
Efficient Trajectory Generation for Robotic Systems

Constrained by Contact Force via Nonlinear Programming

Jaemin Lee a, Efstathios Bakolas b, Luis Sentis b

aDepartment of Mechanical Engineering, The University of Texas at Austin, TX, 78712-1221, USA

bDepartment of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, TX 78712-1221, USA

Abstract

In this work, we propose a trajectory generation method for robotic systems with contact force constraint based on optimal
control and reachability analysis. Normally, the dynamics and constraints of the contact-constrained robot are nonlinear and
coupled to each other. Instead of linearizing the model and constraints, we directly solve the optimal control problem to obtain
the feasible state trajectory and the control input of the system. A tractable optimal control problem is formulated which
is addressed by dual approaches, which are sampling-based dynamic programming and rigorous reachability analysis. The
sampling-based method and Partially Observable Markov Decision Process (POMDP) are used to break down the end-to-end
trajectory generation problem via sample-wise optimization in terms of given conditions. The result generates sequential pairs
of subregions to be passed to reach the final goal. The reachability analysis ensures that we will find at least one trajectory
starting from a given initial state and going through a sequence of subregions. The distinctive contributions of our method
are to enable handling the intricate contact constraint coupled with system’s dynamics due to the reduction of computational
complexity of the algorithm. We validate our method using extensive numerical simulations with a legged robot.

Key words: Robots; Reachability; Contact Force.

1 Introduction

This paper considers the optimal control of robotic sys-
tems with contact force constraints. Often, it is required
that legged or humanoid robots maintain stable foot or
body contacts while executing given tasks. In such cases,
contact forces constrain and determine the robot’s state
reachability together with other state and input con-
straints. Therefore, we seek to devise control algorithms
that can generate trajectories for contact-constrained
robots via formal state reachability analysis. Often, con-
trol studies for robotics assume that task trajectories are
predefined [20,34,37], then attempt to find an instanta-
neously optimal solution to accomplish them. However
the desired trajectories are frequently infeasible and it
is not straight-forward to check the feasibility of trajec-
tories under contact constraints a priori. Many motion
planning and trajectory generation approaches for hu-

? Some part of this paper will be presented at American
Control Conference 2019 [25]. Corresponding author L. Sen-
tis.

Email addresses: jmlee87@utexas.edu (Jaemin Lee),
bakolas@austin.utexas.edu (Efstathios Bakolas),
lsentis@austin.utexas.edu (Luis Sentis).

manoid robots use very simple models of a robot such as
considering center of mass dynamics under contact con-
straints [18, 28, 38]. However, those methods result on
lower performance of the robots since they cannot cap-
ture the robot’s kinematics or input constraints among
other limitations.

Optimal control is an alternative approach to solve the
trajectory generation problem for contact-constrained
robots. Recently, trajectory generation for the legged
robots was formulated as a bi-level optimization prob-
lem and solved by an iterative Linear Quadratic Regula-
tor (iLQR) [8]. However, the iLQR has still challenging
issues to address generic nonlinear constraints without
constraint softening. This could result on motion plan-
ers that violate important physical constraints of robots.
To strictly consider the constraints and nonlinearity of
the robot models, we should directly solve the optimal
control problem via Nonlinear Programming (NLP) in
the process of obtaining feasible trajectories. Although
many NLP solvers, i.e. SNOPT [12] and IPOPT [40],
are available, NLP has significantly challenging issues.
One is high computational cost for obtaining the solu-
tion. Also, feasible initial conditions are necessary for
NLP. In our work, we propose two complementary pro-

Preprint submitted to Automatica 20 March 2019

cesses to resolve these problems: reachability analysis
and sampling-based dynamic programming.

The reachability problem consists of checking whether
the state of the system can reach a specific state over
a finite time horizon, starting from a given initial state.
The field of robotics has often focused on configuration
space reachability guided by the given tasks such as se-
lecting the stance location of humanoid robots [7,41]. Al-
though these methods are useful for kinematic feasibility,
they are limited to address the requirements of dynami-
cal systems considering various constraints such as joint
velocity/torque limits and contact force constraints. To
address this gap, we will employ optimal control on the
nonlinear dynamical system with constraints.

In optimal control, the reachability analysis has been
often used for nonlinear systems [2–4, 35, 36], hybrid
dynamical systems [15, 30–32], and stochastic sys-
tems [1, 27, 39]. We can categorize established reacha-
bility analysis methods for nonlinear systems into three
groups: 1) solving Hamilton-Jacobi-Bellman PDE, 2)
using linearization and mathematical approximation 3)
using propagation and mappings of a set of reachable
states. First, for low dimensional dynamical systems,
the reachability analysis is often achieved via Hamilton-
Jacobi-Bellman PDE [6, 19]. For some systems, it is
impossible to perform the reachability analysis by solv-
ing Hamilton-Jacobin-Bellman PDE. Instead, many
approaches have been proposed to compute reachable
sets exploiting mathematical techniques, optimization,
inherent characteristics of systems, etc.

Other than the methods using Hamilton-Jacobi-
Bellman PDE, many methodologies have been proposed
to obtain reachable sets of systems. The logarithmic
norm of a type of system’s Jacobian is utilized to ob-
tain over-approximated reachable sets for nonlinear
continuous-time systems [29] and that norm is utilized
for simulation-based reachability analysis [5]. Another
approach tries to do more accurate reachability analysis
for uncertain nonlinear systems by using more con-
servative approximations [4, 35]. Also, for continuous-
time piecewise affine systems, linear matrix inequal-
ities (LMI) are employed to characterize the bounds
of reachable regions [16]. Another class of reachability
analysis uses convex sets for approximation such as el-
lipsoid [22, 23], polytopes, zonotopes [13], and support
functions [14, 24]. Although those approximation-based
approaches are capable of extending to nonlinear sys-
tems, they only consider convex sets and often ignore
other constraints. These are challenges for extending the
previous approaches to more sophisticated and compli-
cated systems. Additionally, computational complexity
exponentially increases with respect to the dimension of
the state space and the time length for those methods.

Our problem considers a constrained nonlinear system
with a constrained variable, e.g. a contact force, coupled

with system dynamics. Since the contact force is time
varying and our problem is also high dimensional, it is
very difficult to do reachability analysis of our system
via Hamilton-Jacobi-Bellman PDE. Linearization of dy-
namics and approximating reachable sets with convex
sets is not applicable to our problem because reachable
sets of constrained nonlinear systems may not be con-
vex. Moreover, we want to be strictly compared to meth-
ods softening or linearizing constraints like iLQR. Thus,
we devise a new method consisting of propagating sys-
tem states and approximating the reachable set. NLP
using optimal control utilizes the approximated reach-
able set. In order to address the increasing computa-
tional complexity, we propose various techniques which
are described thereafter. And, we do so, in the context
of robotic systems with contact force constraints, in a
computational efficient way.

