤ 3 kx∗k22 ,
E [Xi] = 0,

E X2
i = 20x∗

j
4 + 68 kx∗k22 x

∗
j

2 + 8 kx∗k42 ≤ 96 kx∗k42 .

Using Lemma F.3, for each j ∈ S,

P

"
mX
i=1

−Xi ≤ −t

#

= P

"
mX
i=1

y2
i a

2
ij −m kx∗k22 + 2x∗

j
2 ≤ −t

#
,

≤ exp

 
− t2

192 kx∗k42 m

!
≤ 1

ms
. (24)

Here, t is chosen to be large enough, such that t =√
192 kx∗k22

√
m logms ≈ 13.86 kx∗k22

√
m logms

≤ 13.86 kx∗k22
√
m logmn and s is the sparsity level. This

establishes the bound on the first term 1
m

Pm
i=1 y

2
i a

2
ij . Simi-

larly, we can establish a bound on the second term 1
m

Pm
i=1 y

2
i ,

which requires Lemma 4.1 of [66], with probability greater
than 1− 1

ms , for each j ∈ S:

1

m

mX
i=1

y2
i − kx∗k22 ≤

 
2

r
logms

m
+

2 logms

m

!
kx∗k22 ,

≤ 3 kx∗k22

r
logms

m
,

≤ 3 kx∗k22

r
logmn

m
. (25)

for m > C. Combining these two concentration bounds (24),
(25), taking a union bound for all j ∈ S+ and substituting in
(23):

Mjj − φ2 ≥ 2x∗
j

2 − 17

r
logmn

m
kx∗k22 , (26)

which holds with probability at least 1− 2
m .
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If the set S+, is constructed as in (20), then evaluating the
bound in (26), we get:

Mjj − φ2 ≥ 2x∗
j

2 − 17

r
logmn

m
kx∗k22 ,

Mjj ≥

 
1 + 2x∗

j
2 − 19

r
logmn

m

!
kx∗k22 ,

≥

 
1 + 11

r
logmn

m

!
kx∗k22 ,

holds for all elements j ∈ S+, with probability greater than
1− 2

m , yielding the bound in (19).

Lemma A.3. If Ŝ is chosen as in Algorithm 1, with probability
greater than 1− 2

m ,

x∗ − x∗
Ŝ 2
≤ δ1 kx∗k2 , (27)

as long as the number of measurements m follow the following
bound

m ≥ Cs2 logmn. (28)

Proof. If Ŝ is chosen such that it corresponds to the top-
s marginals Mjj , then it will pick up S+ corresponding to
large marginals Mjj > Θ, S1 = S− ∩ Ŝ and S2 = Sc ∩ Ŝ
corresponding to small marginals Mjj < Θ (S+, S1, S2 form
a partition of bS and card(Ŝ) = s, refer Figure 8 for illustration
of the sets):

x∗
Ŝ

= x∗
S+

+ x∗
S1

+ x∗
S2
. (29)

By definition xSc = 0 and therefore xS2
= 0. If we can prove

that x∗ ≈ x∗
Ŝ

and x∗
Ŝ
≈ x0, then we can claim that x0 ≈ x∗.

First, we prove that x∗ − x∗
Ŝ 2
≤ δ1 kx∗k2:

x∗ − x∗
Ŝ

2

2
= x∗ − x∗

S+
− x∗

S1

2

2
,

≤ x∗ − x∗
S+

2

2
+ x∗

S1

2

2
,

≤ x∗ − x∗
S+

2

2
+ x∗

S−

2

2
.

By construction, S− and S+ form a partion of S:

x∗ = x∗
S−

+ x∗
S+

,

=⇒ x∗ − x∗
Ŝ

2

2
≤ 2 x∗

S−

2

2
.

Using (22), we compute the bound,

x∗ − x∗
Ŝ

2

2
≤ 30

r
s2 logmn

m
kx∗k22 , (30)

≤ δ2
1 kx∗k22 .

since there are at most s elements in S−, which is the required
condition (27). This requires sample complexity m to satisfy:

30

r
s2 logmn

m
≤ δ2

1 ,

=⇒ m ≥ 900

δ2
1

s2 logmn = C(δ1)s2 logmn. (31)

We have proved that x∗ ≈ x∗
Ŝ

. Now we need to prove that
x∗
Ŝ
≈ x0, which we do using Lemma A.4.

Lemma A.4. With probability greater than 1− 8
m

dist x0,x∗
Ŝ
≡ min x0 − x∗

Ŝ 2
, x0 + x∗

Ŝ 2
,

≤ δ2 kx∗k2 ,

as long as the number of measurements m follow the following
bound

m ≥ Cs log n.

Proof. The top singular vector of E [M] is equal to true x∗,
from (3):

E [M] = E

 1

m

mX
j=1

y2
jaiai

>

 ,

=

 
In×n + 2

x∗

kx∗k2
x∗>

kx∗k2

!
kx∗k22,

similarly, E [MS ] = E

"
1

m

mX
i=1

y2
i aiSaiS

>

#
,

=

 
(In×n)S + 2

x∗

kx∗k2
x∗>

kx∗k2

!
kx∗k22,

= E [M] .

We then define MŜ = 1
m

Pm
i=1 y

2
i aiŜai

>
Ŝ

and x0 is the top
singular vector of MŜ .

