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ABSTRACT: A life-cycle approach to infrastructure design and management involves decisions pertaining 
to operation, maintenance, intervention, and rapid response measures. Such an approach may only be 
conceived when formulated on the basis of observations during the life-cycle of these systems. Structural 
Health Monitoring (SHM) offers a tool to such an end, with sensors employed to generate information on 
the state of structural systems, which may then be exploited to derive performance indicators. A 
fundamental, practical question regarding monitoring of structural systems is however the quantification of 
any gains, monetary or otherwise, for infrastructure owners if they choose to install a monitoring system to 
their structures, in place of, or in addition to, other available choices, such as structural inspection visits. 
This essentially comprises a Value of Structural Health Monitoring (VoSHM) problem, which poses 
important mathematical and computational challenges related to several infrastructure system uncertainties, 
stochastic observations and their Value of Information (VoI), and any uncertain action outcomes. In this 
work, we implement optimal stochastic control approaches for infrastructure management in the form of 
Partially Observable Markov Decision Processes (POMDPs), which inherently possess the notion of the 
VoI into their formulation and, in fact, automatically utilize it at every decision step for decision-making. 
In addition, we show that based on POMDPs the VoSHM can be efficiently estimated, allowing for 
informative decisions by the structural owner, based on quantitative metrics in relation to the expected 
benefits of the SHM system. A representative application is shown in this regard for a multi-component 
engineering system, showcasing the wide applicability and effectiveness of the suggested approach and its 
practical merits.    

1. INTRODUCTION 
Structures and infrastructure systems are exposed 
to adverse operational conditions, aging and 
deterioration throughout their life-cycle. Recent 
catastrophic events, such as the Morandi bridge 
collapse in Genoa, evidence the urgency for 
utilization of schemes that can inform about 
structural integrity while supporting Operation & 
Maintenance (O&M) actions. Sensor technologies 

have sufficiently matured today to allow for 
reliable and diversified measurements of 
structural response (e.g. accelerations, strains, 
loads, temperature, etc.), which serve as evidence 
of structural condition. Structural Health 
Monitoring (SHM) techniques are developed for 
processing raw data and translating these into 
structural performance indicators, or “structural 
health”. SHM systems may therefore support 
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decision-making regarding the management of 
infrastructures throughout their life-cycle, with 
decision policies for inspection, maintenance and 
intervention actions. In this direction, new 
methods and tools are needed, capable of 
quantifying the Value of Information (VoI) and 
similarly the Value of Structural Health 
Monitoring (VoSHM) (Straub et al. 2017). 

In existing literature, several methods 
attempt to tackle decision-making for optimal 
management of infrastructure. A common 
approach lies in casting this as an optimization 
problem, with the aim of satisfying either 
individual objectives, e.g. condition, availability, 
safety, durability or reliability (e.g. Liu et al., 
1997; Miyamoto et al., 2000; Furuta et al., 2004), 
or multiple conflicting objectives, as a 
combination of the above (Bocchini & Frangopol, 
2013). Multi criteria objectives may be tackled by 
multi-objective optimization schemes, which will 
typically deliver a set of compromising Pareto 
solutions (Liu & Frangopol 2005).  

Key to the success of such optimization tools 
is the adequate incorporation of uncertainties, 
which may be of aleatory or epistemic nature. 
According to Faber (2005), engineering decision 
problems may be classified into three main 
categories, namely those of prior, posterior, or 
pre-posterior decision problems. The problem of 
inspection and maintenance planning falls in the 
latter class, (Sørensen, 2009, Goulet et al., 2015), 
and may be treated by means of dedicated tools, 
such as the Value of Information (VoI). The VoI 
may be defined as the amount a decision maker is 
willing to pay for information prior to making a 
decision. Within the context of SHM, the VoI may 
be quantified as the difference between the 
expected operational cost of the structure in 
absence of relevant information, and the cost upon 
availability of monitoring information (Zonta et 
al., 2014), whereas VoSHM can provide a broader 
definition to describe relative costs between 
default observational schemes (e.g. inspection 
visits) and SHM-aided plans (Andriotis et al. 
2019). Various works (Pozzi & Der Kiureghian, 
2011; Straub & Faber 2005) exploit the VoI to 

quantify the value of monitoring/inspections in 
support of maintenance interventions within a 
Bayesian framework. In (Papakonstantinou et al., 
2016a) the value of permanent monitoring is 
quantified in the context of Partially Observable 
Markov Decision Processes (POMDPs) for a non-
stationary corroding structure. 