Concretely, we incorporate a sampling-based approach,
quadratic programming (QP), NLP, and approximation
techniques such as propagation of boundary samples to
solve our problem. More specifically, for dividing the
end-to-end trajectory generation problem, we obtain the
constrained-state set using a sampling-based approach
and QP, then, reformulate the problem as a Partially
Observable Markov Decision Process (POMDP) in the
system’s output space. An optimal Markov policy re-
sulting from the dynamic programming (DP) provides
a sequence of output subregions. The sequence of out-
put subregions guides the path of output with avoiding
unsafe output regions such as locations of obstacles in
the output space. In the next step, we implement a rig-
orous reachability analysis between given pairs of sub-
regions by propagating the states from the given initial
state. In addition, we propose a method to approximate
the reachable set using propagation of boundary states.
The algorithmic efficiency of our method is one of the
contributions of our work.

This paper is organized as follows. Section 2 defines our
problem and the target class of system. A sampling-
based algorithm for obtaining the set of constrained
states in Section 3 and a POMDP for obtaining an op-
timal Markov policy are described in Section 4. In Sec-
tion 5, we propose an approach to obtaining the reach-
able set and analyzing the method in detail. Based on
the result of rigorous reachability analysis in Section 5,
an optimal controller is designed by implementing the
NLP of Section 6. The proposed approach is validated
by simulation of a robotic legged system with contact
force constraint in Section 6.

2 Problem Formulation

2.1 Notation

We denote the set of real n-dimensional vectors and the
set of real n×m matrices by Rn and Rn×m, respectively.

2

The sets of non-negative and non-positive real numbers
are represented as R≤0 and R≥0, respectively. The set of
natural numbers and the set of integer numbers are de-
noted by N and Z, respectively. The set of positive defi-
nite n× n matrices and the set of positive semi-definite
n× n matrices are denoted by Sn>0 and Sn≥0. When con-
sidering z1, z2 ∈ N with z2 > z1, the discrete interval
between z1 and z2 is defined as [z1, z2]N := {z1, z1 +
1, . . . , z2 − 1, z2}. In case of real numbers z1, z2 ∈ R≥0,
[z1, z2]∆d := {z1, z1+∆, . . . , z2−∆, z2} denotes a discrete
interval with ∆ being the increment. When n real num-
bers a1, . . . , an are consider, Vec[ai]

n
i=1 ∈ Rn represents

a vector whose i-th element is ai. Given n×m real num-
bers a11, . . . , amn, a matrix whose (i, j) element is aij is
denoted by Mat[aij]

n,m
i,j=1 ∈ Rn×m. Given a square ma-

trix A ∈ Rn×n, tr(A) denotes its trace. σ(A) and σ(A)
represent the largest and smallest singular values of A,
respectively. Given matrices Ai ∈ Rni×m i ∈ [1, z]N,
Vertcat(A1, . . . ,Az) ∈ R(nq+···+nz)×m indicates a block
matrix constructed by vertically concatenating the ma-
trices Ai i ∈ [1, z]N. Given a set of real vectors A ⊆ Rn,
card(A) denotes its cardinality. When considering par-
ticular cases such thatA ⊂ Rn with n ∈ [1, 3]N, ghull(A)
and gbd(A) represent the general hull and the set of vec-
tors closest the boundary of A. E[.] represents the prob-
abilistic expectation operator.

2.2 Nonlinear System Model

We characterize the equation of motion for general
robotic systems with contact forces and assuming rigid
body linkages as follows:

M(q)q̈ + g(q̇, q) = S>u+ J>c (q)Fc (1)

where q ∈ Rnq , M(q) ∈ Snq>0, g(q̇, q) ∈ Rnq , S ∈ Rnq×nu ,
u ∈ Rnu , Jc(q) ∈ Rnc×nq , and Fc ∈ Rnc denote the joint
variable, sum of Coriolis/centrifugal and gravitational
forces, selection matrix for the actuation, input actuat-
ing joint torques, contact Jacobian matrix, and contact
force, respectively. We can bring the differential equa-
tion (1) into a state space form by defining the state
x := [x>1 x

>
2]> ∈ Rnx where x1 = q and x2 = q̇:

ẋ(t) = fC(x(t), u(t), Fc(t)) (2a)

= fx(x(t)) + fu(x(t))u(t) + fc(x(t))Fc(t) (2b)

y(t) = fy(x(t)) (2c)

fx(x) :=

[
x2(t)

−M−1(x1)g(x1, x2)

]

fu(x) :=

[
0nq×nu

M−1(x1)S>

]
, fc(x) :=

[
0nq×nc

M−1(x1)J>c (x1)

]

where fx : Rnx 7→ Rnx , fu : Rnx 7→ Rnu , and fc : Rnx 7→
Rnc are nonlinear functions of the state x. fy : Rnx 7→

Rny is a nonlinear output function that represents the
desired tasks, i.e. forward kinematics of points of robot
that we wish to control. We define a discrete time state
space model of the contact-constrained robotic system
(DTSCR) as the discrete counterpart of the state space
model:

x(tk+1) = fD (x(tk), u(tk), Fc(tk))

= x(tk) +

∞∑
i=1

Bi(x(tk), u(tk), Fc(tk))

i!
(∆t)i

(3)

where ∆t denotes the sampling period for the dis-
cretization of the model. fD : Rnx+nu+nc 7→ Rnx
and Bi(x, u, Fc) = ∂Bi−1(x,u,Fc)

∂x B1(x, u, Fc) and
B1(x, u, Fc) = fx(x) + fu(x)u+ fc(x)Fc.

2.3 Constraints of the System

We refer to he and hi as the equality constraint func-
tion and the inequality constraint function, respectively,
where we assume that he(x) = 0 and hi(x) ≤ 0. Three
types of constraint functions are considered in this pa-
per, i.e. functions describing state, the input, and the
mixed state-input constraints denoted as hx(x), hu(u),
and hxu(x, u), respectively. In practice, the state con-
straint is introduced to avoid violating joint position or
velocity limits when controlling the robot. Input con-
straints are considered for describing the joint torque
limit or the underactuation of floating robots. The
mixed state-input constraint contains physically more
intricate conditions such as mechanical power. Since
the DTSCR is required to maintain stable contact while
being controlled, we consider an additional constraint
that is known as the contact wrench cone constrained
to prevent slip and flip on contact surface. In particular,
it is required that

hxc(x, Fc) ≤ 0, hxc(x, Fc) := Wc(x)Fc (4)

where Wc(x) is a matrix describing the unilateral con-
straint using a polyhedral approximation of the friction
cone of a surface [9]. The position at the contact point
should be constant, which is identical to having null ve-
locity on the robot’s contact with respect to the surface
contact. The zero velocity constraint corresponds to the
state constraint. We will aim at controlling robots rep-
resented by the DTSCR model for desired output goals
given the aforementioned constraints.

2.4 Overall Scheme

The proposed approach consists of three methods, which
are sampling-based optimization, solving a POMDP,
and reachability-based optimal control. The overall
procedure is depicted in Fig. 1. The first part of the

3

(a)
X!

X"

Y!

Y"

(b)

small

large
Feasible goal

with high probability

Infeasible

goal

Y!

Y"

(c)

(d)

node

node associated with

initial output

node associated with

goal output

optimal sequence

 of nodes

Y!