Defining S3 ≡ (S ∪ S2) ⊂ (S ∪ Ŝ), where S2 = Ŝ ∩ Sc,
then, card(S3) ≤ 2s, and,

E [MS3
] = E

"
1

m

mX
i=1

y2
i aiS3

ai
>
S3

#
,

=

 
(In×n)S3 + 2

x∗

kx∗k2
x∗>

kx∗k2

!
kx∗k22.

At this stage, we can invoke the proof idea from [22], as stated
in Lemma F.2 from Appendix F, to give the following bound,

kMS3
− E [MS3

]k2 ≤ δ kx∗k22 ,

with probability at least 1− 1
m , as long as m ≥ Cs log n. Now

we can use the fact that Ŝ ⊂ S3, so that,

MŜ − E MŜ 2
≤ kMS3 − E [MS3 ]k2 ≤ δ kx∗k22 .

Since MŜ can be seen as a perturbation of E MŜ , where

the top two singular values of E MŜ are spaced 2 x∗
Ŝ

2

2
apart, we can use the Sin-Theta theorem [67] to bound the
difference between the normalized top-singular vectors x0 of
MŜ and xŜ of E MŜ as,

sin∠(x0,x∗
Ŝ

)
2
≤

δ kx∗k22
2 kx∗k22

=
δ

2
.

⇒ min x0 − x∗
Ŝ 2

, x0 + x∗
Ŝ 2

≤
q

2−
p

4− δ2,

≤ δ2.
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Hence, with probability greater than 1− 8
m , Lemma A.4 holds.

Combining Lemmas A.3 and A.4, we have the final result:

dist x0,x∗ = min x0 − x∗
2
, x0 + x∗

2
,

≤ δ0 kx∗k2 ,

as long as the number of measurements m follow the bound
in (28). Hence the initial vector x0 is upto a constant factor
away from the true vector x∗. The constant δ0 ≤ δ1+δ2 can be
decreased by increasing the number of samples (see equation
(31)). This completes the proof of Theorem IV.1.

APPENDIX B
BLOCK COPRAM INITIALIZATION

In this section we state the proofs related to the initialization
for Block CoPRAM in Algorithm 3, for block sparse signals.

We prove theorem V.1 for the initialization stage of Block
CoPRAM as follows.

Theorem V.1. The initial vector x0 ∈Mb
s, which is the output

from Algorithm 3, is a small constant distance away from the
true signal x∗ ∈Mb

s, i.e.

dist x0,x∗ ≤ δb kx∗k2 ,

for 0 < δb < 1, as long as the number of measurements satisfy

m ≥ C
s2

b
logmn,

with probability greater than 1− 8
m .

Proof. Evaluating the marginals Mjbjb , for all jb ∈ Sc
b , from

(16), with probability greater than 1− 5
m , we have:

Mjbjb ≤

 
1 + 11

r
logmn

m

!
√
b kx∗k22 . (32)

Evaluating the block marginals Mjbjb , for jb ∈ Sb,
we use a modification of (24), with probability less than
exp − mt2

192kx∗k4
2

≤ 1
mn ,

1

m

mX
i=1

−Xi ≤ −t

1

m

mX
i=1

y2
i a

2
ij − kx∗k22 + 2x∗2

j ≤ −t

Rearranging the terms,X
j∈jb

M2
jj ≤

X
j∈jb

h
kx∗k22 − t + 2x∗2

j

i2
,

≤ b kx∗k22 − t
2

+ 4 x∗
jb

4

2

+ 4
√
b x∗

jb

2

2
kx∗k22 − t ,

=⇒ Mjbjb ≤
√
b kx∗k22 − t + 2 x∗

jb

2

2
,

where the final expression holds with probability less than
b

mn . Here, we have used he shorthand x∗
jb

2

2
≡
P

j∈jb
x∗2
j .

Finally, taking a minimum over all such block marginals jb ∈
Sb, with probability greater than 1− 1

m ,

Mjbjb ≥
√
b kx∗k22 − t + 2 x∗

jb

2

2
,

≥
√
b kx∗k22 + x∗

bmin

2

2
,

if
√
bt = x∗

bmin

2

2
≡ minjb∈Sb

x∗
jb

2

2
. Assuming that

xb∗min

2

2
= C

k kx
∗k22, the following holds

min
jb∈Sb

Mjbjb ≥ 1 +
C√
bk

√
b kx∗k22 . (33)

Equating the expression for probability,

m ≥ 192
kx∗k42
t2

logmn,

≥ Cbk2 logmn = C
s2

b
logmn,

which puts a bound on the block marginals for jb ∈ Sb.

Hence, as long as m ≥ C s2

b log n, there is a clear separation
in the marginals, using (33) and (32),

min
jb∈Sb

Mjbjb ≥ 1 +
C√
bk

√
b kx∗k22 ,

>

 
1 + 11

r
logmn

m

!
√
b kx∗k22 ,

≥ max
jb∈Sc

b

Mjbjb ,

where C is large enough. Given that there is a clear separation
in the marginals, the block support Ŝb as picked up as in
Algorithm 3, is exactly the true block support Sb.

It is then straightforward to show that the top singular
vector of the truncated covariance matrix MŜb

is actually
close to the true block sparse vector x∗, which holds with
probability greater than 1− 1

m .

