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ABSTRACT

Trace analysis is a common problem in system optimization and
data analytics. This paper presents new efficient algorithms for
window co-occurrence analysis, which is to find how likely two
events will occur together in time windows of different lengths.
The new solution requires a linear time preprocessing step, after
which, it only takes logarithmic space and constant time to com-
pute co-occurrence of a data pair in windows of any given length.
One potential use of the new analysis is to reduce the asymptotic
cost in affinity-based memory layout.
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1 INTRODUCTION

A common problem in computer science is trace analysis, where
a trace is a continuous sequence of events. An example is the se-
quence of memory requests made by a program during execution.
Other examples include a sequence of functions executed by an
application, a sequence of data requests to a web server, a series
of objects displayed in a video stream, or a series of words in a
document.

This paper presents new efficient algorithms for window co-
occurrence analysis, which is to find how likely two events will
occur together in a trace, i.e. the likelihood that two events will
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appear in the same time window. We can express this likelihood
by a conditional probability: if a window contains event a, what is
the probability that this window also contains event b?

In co-occurrence analysis, it is important to consider the timescale.
If the timescale includes the whole trace, then any pair of events co-
occur. On the other hand, if the timescale includes just one event,
then there is no co-occurrence. The main strength of the new anal-
ysis is that it analyzes co-occurrence in all timescales, from the
smallest to the largest.

The new analysis has the following steps:

e all-timescale solo occurrence
— preprocessing phase: process the trace once and store
the reuse times
- analysis phase: calculate the result for different given
window lengths, using the reuse times
o all-timescale co-occurrence
- preprocessing phase: process the trace once and store
the combined result of switch times and inter-switch
times.
— analysis phase: calculate the result for different given
window lengths, using the combined times

One use of co-occurrence analysis is to analyze and optimize
the memory layout of a program. Modern processor performance
is dependent on cache performance which depends on cache block
utilization. Co-occurrence analysis finds a relationship between
data accesses in a trace called reference affinity. Then, program
data can be placed so that the most related data are within the
same cache block. Reference affinity has been used extensively
in past work to improve cache performance. With IBM Z’s block
size being 256 bytes, quadruple Intel x86’s 64-byte block size, we
expect using an optimized memory layout to be significantly more
beneficial to system performance. Furthermore, different levels of
the same memory hierarchy has different block sizes, e.g. 4KiB
pages at the virtual memory. All-timescale co-occurrence analysis
can be used to improve memory layout for all block sizes.

2 PROBLEM STATEMENT

A program execution is represented by its memory access trace,
which is a sequence of memory addresses. In general, we consider
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a trace of elements, and the elements may appear repeatedly in the
trace. We define the following symbols:

n:  the length of the trace, i.e. the number of elements
m: the number of distinct elements

The logical time for each element is defined as its index, starting
from 1.
For the analysis, we measure the following

e solo occurrence probability P(a € Wy ), which is the frac-
tion of length-x windows that contain element a

e co-occurrence probability P({a, b} € Wy), or equivalently
P(a € Wy Ab € Wy), which is the fraction of length-x
windows that contain a pair of elements a and b

Wy is the working set defined by Coffman Jr. and Denning [1],
who defined W (¢, T) to be set of data used in the window of length
T ending at t. Wy is the same as W (¢, x) for an unspecified ¢.

We call the parameter x > 0 the timescale. For example, P({a, b}
Wy ) is the frequency of joint appearance of a and b at timescale x.
A conditional probability can be computed as follows:

Plae Wx AbeWy)
P(a € Wy)

In any window of length x, if it contains a, P(b € Wx|a € Wy) is
the probability that the window also contains b.

This conditional probability may be useful in a lot of areas such
as affinity-based memory layout. In order to calculate the condi-
tional probability, the most intuitive way is to process the trace
with the specified window length x, and count how many win-
dows contain the element a and how many windows contain both
elements. By using this method, we need to loop through the trace
every time for a new x. For each loop, the time complexity is at
least O(n).

Our techniques only require one pass of a trace, reducing both
time and space complexity. Our techniques are divided into two
phases: the preprocessing phase and the analysis phase. The pre-
processing phase is the one-pass processing of the trace to store
necessary information. The analysis phase is using the information
to calculate the solo occurrence and co-occurrence for all window
lengths x.

P(b € Wyla € Wy) = (1)

3 COUNTING SOLO OCCURRENCE

Our goal is to process the trace only once and record the necessary
information we need, and then we can calculate the conditional
probabilities for any element with any window length just based
on the information instead of analyzing the trace again.