Y"

Time

Y!

Y"

Time

(e)

output associated with

output associated with

(f)

Subregion

Fig. 1. Proposed method: (a) Generating random state vectors and obtaining a set of sample-wisely feasible states, Section 3.1,
(b) Checking the feasibility goal output via output approximation, Section 3.2, (c) Defining output subregions and discrete
node space, (d) Solving POMDP to obtain an optimal sequence of nodes, Section 4, (e) Obtaining reachable sets and optimizing
trajectories between sequential nodes, Section 5 and 6 (f) Consecutively executing trajectory optimizations with reachable
sets, Section 5 and 6

approach aims to obtain feasible states using sampling
with respect to the given constraints as shown in Fig.
1(a), then to approximately check whether the goal
output is feasible via output approximation as shown
in Fig. 1(b). If the goal is achievable, we formulate and
solve a POMDP process to create multiple tractable
sub problems as shown in Fig. 1(c) and (d). Based on
an optimal sequence of nodes, we obtain reachable sets
and perform trajectory optimization between neighbor-
ing subregions associated with two sequential nodes,
then we recursively iterate this process for all sequence
of nodes until reaching the final goal output as shown
in Fig 1(e) and (f). By connecting all trajectories, we
obtain the entire trajectory in an efficient way.

3 Sample-Based Optimization

In this section, we obtain a sequence of subregions in out-
put space considering initial and goal states. Our method
breaks down the end-to-end trajectory generation prob-
lem into multiple intermediate points sequentially con-
nected. We start by creating random samples from a
Gaussian distribution x ∼ N (µx,Σx) where µx ∈ Rnx
and Σx ∈ Snx>0 are the mean and the covariance ma-
trix, respectively, that is, µx := E[x] and Σx := E[(x −
µx)(x− µx)>].

3.1 Update for Random State Samples

We consider a set of states fulfilling desired constraints.
Since the Monte-Carlo method is very inefficient, we ap-

ply a least-square QP process to obtain feasible states.
Let us consider nce state equality constraints and nci
state inequality constraints. We define constraint func-
tions as hx,e[ke](x) and hx,i[ki](x) where ke ∈ [1, nce]N and
ki ∈ [1, nci]N are indices. Let us define Jacobian matrices
and error vectors as follows:

Je(x) := Vertcat(Je[k](x) : ∀k ∈ [1, nce]N) (5a)

Ji(x) := Vertcat(Ji[k](x) : ∀k ∈ [1, nci]N) (5b)

ee(x) := −Vertcat(hx,e[k](x) : ∀k ∈ [1, nce]N) (5c)

ei(x) := vint\i −Vertcat(hx,i[k](x) : ∀k ∈ [1, nci]N) (5d)

where Je[k](x) :=
∂hx,e[k]

∂x (x) and Ji[k](x) :=
∂hx,i[k]

∂x (x)
denote the Jacoabians for equality and inequality con-
straint functions, respectively. vint\i is an arbitrary inte-

rior vector satisfying inequality constraints used as an
attractor. The main idea for obtaining the state fulfill-
ing constraints is to iteratively update the sampled state
using the state increment ∆x until the constraints are
satisfied. The state increment ∆x is obtained by using
the QP method as follows:

min
∆x,w

‖w‖22
s.t Je(x)∆x ≤ ee(x) + w

Ji(x)∆x ≤ ei(x)

(6)

and we update the state x using the optimal variable
∆x. For numerical efficiency, we discard state samples if
QP does not converge. Let us define a set X consisting

4

of states fulfilling the constraints as follows:

X := {x ∈ Rnx :‖hx,e[ke](x)‖ ≤ ε, ∀ke ∈ [1, nce]N

hx,i[ki](x) ≤ 0, ∀ki ∈ [1, nci]N}
(7)

where ε is a desired tolerance.

For the next step, we take all elements of X and check
whether they fulfill the input, mixed state-input, and
contact force constraints. To achieve this, we formulate
an optimization problem with a quadratic cost function
as follows:

min
Fc

F>c QcFc + u>Quu

s.t. x(tk+1) = fD(x(tk), u, Fc)

hu[ku](u) ≤ 0, ∀ku ∈ [1, ncu]N

hxu[kxu](x(tk), u) ≤ 0, ∀kxu ∈ [1, ncxu]N

hxc(x(tk), Fc) ≤ 0, x(tk), x(tk+1) ∈ X

(8)

where Qc ∈ Snc>0 and Qu ∈ Snu>0 are weighting matrices
for the cost. By solving the optimization problem (8) for

all x(tk) ∈ X , we obtain a set of states, X̂ , that fulfills
all desired constraints.

3.2 Output Space Approximation

In this subsection, we check the feasibility of reaching the
desired goal output. To do so, we approximate the output
samples with a Gaussian distribution y∗ ∼ N (µy∗ ,Σy∗)
[17]. The mean and covariance matrix obtained after
neglecting higher order terms are

µy∗ := fy(µx) + Vec [tr(Hy,i(µx)Σx)]
ny
i=1 (9a)

Σy∗ := Jy(µx)ΣxJ
>
y (µx)

+
1

2
Mat [tr(ΣxHy,i(µx)ΣxHy,j(µx))]

ny,ny
i,j=1 (9b)

where Jy(µ) and Hy,i(µ) denote the Jacobian matrix of
the output function fy(µ) and the 2nd derivative matrix
of the output function fy,i(µ), for the i-th element. In
particular,

Jy(µ) :=
∂fy
∂x

(µ),Hy,i(µ) :=

∂2fy,i(µ)

∂x2
1

. . .
∂2fy,i(µ)
∂x1xnx

...
. . .

...
∂2fy,i(µ)
∂xnxx1

. . .
∂2fy,i(µ)
x2
nx

(10)

where Ju(µ) ∈ Rny×nx and Hy,i(µ) ∈ Rnx×nx is a sym-
metric matrix. We construct a probabilistic ellipsoid in
the output space to approximate whether an output
sample y∗ is feasible. We define a set of outputs that lie
inside an ellipsoid Eκ with

Eκ := {y ∈ Rny : (y − µy∗)>Σ−1
y∗ (y − µy∗) ≤ κ} (11)

where κ is a coefficient determined by the cumulative
probability of the Chi-square distribution. For instance,
κ = 5.991 for Pr(y∗ ∈ Eκ) = 0.95 and y∗ ∈ R2. Our
method to check if a goal output yg is interior to Eκ is
more efficient than using a Monte Carlo method, because
we only need to compute µy∗ and Σy∗ using the mean
and covariance matrix of the samples using (9).

4 POMDP for a Sequence of Subregions

After checking that the desired output goal yg is located
at the interior of the ellipsoid Eκ in (11), the end-to-end
trajectory generation problem is divided using interme-
diate points in the output space. To start the process,
we define output subregions:

Yi := {y ∈ Rny : ‖y − yc,i‖∞ < εy} (12)

where yc,i ∈ Rny denotes the center of the output subre-

gion Yi and i ∈ [1,m]N where
⋃
i∈[1,m]N

Yi = Y ⊂ Rny .