Thus far, the proof requires an assumption on x∗
bmin 2

.
We do away with this assumption as follows:

For evaluating block marginals Mjbjb for jb ∈ Sc
b , we can

use the result of Lemma A.1, to obtain the same bound as in
(32), with probability greater than 1− 5

m ,

Mjbjb ≤

 
1 + 11

r
logmn

m

!
√
b kx∗k22 .

For evaluating block marginals Mjbjb for jb ∈ Sb we can
use equations (20) and (21), and extend this model of signal
supports to block supports defined as:

Sb− =

jb ∈ Sb | x∗
jb

2

2
≡
X
j∈jb

x∗2
j ≤ 15

r
b logmn

m
kx∗k22

 ,

Sb+ =

jb ∈ Sb | x∗
jb

2

2
≡
X
j∈jb

x∗2
j > 15

r
b logmn

m
kx∗k22

 .
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Using equation (26), and LHS of (45),

Mjj ≥ 2x∗
j

2 − 17

r
logmn

m
kx∗k22 + φ2,

≥ 2x∗
j

2 +

 
1− 19

r
logmn

m

!
kx∗k22 .

Constructing block marginals as Mjbjb ≡
qP

j∈jb
M2

jj ,

Mjbjb ≥
√
b

 
1− 19

r
logmn

m

!
kx∗k22 + 2 x∗

jb

2

2
,

=⇒ Mjbjb ≥

 
1 + 11

r
b logmn

m

!
kx∗k22 .

We can then extend the proof of Lemma A.3 to give the
partitions,

x∗
Ŝb

= x∗
Sb+

+ x∗
S1

+ x∗
S2
,

x∗ = x∗
Sb−

+ x∗
Sb+

.

and the inequalities:

x∗ − x∗
Ŝb

2

2
≤ 2 x∗

Sb−

2

2
,

= 2
X

jb∈Sb−

kxjbk
2
2 ,

≤ 15k

r
b logmn

m
kx∗k22 ≤ δ kx∗k22 .

This inequality gives us a bound on the number of measure-
ments m, similar to (31),

m ≥ 152

δ2
k2b logmn = C(δ)

s2

b
logmn,

with probability greater than 1− 7
m . This gives us the evalua-

tion of block-marginals for jb ∈ Sb and Sc
b , respectively. It is

then straightforward to show that the top singular vector of the
truncated covariance matrix MŜb

, given Ŝb is actually close to
the true block sparse vector x∗ with probability greater than
1− 1

m .

APPENDIX C
COPRAM AND BLOCK COPRAM DESCENT

In this section we state the proofs related to the descent to
optimal solution in Algorithm 2 (CoPRAM), for sparse signals
and Algorithm 4 (Block CoPRAM), for block sparse signals.
This includes the proof of Theorem IV.2 and Theorem V.2.
We prove theorem IV.2 to show descent of the CoPRAM
algorithm, as follows.

Note: For evaluation of the distance measure dist (·, ·),
we only consider dist (xt,x∗) = kxt − x∗k2, assuming
that dist x0,x∗ = kx0 − x∗k2 at the end of initialization
stage. We claim that wlog, the same results would hold, if
dist x0,x∗ = x0 + x∗

2
.

Theorem IV.2. Given an initialization x0 ∈ Ms satisfying
dist x0,x∗ ≤ δ0 kx∗k2, for 0 < δ0 < 1, if we have number

of (Gaussian) measurements m > Cs log n
s , then the iterates

of Algorithm 2 satisfy:

dist xt+1,x∗ ≤ ρ0dist xt,x∗ , (10)

where 0 < ρ0 < 1 is a constant, with probability greater than
1− e−γm, for positive constant γ.

Algorithm 5 CoSaMP

input Φ = A√
m
,u = Pty√

m
, s,xt.

1: Initialize

xt+1,0 ← xt initialize to best possible estimate
r← u residue
l← 0 CoSaMP internal counter

2: while halting condition not true, do
3:

l← l + 1

v← ΦT r signal proxy
Ω← supp(v2s)

Γ← Ω ∪ supp(xt+1,l−1)

w← Φ†
Γu corresponding to Γ, 0 elsewhere

xt+1,l ← Truncate to top s values of w, call this support Γs

r← u− Φxt+1,l

4: end while
5: xt+1,L ← Φ†

Γs
u.

output xt+1 ← xt+1,L

To show the descent of our alternating minimization algo-
rithm using CoSaMP, we need to analyze the reduction in
error, per step of CoSaMP, (refer Algorithm 5) first:

xt+1,l+1 − x∗
2

= xt+1,l+1 −w + w − x∗
2
,

≤ 2 kx∗ −wk2 (34)

where w corresponds to the ‘’th run of CoSaMP for the (t+
1)th update of x. Using RIP of Φ = A√

m
,

xt+1,l+1 − x∗
2
≤ 2√

1− δ2s

kΦx∗ − Φwk2 , (35)

with high probability, where δ2s is the RIP constant. Now,
analyzing the inputs to CoSaMP, in step 4 of Algorithm 2,