The information we collect includes the first access time and
the last access time of each element. In addition, we collect the
cumulative reuse times of all elements. For each trace element, if
it is not a first access, it has a reuse time, which is the time interval
between the current time and the last time the element is accessed.

Before explaining the solution, we first show an example of win-
dow counting. Figure 1 shows an occurrence of an element a in a
trace. We want to count the number of length-x target windows
(which contain this occurrence a). The earliest target window is
w1, which has a as its last element. The last target is w2, which has
it as the first element. All sliding windows from w1 to w2 contain
a. Their starting points are shown by the red line, which extends

m

Yumeng (Lucinda) Liu, Daniel Busaba, Chen Ding, and Daniel Gildea

Trace:

wl: L2
w2: | X

semeesme number of windows is x

Figure 1: Counting the number of target windows which
contain a specific occurrence of a. wl is the earliest, and w2
the latest. The red line gives the count.

from the starting point of wl to w2. In this illustration and later
ones, the range of windows are shown by the first window on the
first line and the last window on the second line, and the red line
represents the count of target windows (and their starting points).

For a single occurrence, the number of target windows is actu-
ally just the window length x, which is the length of the red line
in Figure 1.

Now, we consider the problem of window counting in a general
situation that windows might contain different numbers of a. The
general case is shown in Figure 2, where a is first accessed at time
fa, last accessed at time n — I, and reused a few times in between.

It is obvious that for window length x, we cannot simply use x
as the number of windows that contain a. The solution is simpler
if we solve the complement problem, i.e. counting windows that
do not contain a. We call them absence windows, and the windows
containing a are target windows. The number of target windows
is the total number of windows minus the number of absence win-
dows.

ﬁz rt1

rtﬁrtgl 1ty | §lu I

. | |
Trace: a aa a a: -
X X LX)
fax rti-x rlx X
s target windows
mememe absence windows
wmenes Jast window

Figure 2: General cases of window counting for all accesses
of a. The number of absence windows is computed by the
first access time, the last access times or the reuse times mi-
nus x whenever it is greater than x.

In Figure 2, the red line denotes the number of target windows
as we have explained previously. The blue line denotes the absence
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windows. Finally, the black line represents the last window for the
whole trace, so the vertical dotted line means the starting point of
the last window, which should be the ending point for counting.

The key insight is that each blue line can be computed by a for-
mula of a common type, which is x subtracted from a time, where
the time is either first/last-access time or the reuse time. The rea-
son is that the absence windows (blue line) only happen if the time,
either its reuse time rt, first access time f, or last access time Ig,
is larger than the window length x. For example, in Figure 2, rt;
is larger than x and contains rt; — x absence windows. rty is less
than x and does not contain any absence window.

Therefore, the number of absence windows is time t — x if time
t > x. The complete count of absence windows considers three
types of time, given by the numerator in Eq. 2 as follows. The equa-
tion computes P(a ¢ Wy ) as the absence-window count divided by
the number of windows, which is n — x + 1. The solo occurrence
probability P(a € Wy) is its complement, given by Eq. 3.

Plag Wy) =
n-1
( D (=)t a) | + (fa = 0)I(fa > %) + (la = x)I(la > %)
i=x+1
n—-x+1
(@)
Pla€ Wy)=1-P(a¢ W) ®3)

The symbols are as follows:

o rt(i,a): the number of reuse times of element a that equal
to i.

o fu: the first-access time of the element a (counting from
1).

e [,: the reverse last-access time of the element a. If the last
access is at position i, I; = n — i, that is, the first-access
time in the reverse trace (counting from 1).

e I(p): the indicator function equals to 1 if p is true; other-
wise 0.

4 COUNTING CO-OCCURRENCE

To measure co-occurrence, we follow the similar idea of solo oc-
currence counting. Instead of counting windows containing one
element, we count windows containing a switch. A switchbetween
a pair of elements, a and b, and is defined by the time interval that
starts on one element and ends on the other, without any a or b
in between. For example, the sequence aabb has one switch (from
the second a to the first b), and aba has two switches. We have a
full solution for counting co-occurrence but choose to not include
it in this position paper.

For each switch, the switch time st is the length of the interval,
which is the position index of second element minus the position
index of first element.