Also, we obtain a set of outputs Ŷ := f̂y(X̂) = {y ∈
Rny : y = fy(x), x ∈ X̂} where f̂y : X̂ ⇒ Ŷ. To formu-
late our problem as a POMDP, we define discrete nodes
associated with the previous subregions as follows:

si = node(Yi), i ∈ [1,m]N (13)

where S := {s1, . . . , sm}. Based on these nodes, we
transform the problem to a POMDP. We will formulate
the probability of observations using the sampled states.

Definition 1. (POMDP) Partially Observable Decision
Making Process is defined as a tuple P = (S,A,O,T,Z):

• S is a finite set of nodes, S := {s1, · · · , sms}
• A is a finite set of actions, A := {a1, · · · , ama}
• O is a finite set of observations, O := {o1, · · · , omo}
• T is the transition dynamics T(s′, s, a) defining the

transition from s ∈ S to s′ ∈ S after taking an action
a ∈ A.

• Z is the observation Z(s, a, o) consisting of the proba-
bility of observing o ∈ O after taking an action a ∈ A
from node s ∈ S.

The problem concerning this section is on finding a
sequence of feasible subregions towards an output goal
using POMDP tools and analysis.

Definition 2. (Markov Policy) A Markov policy Π is
defined as a sequence: Π := {a(1), · · · , a(n)}. a(j) ∈ A,
where a(j) : S → S is a measurable map from a node to
another one, j ∈ [1, n]N .

We convert the POMDP into a belief MDP. Belief b[si]
is defined with respect to discrete nodes si ∈ S. Let
suppose b = b[s(j)], b′ = b[s(j+1)], and a = a(j) where

5

s(j) represents the node for the j-th step of the POMDP.
The belief transition function, Γ(b, a, b′), is equal to

Γ(b, a, b′) =
∑
o∈O

Pr(b′|b, a, o)Pr(o|b, a) (14a)

Pr(b′|b, a, o) =

{
1, if belief update returns b′

0, otherwise
(14b)

Pr(o|b, a) =
∑
s′∈S

Z(s′, a, o)
∑
s∈S

T(s′, s, a)b. (14c)

The key challenges of this POMDP are on defining use-
ful observations and on finding their conditional proba-
bility. Let us consider that Y = Y(j) and Y ′ = Y(j+1)

associated with the nodes s(j) and s(j+1). We propose
to define observations as the set of feasible states after
taking an action a, i.e.

Ô :={z ∈ Rnx : z = x(tk), ∃(Fc, u) in (8) with

fy(x(tk)) ∈ Y ∩ Ŷ, fy(x(tk+1) ∈ Y ′ ∩ Ŷ}.
(15)

where Y is the subregion before taking the action a. If
z1 ∈ Ô, it holds that there exists at least one sample
connecting fy(z1) to another output in the subregion Y ′
satisfying the constraints. Considering the above obser-
vations, we define the conditional probability as

Z(s′, a, o) := Pr(o|s′, a) = card(Ô)/card(Y ′ ∩ Ŷ). (16)

Let us focus on the reward and transition dynamics. As
a heuristic, a higher number of feasible samples falling
into a subregion implies a higher probability of reaching
it. Therefore we define the reward

R(si, a) := Krcard(Yi ∩ Ŷ)/card(Ŷ) + ηi (17)

where Yi is the subregion associated with node si ∈ S.
Kr ∈ R>0 and ηi ∈ R are the gain and reward offset,
respectively. We take ηi to be large when yg ∈ Yi. Also,
to avoid unsafe output regions we set ηi to large nega-
tive values.

Definition 3. Consider a node si ∈ S associated with
an output subregion Yi and a set Ŷ = fy(X̂). Consider

ΣYi being the covariance matrix for the set Yi ∩ Ŷ, that
is, ΣYi = E[(y − µy)(y − µy)>] and µy = E[y] where

y ∈ Yi ∩ Ŷ. A principle singular vector is defined as

V(si) = col(VYi)k, σk(ΣYi) = σ(ΣYi). (18)

where ΣYi = V>YiΛYiVYi , ΛYi = diag(σ1, . . . , σny), and
σk denotes the singular value of ΣYi .

For defining the transition dynamics, let an action a ∈ A
map state s ∈ S to s′ ∈ S. d is a vector in our grid world
defined as d := (y′c− yc) where yc and y′c are the centers

of subregions associated with s and s′, respectively. We
define the transition dynamics as

T(s′, s, a) :=

{
T (s′, s, a)/$, if $ 6= 0,

0, else
(19a)

T (s′, s, a) := max
{

0,V>(s)a
}

(19b)

where $ =
∑
a′∈A T (s′, s, a′) denotes a normalization

constant.

Proposition 1. Let s = si ∈ S and the corresponding
subregion be Yi. If the output samples are uniformly dis-
tributed in Yi, then T(s′, s, a) = 0.

Proof. Since the samples are uniformly distributed, it
is possible to select any unit vector in Rny as the PSV
of si, that is, RaV(si) where Ra ∈ SO(3) is a rotation
matrix. If we select the rotation matrix Ra such that
d⊥ = RaV(si), which is orthogonal to V(si), it follows
that T (s′, s, a) = V>(si)d = (d⊥)>d = 0 for all a ∈
A.

We now solve a finite-horizon belief MDP. The optimal
policy, denoted by Π?, is obtained by solving the Bell-
man equation as follows:

D?(b) = max
a∈A

[r(b, a) + γ
∑
o∈O

Pr(o|b, a)D?(Γ(b, a, o))]

(20)
where r(b, a) =

∑
s∈S b(s)R(s, a) denotes the belief re-

ward. The result of the DP provides an optimal Markov
policy which we transform to a sequence of nodes as

Π? = {a(1)
? , · · · , a(nπ)

? } (21a)

S? = {s(1)
? , · · · , s(nπ)

? } (21b)

where a
(i)
? and s

(i)
? are i-th action and node in a sequence

toward reaching the final output goal, respectively. The
sequence of subregions in output space is

Y? = {Y(1)
? , · · · ,Y(nπ)

? }. (22)

Based on the generated sequence of subregions, we will
generate trajectories using reachability analysis connect-
ing subregions in Y? in the next section.

5 Reachability Analysis

In this section, we define discrete reachable sets and
propose the way to obtain the reachable sets via opti-
mizations. To overcome the computational complexity of
propagation algorithm for the reachable sets, a method
propagating the boundary samples is proposed and an-
alyzed in the views of computational complexity.

6

5.1 Optimization-based Reachability Analysis

We define reachable sets in continuous time domain as

RCx (t, x0) := {x(t) : ∃u([t0, t]),∃Fc([t0, t])
hx[kx](x(τ)) ≤ 0, ∀kx ∈ [1, ncx]N

hxu[kxu](x(τ), u(τ)) ≤ 0, ∀kxu ∈ [1, ncxu]N

hxc(x(τ), Fc(τ)) ≤ 0, u(τ) ∈ U
ẋ(τ) = fC(x(τ), u(τ), Fc(τ))

x(t0) = x0 ∈ RCx (t0, x0), τ ∈ [t0, t]}

(23)

RCx (t0, x0) is equal to {x0} which means that the initial
state fulfills all constraints.