POMDPs offer an extension of Markov 
Decision Processes (MDP), having as objective 
the determination of an optimal sequence of 
actions (policy) that maximizes rewards or 
respectively minimizes costs. While MDPs offer 
a setup that is particularly suited for structural 
O&M, they are principally formulated under the 
assumption that the system’s conditions can be 
observed perfectly at each time step. Relaxing this 
assumption, POMDPs allow for decision-making 
under partial (uncertain or incomplete) 
observations. In an early work, Madanat & Ben-
Akiva (1994) adopt POMDPs for decision-
making for highway-pavement networks. Ellis et 
al. (1995) and Corotis et al. (2005) demonstrate 
use of POMDPs for bridge inspection planning.  
Discrete POMDP formulations, rendering such an 
implementation suitable for non-stationary 
infrastructure maintenance and inspection 
planning in real time has been proposed in 
(Papakonstantinou & Shinozuka 2014a, 2014b; 
Papakonstantinou et al., 2016a). Schöbi & Chatzi 
(2016) on the other hand adopt a continuous 
formulation for treating problems described by 
linear and/or nonlinear transition functions, 
whereas adept formulations for cases of mixed 
observability have been presented in 
(Papakonstantinou et al., 2018). 

POMDPs offer a comprehensive and flexible 
modeling framework for life-cycle analysis and 
may further be extended to tackle problems of 
multiple components or systems, as exemplified 
in (Memarzadeh & Pozzi, 2016). Fereshtehnejad 
& Shafieezadeh (2017) have proposed the use of 
point-based value iteration combined with a 
counting process to optimize decisions in 
structural POMDP systems. Recently, to 
efficiently address the known curse of 
dimensionality and model unavailability in large-
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scale POMDP system applications, Andriotis and 
Papakonstantinou (2018) developed a Deep 
Reinforcement Learning (DRL) framework, 
proposing an actor-critic architecture within off-
policy DRL, tailored to long-term maintenance 
and inspection planning in generic deteriorating 
engineering environments, and structural domains 
with high-dimensional state and action spaces. 

In this work, we present a method for 
calculating the VoSHM, within the framework of 
POMDPs. The described method is applied and 
demonstrated on a three-component system, 
which is analyzed under two different inspection 
scenarios; one with optional inspection visits and 
one with continuous availability of observations 
pertaining to permanent monitoring. The 
underlying POMDP problems are solved here 
using point-based value iteration on the reachable 
subset of the belief space, however the delineated 
steps for the VoSHM quantification are general 
and not specific to any particular POMDP 
solution scheme. 
 

2. PARTIALLY OBSERVABLE MARKOV 
DECISION PROCESSES 

POMDPs provide a theoretically sound decision 
framework for environments with uncertain 
action outcomes, operating under partial 
observability. Inspection techniques and 
monitoring devices in structural settings 
commonly provide noisy observations that do not 
reveal the true state of the system with certainty. 
In such cases, within a POMDP context, a belief 
b over the possible states of the system, S, can 
only be obtained, which is a probability 
distribution over S and a sufficient statistic of the 
history of actions and observations. That is, given 
b the agent (or decision-maker) has all required 
information to take an action, regardless of the 
entire sequence of past actions and observed 
states. Beliefs at every decision step sum up to 1, 

thus forming a 1S   dimensional simplex. The 

agent is equipped with actions, a, drawn from a 
finite set of actions A, which have a certain instant 
cost or negative reward R(s,a), typically also 
dependent on the state of the system. Following 

the selected action, a, and the underlying 
transition dynamics, the environment switches to 
a new state s  according to a known stochastic 
model, with transition probability  ,P s s a . The 

new belief b  at the new time step can be readily 
obtained by a Bayesian update: 
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where  ,p o ab  is the normalizing constant: 
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Thus, a POMDP is defined as a 6-tuple (S, A, P, 
O, Pobs, R) where, S, A and O finite set of states, 
actions and possible observations respectively, P 
state transition probabilities, Pobs observation 
probabilities modeling, and R rewards. 