u =
Pty√
m

,

= sign Axt ◦ |Ax∗|√
m

,

= sign Φxt ◦ {(Φx∗) ◦ sign (Φx∗)} ,
= Φx∗ + sign Φxt ± sign (Φx∗) ◦ Φx∗,

=⇒ u− Φx∗ = ± sign Φxt − sign (Φx∗) ◦ Φx∗, (36)
= Eph,

where Eph ≡ (sign (Φxt)± sign (Φx∗)) ◦ Φx∗, is error due
to failure in estimating the correct phase.
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Using equation (36) and substituting into equation (35), the
per-step reduction in error for each run of CoSaMP is:

xt+1,l+1 − x∗
2

≤ 2√
1− δ2s

ku− Eph − Φwk2 ,

≤ 2√
1− δ2s

ku− Φwk2 +
2√

1− δ2s

kEphk2 ,

≤ 2√
1− δ2s

ku− ΦΓwΓk2 +
2√

1− δ2s

kEphk2 ,

≤ 2√
1− δ2s

ku− ΦΓx
∗
Γk2 +

2√
1− δ2s

kEphk2 ,

≤ 2√
1− δ2s

kΦx∗ + Eph − ΦΓx
∗
Γk2 +

2√
1− δ2s

kEphk2 ,

≤ 2√
1− δ2s

kΦx∗ − ΦΓx
∗
Γk2 +

4√
1− δ2s

kEphk2 ,

≤ 2√
1− δ2s

kΦΓcx∗
Γck2 +

4√
1− δ2s

kEphk2 ,

≤ 2

r
1 + δ2s

1− δ2s
x∗ − xt+1,l

Γc 2
+

4√
1− δ2s

kEphk2 ,

:= ρ1 x∗ − xt+1,l
Γc 2

+ ρ2 kEphk2 ,

where the first step is from using triangle inequality, the second
step is from using the fact that w is exactly 3s-sparse with
support Γ. The third step is using the fact that truncation
of w in Γ,∈ R3s , is the minimizer of the LS problem
argminx∈R3s kΦΓx− uk2, the fourth step uses (36) again.
This is followed by a triangle inequality, and another use of
RIP (which holds with probability greater than 1 − e−γ1m,
with γ1 being a positive constant). Finally, in the last step, the
first term is obtained by bounding (x∗ − xt+1,l)Γc

2
using

(Lemma 4.2 of CoSaMP [41], refer Lemma F.4), to yeild,

xt+1,l+1 − x∗
2
≤ ρ1ρ3 x∗ − xt+1,l

2

+ (ρ1ρ4 + ρ2) kEphk2 ,

where ρ1 := 2
q

1+δ2s

1−δ2s
, ρ2 := 4√

1−δ2s
and ρ3, ρ4 are as

stated in Lemma F.4. Assuming that CoSaMP is let to run
a maximum of L iterations,

xt+1 − x∗
2

≤ (ρ1ρ3)L x∗ − xt
2

+ (ρ1ρ4 + ρ2) 1 + ρ1ρ3 . . . (ρ1ρ3)L−1 kEphk2 ,

≤ (ρ1ρ3)L x∗ − xt
2

+
(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
kEphk2 . (37)

The second part of this proof requires a bound on the phase
error term kEphk2:

Eph = ± sign Φxt − sign (Φx∗) ◦ Φx∗.

We proceed to finish this proof by invoking Lemma C.1.

Lemma C.1. As long as the initial estimate is a small
distance away from the true signal x∗ ∈Ms, dist x0,x∗ ≤
δ0 kx∗k2, and subsequently, dist (xt,x∗) ≤ δ0 kx∗k2, where

xt is the tth update of Algorithm 2, then the following bound
holds,

2

m

mX
i=1

ai
Tx∗ 2 · 1{(ai

Txt)(ai
Tx∗)≤0} ≤ ρ2

5 xt − x∗ 2

2
,

with probability greater than 1−e−γ2m, where γ2 is a positive
constant, as long as m > C (s + log (card(M4s))) and ρ2

5 =
0.0128.

The complete proof of Lemma C.1 can be found in Ap-
pendix F.

Using this in addition to equation (37), we have our final
per-step error reduction for a single run of CoPRAM (Algo-
rithm 2), as:

xt+1 − x∗
2
≤ (ρ1ρ3)L + ρ5

(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
xt − x∗

2
,

≤ ρ0 xt − x∗
2
, (38)

where ρ0 < 1.

A. Evaluating convergence parameter ρ0

To obtain per-step reduction in error, we require ρ0 < 1.
For sake of numerical analysis, δ2s, δ4s ≤ 0.0001, then ρ1 ≈
2, ρ3 ≈ 0.0002. Let δ0 = 0.01, then ρ5 ≈ 0.12. Similarly,
ρ2 ≈ 4 and ρ4 ≈ 2. Suppose CoSaMP is allowed to run for
L = 5 iterations then, ρ0 ≈ 0.96 < 1.

The inequalities used for CoSaMP, particularly (34) can be
made tighter, which would give less tight restrictions on the
factor δ0, that controls how close the intial estimate is to the
true signal x∗.

We now restate theorem V.2 for Block CoPRAM as follows.

Theorem V.2. Given an initialization x0 ∈ Mb
s, satisfying

dist (xt,x∗) ≤ δb kx∗k2, where 0 < δb < 1, if we have
number of measurements m ≥ C s + s

b log n
s , then the

iterates of Algorithm 4 satisfy:

dist xt+1,x∗ ≤ ρbdist xt,x∗ . (15)

where 0 < ρb < 1 is a constant, with probability greater than
1− e−γm, for positive constant γ.