Definition 4. Let x0 ∈ RCx (t0, x0), be an initial state
and t ∈ [t0, tf]∆td be an arbitrary time interval. We define
a reachable set in discrete time domain as:

RDx (t, x0) := {x(t) : ∃u([t0, t]
∆t
d),∃Fc([t0, t]∆td)

hx[kx](x(τ)) ≤ 0, ∀kx ∈ [1, ncx]N

hxu[kxu](x(τ), u(τ)) ≤ 0, ∀kxu ∈ [1, ncxu]N

hxc(x(τ), Fc(τ)) ≤ 0, u(τ) ∈ U
x(τ + ∆t) = fD(x(τ), u(τ), Fc(τ))

x(t0) = x0 ∈ RDx (t0, x0), τ ∈ [t0, t]
∆t
d }

(24)

where ∆t > 0 is the discretization step or sampling period
for our discrete model.

We extend the reachable set defined above for the finite
discrete time interval [t0, tf]∆td as RDx ([t0, tf]∆td , x0) :=⋃
t∈[t0,tf]d,∆t

RDx (t, x0). For any tf < ∞, the reachable

set satisfies the following bound RDx ([t0, tf]∆td , x0) ⊆
RDx ([t0,+∞), x0) ⊆ RCx ([t0,+∞), x0) (X .

Consider x0 and RDx ([t0, tk]∆td , x0). A random input is
drawn from a Gaussian distribution u ∼ N (µu,Σu) at
each instant of time with the input set U defined as the
collection of inputs fulfilling input constraint. We define
a QP to check for feasible contact forces, i.e.

min
Fc,∆x

F>c QcFc + ∆x>Qx∆x

s.t. x(tk+1) = fD(x(tk), u(tk), Fc)

x(tk) ∈ RDx ([t0, tk]∆td , x0)

hx[kx](x(tk+1)) ≤ 0, ∀kx ∈ [1, ncx]N

hxu[kxu](x(tk), u(tk) ≤ 0, ∀kxu ∈ [1, ncxu]N

hxc(x(tk), Fc) ≤ 0, u(tk) ∈ U
∆x = x(tk+1)− x(tk)

(25)

The reachable set at the next time instance tk+1 is
obtained by collecting the x(tk+1) updated by the QP
solution ∆x in (25). Then, we can extend the reachable
set over [t0, tk+1]∆td such that RDx ([t0, tk+1]∆td , x0) :=
RDx ([t0, tk]∆td , x0) ∪ RDx (tk+1, x0). Also, we define the

set of outputs associated with reachable states such

as RDy (t, x0) = f̂y(RDx (t, x0)) and RDy ([t0, tf]∆td , x0) =

f̂y(RDx ([t0, tf]∆td , x0)).

Theorem 2. Suppose thatRDx (t0, x0) is a non-empty set
and the desired output, yd, is given. Let us assume that
the set, RDy ([t0, tf]∆td , x0), is compact, connected, and

yd ∈ RDy ([t0, tf]∆td , x0). (26)

At least, one state trajectory Ψ := {ξ(t0), ξ(t1), . . . , ξ(τ)}
exists such that fy(ξ(τ)) = yd where τ ≤ tf .

Proof. SinceRDy ([t0, tf]∆td , x0) is compact and fy is con-

tinuous, RDx ([t0, tf]∆td , x0) is closed and f−1
y is also con-

tinuous. Then, RDx ([t0, tf]∆td , x0) is connected because
RDy ([t0, tf]∆td , x0) is connected and f−1

y is continuous.
Therefore, there exists at least one trajectory connecting
x0 to xf satisfying fy(xf) = yd inRDx ([t0, tf]∆td , x0).

Corollary 1. The set, RDy ([t0, tk]∆td , x0), is compact.

Proof. Let us consider ghull(RDy ([t0, tk]∆td , x0)), be-
ing compact. By the Heine−Borel theorem, all closed
subsets of a compact set are also compact. Since
RDy ([t0, tk]∆td , x0) ⊂ ghull(RDy ([t0, tk]∆td , x0)), the reach-

able set RDy ([t0, tk]∆td , x0) is compact.

Corollary 2. Suppose that x0 ∈ RDx (t0, x0) and fy is
continuous. Then, a set,RDy ([t0, tk]∆td , x0), is connected.

Proof. Consider three sets: F1 = RDx ([t0, tk−1]∆td , x0),
F2 = RDx (tk, x0), and F3 = F2 ∪ F ′1, where F ′1 is the
collection of states x ∈ F1 producing the next feasible
state via the optimization (27) with respect to x ∈ F1.
Then, RDx ([t0, tk]∆td , x0) = F1 ∪ F2 = F2 ∪ F3. Let
us consider arbitrary two sets H1 and H2 satisfying
RDx ([t0, tk]∆td , x0) = H1 ∪ H2 with H1 ∩ H2 = ∅. Let
xh ∈ F ′1 and suppose xh ∈ H1. Then, H1 ∩ F1 6= ∅ and
H1 ∩ F3 6= ∅. This implies that F1 ⊆ H1 and F3 ⊆ H1,
hence, H2 = ∅. This proves that RDx ([t0, tk]∆td , x0) is
connected. Since the mapping fy is continuous, we also
conclude that the setRDy ([t0, tk]∆td , x0) is connected.

5.2 Propagation of Boundary States

The basic algorithm for reachability analysis suffers from
exponential complexity with respect to the number of
time steps. Although the previous POMDP contributes
to reducing the time horizon to be checked for reachabil-
ity analysis, full-state propagation would still result in
heavy computational burden. In this section, we propose
a method for reducing the computational complexity of
the algorithm by only propagating selected states. This

7

approach results in more conservative reachable sets. We
implement the propagation of boundary states by solv-
ing (25) for only state samples x(tk) ∈ BDx ([t0, tk]∆td , x0)
such that

BDx ([t0, tk]∆td , x0) := {x ∈ Rnx : x ∈ RDx ([t0, tk]∆td , x0),

fy(x) ∈ gbd(RDy ([t0, tk]∆td , x0))}.
(27)

We then compute the reachable set by collecting the up-
dated states and extend the time horizon. In this way,
the complexity becomes linear with respect to the num-

ber of boundary samples, card(BD([t0, tk]∆td , x0)). In
order to replace full-state propagation with boundary-
state propagation, we show that the set of reach-
able outputs is compact and connected. First, the set

RDy ([t0, tk]∆td , x0) is compact, because we are able to
obtain the hull of the set as shown in Corollary 1. Next,
we prove the reachable set RDy is connected.

Corollary 3. Suppose that x0 ∈ RDx (t0, x0) 6= ∅ and fy

is continuous. Then, the set, RDy ([t0, tk]∆td , x0), is con-
nected

Proof. The proof is similar to that of Corollary 2 and
therefore is omitted.