The switch time facilitates co-occurrence counting. First, any
window containing both a, b must contain a switch. Hence count-
ing co-occurrence means counting switch occurrence. Second, no
window can contain a data pair of a switch when the switch time
is larger than or equal to the window length x. Once we collect
switch times, we will count co-occurrence windows by considering
only switches whose switch time is smaller than window length x.
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Figure 3 shows an example of co-occurrence counting. It shows
two switches of a, b, and the target windows of the second switch,
with wl being the earliest target window and w2 the latest. The
number of enclosing windows is x — st, where x is the window
length, and st the switch time. Notice here we don’t treat the time
interval from first b to second a as a switch since its switch time
st is larger than window length x.

ist
/_\
st st
Trace: || ||
a b a b
wl: [ X
w2: X
Srvemermm— number of windows is x - st

Figure 3: The number of windows containing a switch of
data pair g and b is x — st, where x is the window length and st
the switch time. ist is the inter-switch time between the two
switches, which is the time from the first element of first
switch to the first element of second switch.

Solo occurrence can now be seen as a special case of co-occurrence,
where the switch is reduced to a single element and st = 0. In this
special case, the number of windows containing the very next ele-
ment is also x — st (as in Figure 3), where st is always 0.

Now, we can treat a co-occurrence of a and b as a solo occur-
rence of a switch. We use a similar strategy as before. Recall that
for solo occurrence, we counted absence windows using reuse time
minus window length x for any reuse time larger than x.

For similar reason, we need the reuse time in solo occurrence
counting, we need the time between consecutive switches in co-
occurrence counting. We define the inter-switch time ist as the
time difference between the first elements of two consecutive switches.

In solo occurrence counting, the number of absence windows
for each reuse time rtis rt—x, if rt > x. In co-occurrence counting,
the number of absence windows has three cases. In Case 1, x > st
and ist > (x — st), the count is ist— (x — st), as seen in Figure 3. The
number of absence windows is the number of windows minus the
number of target windows, and the number of target windows is
x — st as explained previously. In Case 2, x > stand ist < (x — st),
the count is 0. Finally, in Case 3, x < st, the count is ist. The
following table shows the three cases:

I ist > (x — st) | ist < (x — st)
x> st || ist— (x —st) (Case 1) | 0 (Case 2)
x < st ist (Case 3) not possible

5 STORING TIME

The asymptotic cost of co-occurrence analysis depends on how its
inputs are stored. These inputs are distributions of time, includ-
ing the reuse time and the first- and last-access times in in Eq. 2.
Similar time representations are used to compute co-occurrence.
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We store a distribution of time in a histogram. We define the
size of a histogram by the number of buckets. The maximal value
of time is the length of the trace n. A fully precise histogram may
have n buckets. We can reduce the size of a histogram to either
bounded or logarithmic of the maximum value by approximation.

A basic solution divides the full value range evenly. This solu-
tion is constant size and general. It may waste space when val-
ues are sparsely distributed. A specialized solution is a reference
histogram, which sorts all reuse distances by their values and di-
vides them evenly into 1000 bins, so each bin stores exactly 0.1% of
reuse distances [11]. A reference histogram may still waste space
because two adjacent bins may store identical values. Another so-
lution is recursive division, which stops dividing a group when its
values are identical [4].

Logarithmic size histograms are commonly used. In the basic
solution, the ith bin stores the range [2!, 2/t 1 ~1]. There are at least
two ways to improve precision. The first is to record the average
value in each bin and assume a constant or linear distribution by
the values in the range (fitted to give the same average) [2]. The
second is a k-sublog histogram, which further divides a power-of-
two range into 2k sub-ranges for a pre-determined constant k >
0 [6, 7]. For example, a 8-sublog histogram uses 256 sub-ranges and
is accurate from 0 to 511 and then divides each successive power-
of-two ranges into 256 bins. Note that the size of sublog bins still
increases exponentially, but a user can trade off between histogram
size and precision by adjusting k, and the asymptotic space cost is
always logarithmic of the maximum value in the histogram.

6 COMPLEXITY ANALYSIS

We now analyze the time and space requirements for single date
items.

For single data items, preprocessing goes through an execution
trace once to measure the reuse time distribution r#(i, a) for each
data a and its first- and last-access time. The time complexity is
O(n). It needs a hash table to measure the reuse time (by storing
the last access time of each data item), so the space complexity is
O(m) for the hash table. As explained in Section 5, a time distribu-
tion can be stored in a histogram of size O(log n), so the result of
the preprocessing takes O(mlogn) space, one histogram for each
data item.

For the analysis phase, the sum of Eq. 2 is replaced with a sum
over buckets in the historgram. Therefore, the time complexity is
O(log n), but can be reduced to O(1) by storing cumulative counts
representing the first k terms of Eq. 2.