The objective in a POMDP sequential 
decision problem is to find an optimal sequence of 
actions that minimizes the total expected cost over 
the entire life-cycle (or planning horizon). This 
sequence of actions defines the agent’s policy, π, 
which is a function, mapping beliefs to actions. 
The total expected cost collected under policy π, 
defines the POMDP value function, .V    For 
every belief, *V estimates the amount of 
discounted reward the decision-maker can gather 
when acting according to the optimal policy π*. 
The optimal value function for a discounted, 
infinite horizon POMDP is written as 
(Papakonstantinou & Shinozuka, 2014a): 
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where γ is the discount factor, a positive scalar less 
than 1, associated to the future discounted state 
and action values, to relate them to the present. 

POMDPs can be seen as belief MDPs, 
however solving a POMDP is a much more 
challenging problem. Although the reachable 
belief space is typically a small subset of the entire 
belief simplex, the different permissible belief and 
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action and observation sequences generate large 
policy trees that are very difficult to determine. A 
significant feature of POMDP models is that their 
optimal value functions are piecewise linear and 
convex, thus they can be approximated arbitrary 
well by a set of vectors, also called -vectors.  
Owing to this property, adjacent belief points can 
be supported by the same vector, which precisely 
represents the optimal value function. Hence, the 
gradient of the value function at any belief point 
is given by a corresponding -vector and based on 
a set of -vectors  the value function is written: 

  
 

   *

 

max
i

i

i

s S

V b s s


 b
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With this representation, the value function over 
the continuum of points of the belief state-space is 
described by a finite set of -vectors, and each 
vector is associated with a specific optimal action. 

2.1. Point-based solvers 
Point-based value iteration is an approximate 
method for solving POMDPs and constitutes the 
central feature of point-based POMDP solvers. 
Point-based POMDP solvers share three main 
steps: (i) they use a simple lower bound 
initialization of the value function, (ii) they collect 
permissible belief points that are likely to describe 
the possible action and observation outcomes, and 
(iii) they perform Bellman backups for the 

-vectors  on subsets of the belief space. 
A number of point-based algorithms exists in 

the literature. Based on previous works by 
Papakonstantinou et al. (2016b; 2018) on 
evaluating and assessing the performance of a 
great variety of point-based solvers, in this paper 
three point-based solvers are utilized for the 
numerical examples, namely FRTDP, SARSOP 
and Perseus. FRTDP and SARSOP concurrently 
maintain a lower and an upper bound to guide the 
belief trajectories over the belief space and to 
monitor convergence. Perseus utilizes a randomly 
selected set of belief points over which -vector
and value function backups are performed. Lower 
bounds are piece-wise linear whereas upper 
bounds are determined by sawtooth 
approximations or linear programming.  

3. VALUE OF STRUCTURAL HEALTH 
MONITORING 

VoSHM can efficiently inform decision-makers 
regarding the possible gains from investing in life-
long SHM devices and practices, instead of 
planning inspection visits at discrete times during 
the structural life-cycle. As such, VoSHM relates 
to the critical decision regarding the nature of the 
monitoring scheme that needs to be adopted, in 
essence quantifying the benefits of continuous 
data collection and inflow of information in the 
decision-support system. 

Following this logic within the premises of 
POMDPs, the VoSHM can be defined as the 
difference between the value function of a system, 
V2, featuring permanent monitoring, and the value 
function of the same system, V1, without 
permanent monitoring, but with the option of 
inspection visits with known possible costs at 
certain time steps: 

   * *
2 1( ) ( )VoSHM V V b b b   (5) 

Using Eq. (5), we can compute the VoSHM at 
every possible belief point that the system can 
visit throughout the planning horizon. Typically, 
the belief of foremost interest is the root belief, 

0 ,b which reflects the probability distribution 
over all possible states at the initial conditions, i.e. 
for current step t=0. In this case, VoSHM 
quantifies the life-cycle value of the monitoring 
system. For 0t  , which generally corresponds 
to 0,b b Eq. (5) describes the remaining 
VoSHM from that time.  The notion of remaining 
VoSHM can be of particular practical importance 
in cases where determination of the optimal 
salvage time of the monitoring system needs to be 
defined. 