5.3 Computational Complexity Analysis

We analyze the computational complexity to compare
the efficiency of the propagation of full states and that
of boundary states. There exists many algorithms to ob-
tain the concave hull from the set of data [10, 11, 33].
They have O(n3) or O(n log n) time complexity with n
data in 2-D space. General QPs are non-deterministic
polynomial-time hard, which means the algorithms are
more complex than the polynomial time complexity to
be solved. In the case that the QP is convex, it is widely
known that the time complexity of the QP is O(m3)
where m is the number of decision variables.

Based on the aforementioned discussion, we can com-
pare the computational complexity of two cases: prop-
agation of full states and propagation of boundary
states. Let us consider Nt steps over the time interval
[t0, tk]∆td where ∆t = (tk − t0)/Nt, and Nu is the num-
ber of input samples. For each propagation method, the
computational complexity can be represented as Cf ∼
O(
∑Nt
i=1N

i
u(nc + nx)3) ≈ O

(
NNt+1
u (nc + nx)3

)
, and

Cb ∼ O(
∑Nt
i=1Nb(nc + nx)3 + (iNb)

3) ≈ O(NtNb(nc +
nx)3 + N4

t N
3
b) where Cf , Cb, and Nb denote the com-

plexity of full state propagation, that of boundary state
propagation, and the number of boundary samples. Nor-
mally, a set of boundary samples contains much smaller
samples than a set of entire states, that is, Nb � Nu.

The effect of the boundary sampling on computational
complexity becomes significantly advantageous in terms
of the number of time steps. We will show the compari-
son of the computational complexity using an example
in the simulation section.

6 Optimal Control

In this work, we describe the use of sequential optimal
control for nonlinear programs without constraint soft-
ening. Instead of considering end-to-end trajectory gen-
eration, we focus on finding a trajectory connecting two
subregions obtained by the POMDP process described
earlier. By iterating this process for connecting subre-
gions (22), the optimal control process is able to attain
the desired output with reduced computational cost.

6.1 Nonlinear Programming

In order to formulate the optimal control problem solved
by NLP, a performance measure is defined in the discrete
time and state space, that is,

L(U, N) :=

N∑
k=0

(u>(tk)Quu(tk) + F>c (tk)QcFc(tk)

+ e>x (tk)Qxex(tk)) + e>y (tN)Qyey(tN)

ex(tk) := ξ(tk)− x0, ey(tk) := (fy(ξ(tk))− yd)

where U := {u(t0), u(t1), . . . , u(tN)}. In addition, Qx ∈
Snx>0 and Qy ∈ Sny>0 denote the weighting matrices for
the state and output terms, respectively. ξ(t) ∈ Rnx
and yd ∈ Rny denote the trajectory of the state and
the desired goal of the output of the NLP, respectively.
Based on the set of reachable states, we can formulate
the NLP as follows:

min
Ψ,U

L(U, N)

s.t. ξ(tk+1) = fD(ξ(tk), u(tk), Fc(tk))

ξ(tk) ∈ RDx ([t0, tk]∆td , x0)

ξ(tk+1) ∈ RDx ([t0, tk+1]∆td , x0)

hx[kx](ξ(tk+1)) ≤ 0, ∀kx ∈ [1, ncx]N

hxu[kxu](ξ(tk), u(tk) ≤ 0, ∀kxu ∈ [1, ncxu]N

hxc(ξ(tk), u(tk)) ≤ 0, u(tk) ∈ U .

(29)

The proposed approach recursively executes the formu-
lated NLP (29) by changing the initial conditions, the
constraints, and the goal output. Let us represent the

optimization problem for connecting Y(j)
? to Y(j+1)

? as

(Ψ(j),U(j)) = NLP(x
(j)
0 , y

(j)
d , t

(j)
0 , N (j)) (30)

where j ∈ [1, nπ − 1]N. We replace t
(j+1)
0 , x

(j+1)
0 and

y
(j+1)
d with t

(j)
N , ξ(j)(t

(j)
N) and y

(j+1)
c , respectively.

8

18

16

14

12

10

8

6

4

2 4 6 8 10 12 14 16

Obstacle 1

Obstacle 2

Sequence of

Nodes

X (nodes)

Z
 (

n
o
d
es

)

Initial Node

Final Node

X (m)

Z
 (

m
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.65

0.55

0.60

(a) (b) (c)

0.15

Virtual Joints for Floating base

Hip joint

Knee joint

Ankle joint

Surface Contact

Initial Output

Goal Output

Fig. 2. (a) Legged robotic system with surface contact, consisting of three virtual joints and three actuated joints, (b) A set of
output samples satisfying the constraints and the approximated ellipsoids with respect to κ in (11), (c) A sequence of nodes
solved by POMDP.

N (j+1) is determined by reachability analysis using

t
(j+1)
0 , x

(j+1)
0 , and y

(j+1)
d . In particular, we set x

(1)
0 = x0

and y
(nπ−1)
d = yg. After performing the iterative NLP,

we obtain the entire state and input trajectories to
reach the goal output such that

Ψ? := {Ψ(1), . . . ,Ψ(nπ−1)} (31a)

U? := {U(1), . . . ,U(nπ−1)}. (31b)

The solutions, Ψ? and U?, enable the robotic system to
reach the goal output state maintaining all constraints
and contacts.

7 Numerical Simulations

In this section, we validate the proposed approach by
simulating a legged robot Draco, which is developed for
efficient and dynamic locomotion using liquid-cooled se-
ries elastic actuators [21]. The dynamic simulation is
implemented by DART [26]. We utilize two optimizers:
Goldfarb for QP and IPOPT implementing a primal-
dual interior point method [40]. The simulation is exe-
cuted on a laptop with a Core i7-8650U CPU and 16.0
GB RAM.

7.1 A Robotic System and Constraints

A simulation model of Draco consists of three virtual
joints, i.e. position and orientation of its floating base
(q1, q2, q3) and three actuated joints, i.e. knee and ankle
joints (q4, q5, q6) as shown in Fig. 2 (a). For our sim-
ulations, the state and input constraints are defined as
follows:

q	j1 ≤ qj1 ≤ q
⊕
j1
, q̇	j1 ≤ q̇j1 ≤ q̇

⊕
j1
, u	j1 ≤ uj1 ≤ u

⊕
j1

uj2 = 0, j1 ∈ {4, 5, 6}, j2 ∈ {1, 2, 3}
(32)

where superscripts (.)	 and (.)⊕ represent the lower and
upper limits, respectively. The specific conditions are
q	j4,j5,j6 = [−1.2, 0.5. −1.5], q⊕j4,j5,j6 = [−0.2, 2.6, −0.5],

u	j4,j5,j6 = [−1000, −1000, −1000], and u⊕j4,j5,j6 =

[1000, 1000, 1000]. The position, orientation, and veloc-
ity of the foot should satisfy the kinematic constraints
for the contact. We consider a surface contact with rect-
angular support polygon on the foot so that the friction
cone constraints can be characterized as

|fx| ≤ kµfz, fz > 0, |τy| ≤ dxfz (33)

where dx denotes the distance between the center of the
polygon and the vertex in the local frame of the foot and
kµ represents the friction coefficient. Fc := [fx, fz, τy]>

is the contact wrench, which is a resultant contact force
at the center of the support polygon. Based on the in-
equality constraints of (33) and the coordinate transfor-
mation from local frame on the foot to the global frame,
we can represent the friction cone constraints in the form
WlocalRc(q)Fc = Wc(q)Fc ≤ 0 where Wlocal is a coeffi-
cient matrix derived from (33) and Rc(q) is a rotational
matrix from global to foot frames. In Wlocal, we set the
friction coefficient kµ = 0.4. Considering all constraints,
we will control the robot’s motion while maintaining the
contact.