Proof. The proof for this theorem is a natural extension to the
one we have proved in Theorem IV.2, adapted for block sparse
signals. For the first part, the sequence of steps are the same
as (35) - (37) in the proof of Theorem IV.2. The per-iteration
error for the tth iteration of Block CoPRAM, with L iterations
of Model-based (block) CoSaMP, can be derived as:

xt+1 − x∗
2
≤ (ρ1ρ3)L x∗ − xt

2
+

(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
kEphk2 ,

(39)

where ρ1 = 2
q

1+δM2s

1−δM2s
and ρ2 = 4√

1−δM2s

and δM2s
is

the model-RIP [31] constant with parameter 2s. Similarly,

ρ3 =
δM2s

+δM4s

1−δM2s
and ρ4 =

2
√

1+δM2s

1−δM2s
are obtained from

a model-based extension of Lemma F.4, via Corollary F.5.
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Finally, Eph is the error in estimating phase in the tth run
of Block CoPRAM. The second part of this proof requires a
bound on the phase error term kEphk2:

kEphk22 =
2

m

mX
i=1

ai
Tx∗ 2 · 1{sign(aixt) sign(aix∗)=−1}.

such that x∗,xt ∈Mb
s. We obtain this via Corollary (C.2) of

Lemma C.1:

Corollary C.2. As long as the initial estimate is a small
distance away from the true signal x∗ ∈Mb

s, dist x0,x∗ ≤
δb kx∗k2, and subsequently, dist (xt,x∗) ≤ δb kx∗k2, where
xt is the tth update of Algorithm 4, then the following bound
holds,

2

m

mX
i=1

ai
Tx∗ 2 · 1{(ai

Txt)(ai
Tx∗)≤0} ≤ ρ2

5 xt − x∗ 2

2
,

with probability greater than 1−e−γ2m, where γ2 is a positive
constant, as long as m > C s + s

b log n
s and ρ2

5 = 0.0128.

Proof. For the case of block sparse signals, we use the
approach from section IV.D of [31]. In this case, the cardinality
of Ms is:

card(Ms) =
n
b
s
b

≤ e · (n/b)
(s/b)

s
b

=⇒ log (card(M4s)) ≤
4s

b
log

n

4s

Hence the sample complexity is m > C s + s
b log n

s .

APPENDIX D
NOISE ROBUSTNESS

In this section, we show that both CoPRAM and Block
CoPRAM are robust to noise, and establish the proof of
Theorem IV.3.

Theorem IV.3. Given Gaussian measurements aij ∈ N (0, 1),
CoPRAM can recover the model sparse signal xt0 ∈Ms from
noisy measurements y of the form

y = |Ax∗|+ ,

where ∈ Rm is a scaled sub-exponential. This retains the
previously derived expression for sample complexity as in
Theorem IV.1 up to a constant factor. The algorithm converges
according to the iteration invariant:

xto − x∗
2
≤ c1 kx∗k2 + c2 k k2

where to is the number of outer iterations of CoPRAM and
Block CoPRAM, c1 < 1 and c2 = 200.

We assume the modified version of (1) acquisition model:

ỹ = |Ax∗|+ = y + (40)

where is distributed according to a scaled sub-exponential
random variable. If the variance of the noise is much smaller

in comparison to the magnitude of the measurements, then the
following approximation holds:

ỹi
2 = y2

i + ηi (41)

where ηi are sub-exponentail random variables (special case
is Gaussian with distribution N (0, σ2)).

A. CoPRAM Initialization

The marginals used for initialization will get modified as:

M̃jj = Mjj +
1

m

mX
i=1

ηia
2
ij (42)

Similarly signal power gets modified as:

φ̃2 = φ2 +
1

m

mX
i=1

ηi (43)

Then much of the analysis for the initialization, follows
from [22]. Key points in the proof stated in Appendix A get
modified as follows:

Modified Lemma (A.1):

M̃jj − φ̃2 = Mjj − φ2 +

 
1

m

mX
i=1

ηi(a
2
ij − 1)

!
where the second term is bounded as Equation (6.4) in [22]
as

max
1≤j≤n

1

m

mX
i=1

ηi(a
2
ij − 1) ≤ Cσ

r
logmp

m

with probability greater than 1 − 4
m and the first term is

bounded using (18).
Since we have assumed that the noise variance is much

lesser than the signal power, Cσ ≤ α kx∗k2. Hence, the new
marginal threshold for j ∈ Sc is:

M̃jj − φ̃2 ≤ (8 + α)

r
logmp

m
kx∗k22

⇒ M̃jj ≤

 
1 + (11 + α)

r
logmn

n

!
kx∗k22 = Θ̃

with probability greater than 1− 9
m .

Modified Lemma (A.2):
Similarly, M̃jj − φ̃2 is lower bounded for j ∈ S+, using

(26) along with Equation (6.4) in [22]:

M̃jj ≥ Θ̃

where we redefine S+ and S− as

S+ =

(
j ∈ S | x∗2

j > 15 +
α

2

r
logmn

m
kx∗k22

)
.