4.  RESULTS 

4.1. Settings 1 and 2 
For our numerical investigation, we consider a 
three-component system, operating under partial 
observability.   Stochastic   deterioration   of   the 
components, for all  1,  2,  3 ,i is defined by 

independent transition matrices, Pi, as: 
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Table 1: Base rewards for individual components. 
State 1 2 3 

Repair -12.0 -18.0 -30.0 
Inspection -1.0 -1.0 -1.0 
State loss 0.0 -5.0 -12.0 

 

 

1

2

3

0.82 0.13 0.05

0.87 0.13

1.00

0.72 0.19 0.09

0.78 0.22

1.00

0.79 0.17 0.04

0.85 0.15

1.00

P

P

P

 
   
  

 
   
  

 
   
  

  (6) 

As indicated by Eq. (6), each component has three 
states with stationary transition dynamics, i.e., 
transition from state i to j is independent of time 
and component age. Overall, the examined system 
can be fully specified by 27 states. 

In order to quantify the VoSHM for this 
three-component system, two POMDP control 
settings are evaluated. For Setting 1, 4 inspection 
and maintenance control actions are available for 
each component, including the possibility of 
structural inspection visits at belief points 
suggested by the POMDP solution. These actions 
are ‘no-inspection and no-repair’, ‘inspection and 
no-repair’, ‘no-inspection and repair’, and 
‘inspection and repair’. The total number of 
system actions is 64. For Setting 2, observations 
are available by default at every decision step, 
corresponding to a permanent monitoring system. 
Accordingly, 2 maintenance control actions are 
available, i.e., ‘no-repair’, and ‘repair’. Based on 
the possible action combinations, there are 8 
system actions in Setting 2. In both settings, for 
all components, a choice of repair action yields 
the following transitions: 

 

0.90 0.10

0.80 0.20

0.70 0.30
repP

 
   
  

  (7) 

Observation matrices, for all components, read: 

 

0.90 0.05 0.05

0.05 0.90 0.05

0.05 0.05 0.90
obsP

 
   
  

  (8) 

Eq. (8) assigns a 90% observation accuracy every 
time an inspection is made, meaning that there is 
0.90 probability of observing the correct state, and 
0.10 probability of uniformly observing either one 
of the other states. 

Base negative rewards (or costs) for 
individual components are given in Table 1 for 
different states and actions. System level 
interdependence among components is 
established though the reward function, with 
certain penalties added to the base total costs at 
different system state configurations. That is, for 
states in {(2,2,1)}, {(2,2,2),(1,2,3),(2,2,3)}, 
{(3,3,1),(3,3,2)}, and {(3,3,3)}, penalties are -5.0, 
-10.0, -14.0, and -18.0, respectively, where vector 
(i, j, k) denotes component state combinations, i.e. 
(3, 3, 1) indicates that there are 2 components in 
state 3 and one component in state 1. 

4.2. Policy evaluations and VoSHM 
For both POMDP settings, the three point-based 
algorithms discussed in Section 2.1 are 
implemented. The relevant results can be seen in 
Tables 2 and 3.  The values correspond to 3,600s 
analyses, as it was noticed that longer runs did not 
provide substantial precision improvement. As 
also shown in Figures 1 and 2, Setting 1 
practically converges after 1,000s, whereas 
Setting 2 after 110s for all algorithms. It can be 
seen that the precision of the solution of Setting 1 
is somewhat lower that the precision of Setting 2, 
for FRTDP and SARSOP. This can be attributed 
to the fact that the system in Setting 1 operates in 
a much more challenging POMDP environment 
with more actions and, consequently, larger 
reachable   belief   space.   Apart  from  that,  low  
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Table 2: Performance of different point-based 
POMDP solvers in Setting 1. 