7.2 Setup for Simulation

To start the reachability analysis, we generate 106 state
samples and gather the states fulfilling the constraints.
The mean and covariance of the Gaussian distribution
for sampling are

µx = [0.352, 0.384,−0.95, 2.2,−1.25,01×6]>

Σx =

[
πI6×6 06×6

O6×6 2πI6×6

]
.

(34)

9

Fig. 3. Reachable sets over a finite time horizon [0, 0.05]0.001d

: The reachable sets are obtained by boundary-state propa-
gation.

We define a threshold for numerical convergence (7) with
value 1.0 × 10−7 and the maximum number of itera-
tions is 1.0×106. After implementing the sampling-based
approach described in Section 3, we obtain 3.47 × 105

states among 106 state samples. For formulating the
POMDP problem in 2D space, we set 40 nodes defined
by S = {si} where i ∈ [1, 40]N and 8 actions A = {aj}
where j ∈ [1, 8]N, and each action consists of moving
up, down, right, left, up-right, up-left, down-right, and
down-left in the grid world, respectively. We consider
two static obstacles for the robot to avoid in the out-
put space. The objective of our numerical simulation is
to obtain an optimized trajectory to reach the goal out-
put while avoiding the obstacles and fulfilling all con-
straints. In addition, we generate 1.0×105 input samples
for propagating the states in the reachability analysis.

7.3 Simulation Results

First, the results of our sample-based optimization is
shown in Fig. 2(b). The set with red dots contains the
outputs associated with the states fulfilling the con-
straints given by the optimization process described
in Section 3. As shown in Fig. 2(b), both the initial
[0.384, 0.352] and goal [0.51, 0.52] outputs are located
at the interior of the feasible set. Then, we solve the
POMDP problem to find a sequence of nodes, which
result in 12 of them, avoiding the obstacles as shown in
Fig. 2(c). After obtaining the sequence of nodes, we ob-
tain the reachable sets as shown in Fig. 3. The reachable
set RDy ([0, 0.05]0.001

d , x0) contains the desired output
associated with the first node. Based on this result, we
solve the NLP (29) to find a trajectory to reach the
desired output from the initial configuration.

The computational complexity is analyzed by measuring
the execution time of the algorithm for computing the
reachable sets. We repeat 10 simulations to measure the
computation time for both the full-state and boundary-

0

20

40

60

80

100

120

140

160

180

200

0

50

100

150

200

250

300

350

400

450

500

550

5 10 15 20

C
o
m

p
u
ta

ti
o
n
 T

im
e

(s
ec

o
n
d
s)

C
o
m

p
u
ta

ti
o
n
 T

im
e

(s
ec

o
n
d
s)

Propagation Step

Time for boundary-states propagation

Accumulated time for reachable sets

Time for full-states propagation

Fig. 4. Computational time for obtaining reachable sets with
discretization step ∆t = 0.01 and 10 simulations.

state propagation methods and display the results in
Fig. 4. The algorithm cannot compute the reachable sets
via the full-state propagation method for more than two
steps due to the lack of memory capacity as shown in
the blue dotted line in Fig 4. As we predicted in the
complexity analysis of Section 5.3, the boundary-states
propagation method significantly reduces the computa-
tional time for computing reachable sets.

Fig. 5 shows the results of trajectory optimization to
reach the goal position with respect to a given initial
state. The optimization result includes both joint posi-
tion and velocity trajectories fulfilling kinodynamic con-
straints, e.g. joint position, velocity, and torque limits
and contact kinematic and force constraints. The op-
timization results for the actuated joints in the phase
space have stabilizable end points which are marked as
blue diamonds in Fig. 5(a), (b), and (c). As shown in Fig
5(d), the generated trajectories pass through the subre-
gions in an optimized sequence obtained by solving the
POMPD problem and reaching the final output goal po-
sition.

8 Conclusion

This paper proposes a method to generate trajectories
for complex robotic systems considering contact con-
straints. We utilize NLP to solve the optimal control
problem. Our approach focuses on efficiently solving
the NLP problem so that we can scale the method to
many types of complex robotic systems. We devise a
new approach to obtain discrete-time reachable sets
for trajectory generation and solve the nonlinear opti-
mization problem. Although the computational cost is
significantly reduced, it is still challenging to employ
this approach to real-time control. Therefore, in the
near future, we will investigate ways to combine this
approach with feedback controllers and extend the pro-
posed method for hybrid dynamical systems, such as

10

Fig. 5. Simulation results: (a), (b), and (c) illustrate the joint position and velocity trajectories of the actuated joints in the
phase space, (d) shows the optimized trajectory in the output space, (e) shows the joint position trajectory of the actuated
joints in the time domain. The blue circle and red diamond indicate the initial and final values, respectively.

biped humanoid robots or dual arm manipulators.

Acknowledgements

The authors would like to thank the members of the Hu-
man Centered Robotics Laboratory at The University of
Texas at Austin for their great help and support. This
work was supported by an NSF Grant# 1724360 and
partially supported by an ONR Grant# N000141512507.

References

[1] Alessandro Abate, Maria Prandini, John Lygeros, and
Shankar Sastry. Probabilistic reachability and safety
for controlled discrete time stochastic hybrid systems.
Automatica, 44(11):2724–2734, 2008.

[2] Matthias Althoff. Reachability analysis of nonlinear systems
using conservative polynomialization and non-convex sets. In
Proceedings of the 16th international conference on Hybrid
systems: computation and control, pages 173–182. ACM,
2013.

[3] Matthias Althoff and Bruce H Krogh. Reachability analysis of
nonlinear differential-algebraic systems. IEEE Transactions
on Automatic Control, 59(2):371–383, 2014.

[4] Matthias Althoff, Olaf Stursberg, and Martin Buss.
Reachability analysis of nonlinear systems with uncertain
parameters using conservative linearization. In Decision and
Control, 2008. CDC 2008. 47th IEEE Conference on, pages
4042–4048. IEEE, 2008.

[5] Murat Arcak and John Maidens.
Simulation-based reachability analysis for nonlinear systems
using componentwise contraction properties. arXiv preprint
arXiv:1709.06661, 2017.

[6] Eugene Asarin, Olivier Bournez, Thao Dang, and Oded
Maler. Approximate reachability analysis of piecewise-linear
dynamical systems. In International Workshop on Hybrid
Systems: Computation and Control, pages 20–31. Springer,
2000.

[7] Felix Burget and Maren Bennewitz. Stance selection for
humanoid grasping tasks by inverse reachability maps. In
Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 5669–5674. IEEE, 2015.