For co-occurrence of pairs of data times, the analysis is similar,
which we do not include in the position paper.

7 AFFINITY-BASED MEMORY LAYOUT

Almost all modern computers use cache blocks of at least 64 bytes,
making the utilization an important problem. If only one word is
useful in each cache block, a cache miss will not serve as a prefetch
for other useful data. Furthermore, the program would waste up to
93% of memory transfer bandwidth and 93% of cache space, caus-
ing even more memory access. The problem is worse on IBM Z
series, whose block size is 256 bytes, quadruple the 64-byte block
size used by other systems.
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To improve cache utilization we need to group related data into
the same cache block. A common technique is affinity analysis.
Reference affinity measures how close a group of data are accessed
together in an execution.

Zhong et al. [10] defined k-distance analysis and proved that it
gives a unique partition of program data for each distance k. When
the value of k decreases, the reference affinity gives a hierarchical
decomposition and finds data sub-groups with closer affinity. The
requirement is strict in that for a group of data elements to have
reference affinity, they all need to always be accessed closely to-
gether.

Zhang et al. [8] relaxed the criterion and defined weak refer-
ence affinity, which occurs when at least a fraction of a group of
data are used together. The fraction is specified by a parameter.
Every fraction parameter gives a separate hierarchical partition of
data elements. When this parameter equals one, it gives the strict
reference affinity.

Affinity analysis has been adapted in the IBM compiler to im-
prove the array layout [5] and shown effective for improving the
instruction layout [9].

Both the strict and the weak reference affinity are computation-
ally hard problems, i.e., finding the affinity groups is NP-hard [9].
Previous work has simplified the problem by approximation, e.g.
checking a sufficient but not necessary condition in k-distance
analysis [10], and by restricting analysis only to arrays [5]. Full
affinity analysis is prohibitively expensive for a large data set.

Recently, Lavaee [3] developed a solution for large-scale affinity
analysis. It uses one-pass profiling to measure pairwise affinity
at different levels. The pairwise affinity is defined by window co-
occurrence probability. The definition uses affinity windows. First,
the window WS size is the working-set size of a window, i.e., the
number of unique memory objects accessed in the window. The
affinity window AW(t, £) is the shortest window that starts from ¢
and whose WS size is €. The set of all such windows is the affinity
window set AWS(t,€).

The conditional probability P(b € Wy|a € Wy) of Eq. 1 provides
an alternative definition of pairwise affinity. Each time window
is an affinity window. In AW(t, (), € is simply the window length.
The set AWS(t, €) includes all windows of length ¢. To distinguish,
we say that Lavaee affinity uses WS windows, and Eq. 1 uses time
windows.

Now we can state an important benefit of this work. It provides
till now the highest asymptotic efficiency for affinity analysis. As-
suming we analyze the pairwise affinity for a constant number of
data pairs, the complexity of this work and the earlier studies are
as follows.

e Time-window affinity. The analysis takes O(n), where n is
the length of the trace. As this paper shows, the analysis
computes the conditional probability for all timescales.

o WS-window affinity. The analysis takes O(nS2), where S
is the maximal affinity level [3].

o Strict and weak reference affinity. The analysis is NP-hard [9].

Time-window affinity does not count distinct data elements, i.e.
data size, in a window, which is the reason for its efficiency over
WS-window affinity. However, for cache performance, data size
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matters. One possible remedy is for time-window affinity to esti-
mate the data size using the window length.

8 SUMMARY AND FUTURE WORK

Trace analysis is a common problem in computer science, and win-
dow co-occurrence analysis for all timescales is a new addition. In
this paper, we used conditional probability to represent the likeli-
hood that two events will occur in the same time window. To calcu-
late the conditional probability, we show how to measure solo oc-
currence of individual data items and co-occurrence of data pairs.

We use the reuse times of the elements to calculate the solo oc-
currences for different timescales x, and we use similar time repre-
sentations to count the co-occurrences. For both calculations, we
only need to process the trace once to store a set of time distribu-
tions.

By storing time distributions in histograms, we can reduce the
space complexity to logarithmic of the trace length and time com-
plexity to constant per timescale, after a linear-time preprocessing
step.

The further work of this paper may be trying to find algorithms
that help define relationship between more than two elements in
atrace, i.e. co-occurrences of a group of elements, where the group

size is larger than two. We plan also to study the uses of co-occurrence

information in memory layout optimization as discussed in Sec-
tion 7 and find additional uses.
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