Subsequently, we can define S− as

S− =

(
j ∈ S | x∗2

j ≤ 15 +
α

2

r
logmn

m
kx∗k22

)
,

Lemmas (A.3) and (A.4) hold using these modifications,
up to a constant factor. Theorem IV.1 holds with probability
greater than 1− 12

m .
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B. CoPRAM Descent

In the Descent stage, apart from the phase estimation
error and signal estimation error, we also have an additional
measurement error term. This modification reflects in Equation
(36) of Appendix C as:

u− Φx∗ = ± sign Φxt − sign (Φx∗) ◦ Φx∗ ± sign (Φx∗) ◦ ,

= Eph + Em,

where Em ≡ ± sign (Φx∗) ◦ is the measurement error. This
error propagates to modify Equation (37) as:

xt+1 − x∗
2

≤ (ρ1ρ3)L x∗ − xt
2

+
(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
kEph + Emk2 ,

≤ (ρ1ρ3)L x∗ − xt
2

+
(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
kEphk2 +

(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
k k2 .

Finally, the main convergence result from Equation (38) gets
modified as:

xt+1 − x∗
2
≤ ρ0 xt − x∗

2
+ ρm k k2 ,

where ρm = (ρ1ρ4+ρ2)
(1−ρ1ρ3) ≈ 8, as follows from the discussion in

section (C-A) of Appendix C. After a total of to iterations of
CoPRAM, we get the convergence result:

xto − x∗
2
≤ ρto0 x0 − x∗

2
+

ρm
1− ρ0

k k2 ,

≤ ρto0 δ0 kx∗k2 +
ρm

1− ρ0
k k2 ≈ 200 k k2 ,

where the last approximation holds if one utilizes the analysis
in section (C-A) of Appendix C, with ρ0 ≈ 0.96 and ρm ≈ 8.
However the coefficient of k k2 can be further lowered via
tighter analysis of the bounds in Appendix C. Thus the quality
of reconstruction only depends on level of input noise k k2,
which is bounded with high probability.

Moreover, the number of iterations to depends on the accu-
racy of reconstruction expected. For example, if one intends
to recover xt

0, such that kxt
0 − x∗k2 / kx∗k2 ≤ 0. Then the

number of iteration varies logarithmically with 1/ 0:

0 = ρto0 δ0 + 200
k k2
kx∗k2

ρto0 =
0 − 200

k k2

kx∗k2

δ0

to =
log(δ0) + log(1/( 0 − 200

k k2

kx∗k2
))

log(1/ρ0)
.

In the case of noiseless measurements, to =
log

δ0
0

log(1/ρ0) .

APPENDIX E
POWER LAW DECAY

In this section we state the proof of the sample complexity
required for sparse signals following power-law decay, as
described in Theorem IV.4.

Theorem IV.4. Given Gaussian measurements aij ∈ N (0, 1),
then CoPRAM can recover the s-sparse signal xt0 ∈ Ms,
with kxt0 − x∗k2 ≤ δ kx∗k2, where t0 is the number of outer
iterations of CoPRAM, from m > Cs log n measurements, as
long as the coefficients of the signal follow a power-law decay
as described in (12).

Note that a power-law decaying signal can be normalized
as follows:

x∗
j

2 ≤ C(α, s)

jα
,

kx∗k22 ≤ C(α, s)

sX
j=1

1

jα
:= C(α, s)ζ(s, α),

kx∗k22 + e = C(α, s)ζ(s, α),

=⇒ C(α, s) =
kx∗k22 + e

ζ(s, α)
,

where e is an indicator of the tightness of power-law inequality
(we assume that e < kx∗k22) and ζ(s, α) :=

Ps
j=1

1
jα . For

α = 0, C(0, s) =
kx∗k2+e

s . Numerical evaluation suggests that
ζ(s, α) is monotonically decreasing in α and monotonically
increasing in s.

Additionally, we can find the index at which all power-law
decaying signal elements fall bellow threshold Θ0:

j0 =

$
C(α, s)

Θ0

1
α

%
. (44)

The task is to find a tighter bound for x∗
S− 2

, as compared
to (30). This bound can be established using our additional
assumption of power law decay. We analyze this bound using
the threshold criteria Θ0 = 15

q
log mn

m kx∗k22, as in (20) and
α > 1 :

x∗
S−

2

2

≤ j0Θ0 + C

sX
j=j0+1

1

jα
,

≤ j0Θ0 + C

Z s

j0
j−αdj,

≤ j0Θ0 +
C

α− 1

1

j0α−1 −
1

sα−1
,

≤ j0Θ0 +
C

α− 1

1

j0α−1 =
α

α− 1
j0Θ0,

=
α

α− 1

 
kx∗k22 + e

ζ(s, α)

1

15 kx∗k22

r
m

logmn

!1/α

Θ0,

=
α

α− 1
ζ(s, α)−

1
α Θ

1− 1
α

0

+
1

α− 1

 
e

kx∗k22

1

ζ(s, α)

! 1
α

Θ
1− 1

α
0 + (higher order terms)

/
α

α− 1
ζ(s, α)−

1
α Θ

1− 1
α

0 (OR) <
2

1
αα

α− 1
ζ(s, α)−

1
α Θ

1− 1
α

0

≤ α

α− 1
Θ0 (OR) ≤ 2

1
αα

α− 1
Θ0
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where in the first step, we upper bound the summation with
the integral of a curve lying above it; in the second step, we
evaluate the integral; in the third step, we drop the 1

sα−1

term; this is followed by substituting the value of j0 via (44);
subsequently, we do a binomial expansion. The inexactness
in the inequality is originates from the terms in the expansion
that depend on e, and is an exact inequality for e = 0 (tighter).
We can also trivially bound e as e < kx∗k22, as per the setting
of our problem (looser). In the penultimate step, we use the
fact that ζ(s, α)−1/α ≤ 1.