[8] Jan Carius, René Ranftl, Vladlen Koltun, and Marco Hutter.
Trajectory optimization with implicit hard contacts. IEEE
Robotics and Automation Letters, 3(4):3316–3323, 2018.

[9] Stéphane Caron, Quang-Cuong Pham, and Yoshihiko
Nakamura. Stability of surface contacts for humanoid
robots: Closed-form formulae of the contact wrench cone for
rectangular support areas. In IEEE International Conference
on Robotics and Automation, pages 5107–5112, 2015.

[10] Matt Duckham, Lars Kulik, Mike Worboys, and Antony

11

Galton. Efficient generation of simple polygons for
characterizing the shape of a set of points in the plane.
Pattern recognition, 41(10):3224–3236, 2008.

[11] Antony Galton and Matt Duckham. What is the region
occupied by a set of points? In International Conference
on Geographic Information Science, pages 81–98. Springer,
2006.

[12] Philip E Gill, Walter Murray, and Michael A Saunders.
Snopt: An sqp algorithm for large-scale constrained
optimization. SIAM review, 47(1):99–131, 2005.

[13] Antoine Girard. Reachability of uncertain linear systems
using zonotopes. In International Workshop on Hybrid
Systems: Computation and Control, pages 291–305. Springer,
2005.

[14] Antoine Girard and Colas Le Guernic. Efficient reachability
analysis for linear systems using support functions. IFAC
Proceedings Volumes, 41(2):8966–8971, 2008.

[15] LCGJM Habets, Pieter J Collins, and Jan H van Schuppen.
Reachability and control synthesis for piecewise-affine hybrid
systems on simplices. IEEE Transactions on Automatic
Control, 51(6):938–948, 2006.

[16] Abdullah Hamadeh and Jorge Goncalves. Reachability
analysis of continuous-time piecewise affine systems.
Automatica, 44(12):3189–3194, 2008.

[17] Gustaf Hendeby and Fredrik Gustafsson. On nonlinear
transformations of gaussian distributions. Technical Report
from Automatic Control at Link? pings Universitet, 2007.

[18] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi
Fujiwara, Kensuke Harada, Kazuhito Yokoi, and Hirohisa
Hirukawa. Biped walking pattern generation by using preview
control of zero-moment point. In ICRA, volume 3, pages
1620–1626, 2003.

[19] Nikolaos Kariotoglou, Sean Summers, Tyler Summers,
Maryam Kamgarpour, and John Lygeros. Approximate
dynamic programming for stochastic reachability. In
Proceedings of European Control Conference, pages 584–589,
2013.

[20] Oussama Khatib. A unified approach for motion and
force control of robot manipulators: The operational space
formulation. IEEE Journal on Robotics and Automation,
3(1):43–53, 1987.

[21] Donghyun Kim, Junhyeok Ahn, Orion Campbell, Nicholas
Paine, and Luis Sentis. Investigations of a robotic testbed
with viscoelastic liquid cooled actuators. IEEE/ASME
Transactions on Mechatronics, 2018.

[22] Jin-Hoon Kim. Improved ellipsoidal bound of reachable
sets for time-delayed linear systems with disturbances.
Automatica, 44(11):2940–2943, 2008.

[23] Alexander B Kurzhanski and Pravin Varaiya. Ellipsoidal
techniques for reachability analysis: internal approximation.
Systems & control letters, 41(3):201–211, 2000.

[24] Colas Le Guernic and Antoine Girard. Reachability analysis
of linear systems using support functions. Nonlinear
Analysis: Hybrid Systems, 4(2):250–262, 2010.

[25] Jaemin Lee, Efstathios Bakolas, and Luis Sentis. Trajectory
generation for robotic systems with contact force constraints.
arXiv preprint arXiv:1809.10598, 2018.

[26] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz,
Sumit Jain, Yuting Ye, Siddhartha S Srinivasa, Mike Stilman,
and C Karen Liu. Dart: Dynamic animation and robotics
toolkit. The Journal of Open Source Software, 3(22):500,
2018.

[27] Kendra Lesser and Meeko Oishi. Reachability for
partially observable discrete time stochastic hybrid systems.
Automatica, 50(8):1989–1998, 2014.

[28] Yiping Liu, Patrick M Wensing, David E Orin, and Yuan F
Zheng. Trajectory generation for dynamic walking in a
humanoid over uneven terrain using a 3d-actuated dual-
slip model. In Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on, pages 374–
380. IEEE, 2015.

[29] John Maidens and Murat Arcak. Reachability analysis of
nonlinear systems using matrix measures. IEEE Transactions
on Automatic Control, 60(1):265–270, 2015.

[30] Moussa Maiga, Nacim Ramdani, Louise Travé-Massuyès,
and Christophe Combastel. A comprehensive method for
reachability analysis of uncertain nonlinear hybrid systems.
IEEE Transactions on Automatic Control, 61(9):2341–2356,
2016.

[31] Ian Mitchell, Alexandre M Bayen, and Claire J Tomlin.
Validating a Hamilton-Jacobi approximation to hybrid
system reachable sets. In International Workshop on Hybrid
Systems: Computation and Control, pages 418–432. Springer,
2001.

[32] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin.
A time-dependent Hamilton-Jacobi formulation of reachable
sets for continuous dynamic games. IEEE Transactions on
automatic control, 50(7):947–957, 2005.

[33] Adriano Moreira and Maribel Yasmina Santos. Concave hull:
A k-nearest neighbours approach for the computation of the
region occupied by a set of points. 2007.

[34] Ludovic Righetti, Jonas Buchli, Michael Mistry, and Stefan
Schaal. Inverse dynamics control of floating-base robots
with external constraints: A unified view. In Robotics and
Automation (ICRA), 2011 IEEE International Conference
on, pages 1085–1090. IEEE, 2011.

[35] Matthias Rungger and Majid Zamani. Accurate reachability
analysis of uncertain nonlinear systems. In Proceedings
of the 21st International Conference on Hybrid Systems:
Computation and Control (part of CPS Week), pages 61–70.
ACM, 2018.

[36] Joseph K Scott and Paul I Barton. Bounds on the reachable
sets of nonlinear control systems. Automatica, 49(1):93–100,
2013.

[37] Luis Sentis and Oussama Khatib. Synthesis of whole-
body behaviors through hierarchical control of behavioral
primitives. International Journal of Humanoid Robotics,
2(04):505–518, 2005.

[38] Benjamin J Stephens and Christopher G Atkeson. Dynamic
balance force control for compliant humanoid robots. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1248–1255, 2010.

[39] Sean Summers, Maryam Kamgarpour, Claire Tomlin, and
John Lygeros. Stochastic system controller synthesis
for reachability specifications encoded by random sets.
Automatica, 49(9):2906–2910, 2013.

[40] Andreas Wächter and Lorenz T
Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming.
Mathematical programming, 106(1):25–57, 2006.

[41] Yiming Yang, Wolfgang Merkt, Henrique Ferrolho, Vladimir
Ivan, and Sethu Vijayakumar. Efficient humanoid motion
planning on uneven terrain using paired forward-inverse
dynamic reachability maps. IEEE Robotics and Automation
Letters, 2(4):2279–2286, 2017.

12