Solver 
Lower 
bound 

Upper 
bound 

Precision 
gap 

FRTDP -529.125 -512.952 3.06% 
SARSOP -528.585 -512.881 2.97% 
Perseus -527.592 N/A N/A 

 

 
Figure 1: Anytime performance of point-based 
POMDP solvers in Setting 1. 

precision can also be triggered by a rough 
approximation of the upper bound. FRTDP and 
SARSOP utilize approximate upper bounds, 
determined by a sawtooth approximation. The 
bound that actually contains all the information of 
the optimal policy is the lower bound and this is 
shown to be reached with great agreement among 
all different solver runs.   

In Figure 1, the progress of both the lower 
and the upper bounds, where applicable, is 
depicted. SARSOP converges faster, thus 
exhibiting a better anytime performance, as also 
discussed in (Papakonstantinou et al. 2018). 
Perseus, although starting from a cruder initial 
lower bound, eventually reaches the best value, 
slightly outperforming counterparts. The same 
features are also noticed in Figure 2. In this plot, 
the overall convergence is much faster for all 
algorithms, due to the simpler nature of the 
decision problem, and SARSOP demonstrates 
considerable strengths in early convergence, 
practically converging before 10s.  Perseus has a 
clear anytime performance advantage compared 
to FRTDP, in this case, whereas all algorithms 
reach identical lower bounds after 3,600s.  

Table 3: Performance of different point-based 
POMDP solvers in Setting 2. 

Solver 
Lower 
bound 

Upper 
bound 

Precision 
gap 

FRTDP -473.245 -470.556 0.57% 
SARSOP -473.244 -470.764 0.52% 
Perseus -473.244 N/A N/A 

 

 
Figure 2: Anytime performance of point-based 
POMDP solvers in Setting 2. 
 

A realization of the converged policies is 
shown in Figures 3 and 4. For Setting 1, each 
component needs to perform different policies in 
order to collectively minimize the total expected 
cost of the system. Component 1 requires an 
inspection visit roughly every two years, whereas 
its repair actions are mostly combined with 
inspections. Component 2 does not choose the no-
inspection/no-repair action, predominantly 
requires actions that involve inspection, and it is 
also the component with the most repair actions 
throughout its life-cycle. Component 3 policy 
combines features of the other two policies. This 
is anticipated as the transition dynamics of 
component 3 are in-between the other two cases, 
defined by components 1-2. Figure 4, illustrates a 
life-cycle policy realization for Setting 2, with the 
same random seed as for the realization of Figure 
3. In this case, inspections are always available at 
no cost, due to the permanent monitoring system 
assumption and in order to evaluate its value. 
Policies follow similar trends for all components, 
as in Setting 1. The VoSHM is shown for all 
solvers in Figure 5. The VoSHM in this example 
is near 10% of the life-cycle cost of Setting 1. This 
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Figure 3: Policy realization for all system components operating in Setting 1, for 100 years. 

 

 
Figure 4: Policy realization for all system components operating in Setting 2, for 100 years. 

 
Figure 5: Expected life-cycle costs for Settings 1, 2 
and corresponding VoSHM estimates. 
 

means that any permanent monitoring system 
with lifetime cost lower than this amount should 
be preferred for SHM, in place of any inspection 
visits plan, including the optimal one.  

In cases of large multi-component systems, 
point-based solvers may not be straightforwardly 
applicable, if at all, as they require full offline 
models for interstate transitions and cost 
functions, for all possible state and action 
combinations. In such large systems, deep 
reinforcement learning POMDP solutions provide 
an efficient alternative (Andriotis & 
Papakonstantinou, 2018) for quantifying the VoI 
and VoSHM, using exactly the same steps 
outlined in this paper.  

5. CONCLUSIONS 
A POMDP-based methodology for quantifying 
the Value of SHM is presented. We compute the 
VoSHM in deteriorating environments with 
uncertain action outcomes and incomplete 
information about the actual system state, which 
is probabilistically determined through noisy real-
time observations and Bayesian updates. We 
determine the VoSHM based on the optimal 
POMDP policies of two different inspection 
settings. The first setting involves optional 
inspection visits, whereas the second setting 
operates under the assumption of continuous 
observations throughout the entire operational 
life, thus representing a permanent monitoring 
system. Both theory and results indicate that the 
presented methodology provides a simple and 
straightforward way to quantify the value of 
different SHM alternatives. 
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