Finally, we equate this bound to δ2
1 kx∗k22 to obtain the

following sample complexity:

=⇒ m ≥ C(δ1, α) logmn.

In this regime, the sample complexity for the overall algorithm
is dominated by the sample complexity for the descent stage
(O (s log n) = max(C logmn,Cs log n/s)).

APPENDIX F
SUPPLEMENTARY LEMMAS

In this section we state some of the lemmas with or without
proofs, used in Appendices A and C.

Lemma F.1. With probability of at least 1− 1
m , 

1− 2

r
logm

m

!
kx∗k22 ≤ φ2 ≤

 
1 + 3

r
logm

m

!
kx∗k22.

(45)

Proof. Rotational invariance property of Gaussian distribu-
tions imply that y2

i ≡ (
Pn

j=1 aijx
∗
j )2 has the same distru-

bution as a2
ij kx∗k22. Using Lemma 4.1 of [66] on a2

ij , we can
obtain the upper bound,

P

"
1

m

mX
i=1

a2
ij − 1 ≥ 2

√
m logm

m
+ 2

logm

m

#
≤ exp (− logm) =

1

m
.

Similarly, we can obtain the lower bound,

P

"
1

m

mX
i=1

a2
ij − 1 ≤ −2

√
m logm

m

#
≤ exp (− logm) =

1

m
.

The signal power φ2 is then bounded from below as 
1− 2

r
logm

m

!
kx∗k22 ≤ φ2,

and similarly, it is bounded from above as,

φ2 ≤

 
1 + 2

r
logm

m
+ 2

logm

m

!
kx∗k22 ,

<

 
1 + 3

r
logm

m

!
kx∗k22 ,

with probability at least 1− 1
m , for m > C, large enough. If

m ≈ 1000, then the bounds are,

(1− δ) kx∗k22 ≤ φ2 ≤ (1 + δ) kx∗k22 ,

where δ = 0.0207.

Lemma F.2. With probability at least 1 − 1
m , the following

holds,

1

m

mX
i=1

ai
>
S3
x∗ 2

aiS3
ai

>
S3
− kx∗k22 IS3 + 2x∗x∗>

2

≤ δ kx∗k22

where card(S3) ≤ 2s, provided m > C(δ)(2s) log(2s).

This proof has been adapted from Lemma A.6 of [22].

Lemma F.3. Suppose X1 . . . Xm are i.i.d. centered, bounded
real-valued random variables obeying

Xi ≤ b,

E [Xi] = 0,

E X2
i = v2,

σ2 = max b2, v2 ,

with cumulative distribution function of the standard normal
distribution being denoted as

Φ(x) =

Z x

−∞
φ(t)dt,

φ(t) =
1√
2π

exp − t2

2
,

then

P

"
mX
i=1

Xi ≥ t

#
≤ min exp

−t2

2σ2
, 25 1− Φ

t

σ
.

This establishes the tail probability of martingale with differ-
ences bounded from one side [68].

Lemma F.4. The 2s-sparse residual error (x∗ − xt+1,l)Γc
2

can be upper bounded as,

(x∗ − xt+1,l)Γc
2
≤ (x∗ − xt+1,l)Ωc

2

≤ ρ3 (x∗ − xt+1,l)
2

+ ρ4 kEphk2

where ρ3 = δ2s+δ4s

1−δ2s
and ρ4 = 2

√
1+δ2s

1−δ2s
.

This lemma has been adapted from Lemmas 4.2 and 4.3 of
[41].

Corollary F.5. The 2s-sparse residual error
(x∗ − xt+1,l)Γc

2
, for x∗,xt,xt+1 ∈ Ms can be upper

bounded as,

(x∗ − xt+1,l)Γc
2
≤ (x∗ − xt+1,l)Ωc

2

≤ ρ3 (x∗ − xt+1,l)
2

+ ρ4 kEphk2

where ρ3 =
δM2s

+δM4s

1−δM2s
and ρ4 =

2
√

1+δM2s

1−δM2s
and δM2s

, δM4s

are model-RIP constants.

Lemma C.1. As long as the initial estimate is a small
distance away from the true signal x∗ ∈Ms, dist x0,x∗ ≤
δ0 kx∗k2, and subsequently, dist (xt,x∗) ≤ δ0 kx∗k2, where
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xt is the tth update of Algorithm 2, then the following bound
holds,

2

m

mX
i=1

ai
Tx∗ 2 · 1{(ai

Txt)(ai
Tx∗)≤0} ≤ ρ2

5 xt − x∗ 2

2
,

with probability greater than 1−e−γ2m, where γ2 is a positive
constant, as long as m > C (s + log (card(M4s))) and ρ2

5 =
0.0128.

Proof. This proof has been adapted from Lemma 3 of [50] and
uses the generic chaining techniques of [43], [44]. A longer
version can also be found in the full version of [64].

We are required to bound the following term:

kEphk22 ≤
2

m

mX
i=1

ai
>x∗ 2 · 1{|ai

>x∗|<|ai
>h|}

≤ 2

m

mX
i=1

ai
>h

2 · 1{|ai
>x∗|<|ai

>h|},

≤ 2

m

mX
i=1

χi ai
>h

2
(46)

≤ 2

m

mX
i=1

ai
>h

2 · 1{(1−δ)|ai
>x∗|<|ai

>h|}, (47)

:=
2 khk22
m

mX
i=1

γi

where we have a fixed h defined as h = xt ± x∗ (±
corresponds to sign of minimum ‘2 norm) and satisfying
khk2 ≤ δ0 kx∗k2, δ is a small constant, and the pre-final
steps in equations (46) and (47) can be obtained via auxiliary
random Lipschitz approximations χi ai

>h
2

, as in Eq. 52
of Section C.1 (refer Proof of Lemma 3) of [50].

Here we invoke Lemma 3 of [50], which we modify to suit
our problem formulation. Firstly, we relax the constraint for
the initial separation δ0. Secondly, we calculate the expectation
of random variable γi := (ai

>h)2

khk2
2

1{(1−δ)|ai
>x∗|<|ai

>h|}, by
setting δ0 = 0.0035 and δ = 0.01. We therefore evaluate the
integral expansion of E [γi], (Section C.1, proof of Lemma 3
of [50]) and this expression can be bounded as:

E [γi] ≤ 0.0063 for δ0 < 0.0035 and δ = 0.01,

=⇒ E
h
χi ai

>h
2
i
≤ 0.0063 khk22 ,

(for δ0 < 0.0035 and δ = 0.01).

Using Bernstein type inequality [69] on sub-exponential vari-
able χi ai

>h
2

,

P

 1

m

mX
i=1

χi ai
>h

2

khk22
> (0.0063 + )

 < exp (−cm 2).

At this point, we leverage the sparsity of the problem and
consider a union bound over all 2s-sparse h’s (such that xt

and x0 are sparse and contained in Ms) lying in an 0- net
N 0 sphere of radius δ0 kx∗k2 and 0 = δ0 kx∗k2. The 0-
net has cardinality card(N 0) ≤ card(M2s) 1 + 2 2s

. For

example, card(N 0) ≤ n
2s 1 + 2 2s

for general 2s-sparse
signals card(M2s) = n

2s .
Now the union bound over all such h0 ∈ N 0 , such that
kh− h0k2 ≤ khk2 is:

P

 1

m

mX
i=1

χi ai
>h0

2

kh0k22
≤ (0.0063 + )

 (48)

> 1− card(M2s) 1 +
2

2s

exp (−cm 2), (49)

∀h0 ∈ N 0 .

Now, we bound the RHS of Eq.(46) as follows:

2

m

mX
i=1

χi ai
>h

2 − 2

m

mX
i=1

χi ai
>h0

2

≤ 2

m

mX
i=1

χi ai
>h

2 − 2

m

mX
i=1

χi ai
>h0

2

≤ 2

m

mX
i=1

χi ai
>h

2 − χi ai
>h0

2

≤ 2

m
· 1

δ

mX
i=1

ai
>h

2 − ai
>h0

2
(50)

≤ 2 · c
δ

hh> − h0h
>
0 F

(51)

≤ 2 · 3c

δ
kh− h0k2 · khk2 ≤

6c

δ
khk22 (52)

where (50) is due to the χi’s being Lipschitz functions
with constant 1

δ and (51) and (52) are through Lemma F.6
and Lemma 2 of [49] respectively, with probability 1 −
c card(M4s) exp(−Cm).

Lemma F.6. For all symmetric rank-2 matrices H ∈ R4s×4s,
if m > Cs, then with probability 1− c exp (−Cm),

1

m

mX
i=1

aiΩHa>iΩ ≤ ckHkF , (53)

where Ω is a 4s-dimensional support vector and aiΩ ∈ R4s is
a sub-vector of ai (adapted from Lemma 1 of [49]).

Consequently, taking a union bound over all 4s-dimensional
subspaces in lying in n-dimension, the bound in (53) holds
with probability at least 1 − c card(M4s) exp(−Cm), where
H := hΩh

>
Ω − h0Ω

h>
0Ω

and h0Ω
∈ R4s and hΩ ∈ R4s are

sub-vectors of h and h0, such that Ω := supp(h)∪supp(h0).

Effectively, we evaluate the sample complexity, by consider-
ing the probability with which the final expression in Equation
52 holds,

card(M4s) exp −cm 2 < δ,

=⇒ m > C (s + log (card(M4s))) .

Specifically, for sparse signals, card(M4s) = n
4s ≤

e·n
4s

4s
,

m > C s + 4s log
n

4s
> C 0s log

n

s
.
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Using the result at the end of (52), and combining with (48)
we have,

2

m

mX
i=1

χi ai
>h

2 ≤ 2 0.0063 + +
3c

δ
khk22

< 0.0128 khk22 .

since can be chosen to be as small as required, hence
concluding the proof of Lemma C.1.
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