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a b s t r a c t 

Dynamic traffic assignment models rely on a network performance module known as dy- 

namic network loading (DNL), which expresses flow propagation, flow conservation, and 

travel delay at a network level. The DNL defines the so-called network delay operator , 

which maps a set of path departure rates to a set of path travel times (or costs). It is 

widely known that the delay operator is not available in closed form, and has undesir- 

able properties that severely complicate DTA analysis and computation, such as disconti- 

nuity, non-differentiability, non-monotonicity, and computational inefficiency. This paper 

proposes a fresh take on this important and difficult issue, by providing a class of sur- 

rogate DNL models based on a statistical learning method known as Kriging . We present 

a metamodeling framework that systematically approximates DNL models and is flexible 

in the sense of allowing the modeler to make trade-offs among model granularity, com- 

plexity, and accuracy. It is shown that such surrogate DNL models yield highly accurate 

approximations (with errors below 8%) and superior computational efficiency (9 to 455 

times faster than conventional DNL procedures such as those based on the link transmis- 

sion model). Moreover, these approximate DNL models admit closed-form and analytical 

delay operators, which are Lipschitz continuous and infinitely differentiable, with closed- 

form Jacobians. We provide in-depth discussions on the implications of these properties to 

DTA research and model applications. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Dynamic traffic assignment (DTA) is the descriptive modeling of time-varying flows on traffic networks consistent with

traffic flow theory and travel choice principles. DTA models describe and predict departure rates, departure times and route

choices of travelers over a given time horizon. Analytical DTA models consist of two main components: (i) the mathematical

expression of trip assignment such as the dynamic extension of the Wardrop’s principles ( Wardrop, 1952 ); (ii) the network

performance model, which captures the relationships among link entry flow, link exit flow, junction flow, link delay and path

delay. The latter is usually referred to as dynamic network loading (DNL). The DNL problem gives rise to the delay operator ,

which is interpreted as a mapping from the set of path departure rates to the set of path travel times. Such delay operators

will be the main focus of this paper, although other notions of the delay operators, often going by different names, have

been invoked in a variety of different contexts ( Gentile et al., 2007; Jang et al., 2005; Lo and Szeto, 2002; Perakis and Roels,

2006; Ukkusuri et al., 2012 ). 
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Being an integral part of a complete mathematical formulation of DTA problems, the delay operator plays a fundamental

role and affects the analytical properties of the DTA models in many different ways. For example, the existence of dynamic

user equilibrium (DUE), which is the most widely studied form of DTA problems, depends on the continuity of the delay

operators ( Han et al., 2013c; Smith and Wisten, 1995; Zhu and Marcotte, 20 0 0 ), while the uniqueness of DUE is guaranteed

by the monotonicity of the delay operator ( Mounce and Smith, 2007 ). Moreover, all computational procedures for DUE

problems rely on certain versions of continuity and monotonicity to converge ( Friesz et al., 2011; Han et al., 2015; Long

et al., 2013; Mounce, 2006; Szeto and Lo, 2004 ). Furthermore, differentiability is typically required for the delay operator for

problems such as sensitivity analysis ( Chung et al., 2014; Yang and Bell, 2007 ) and mathematical programs with equilibrium

constraints ( Yang et al., 2007 ). 

For large-scale networks, and sophisticated traffic models that capture phenomena such as shock waves and car spill-

back, it has been recognized that the DNL models are rather complicated, and the corresponding delay operators enjoy very

few analytical properties essential for the analysis and computation of DTA models. For instance, DNL with physical-queue

models (e.g. Lighthill–Whitham–Richards model, cell transmission model, link transmission model) is known to yield dis-

continuities in the delay operator for general networks ( Szeto, 2003; Han et al., 2016a ). As a consequence, the delay operator

is non-differentiable. Furthermore, the non-monotonicity of the delay operators on networks has been reported in the liter-

ature ( Mounce and Smith, 2007 ) and has been the major hurdle to computing DUE solutions with convergence guarantee. 

In general, the delay operator is not available in closed form, and has to be numerically evaluated via the DNL procedure.

Such a procedure is based on a series of link, node, and path dynamic models that typically involve solving ordinary or par-

tial differential equations ( Friesz et al., 2013; Gentile et al., 2007; Lo and Szeto, 2002; Perakis and Roels, 2006; Szeto and Lo,

2004; Yperman et al., 2005 ). Expressing the complete DNL model analytically and embedding it into certain math program-

ming formulation is therefore an onerous task, and could severely complicate the DTA computational procedures ( Friesz

et al., 2013; Szeto and Lo, 2004; Ukkusuri et al., 2012 ). Moreover, conventional DNL procedures tend to be computationally

demanding, and could scale badly as the network size increases. 

Given the aforementioned theoretical and computational limitations of the conventional way of exploring the delay op-

erator, this paper proposes a fresh take on this classical problem from the novel perspective of statistical metamodeling . Our

goal is to provide a class of surrogate DNL models that approximate the exact ones, with considerable benefits including

closed-form expression, improved regularity (e.g. continuity, differentiability), and superior computational efficiency, at the

expense of minor yet controllable approximation errors. 

Metamodeling is the process of building a “model of models”, i.e., a surrogate approximation of the exact mod-

els/processes in order to improve the computation efficiency or gain better analytical properties ( Wang and Shan, 2007 ).

Specifically, we treat the delay operator as a highly nonlinear mapping from the set of path departure rates to the set of

path travel times, and interpret and approximate its inherent input-output mechanism using a statistical learning technique

called Kriging ( Matheron, 1963 ). Kriging considers the observed input-output functional relationship as a realization of a

Gaussian Random Field (GRF), and the resulting estimation corresponds to the posterior predictive density of the function

approximation. The proposed framework is general enough to handle a wide range of DNL models with different traffic flow

dynamics (i.e. it is a “model of DNL models”). Each output of this metamodel is an approximate DNL model with closed-form

expression and superior regularity and computational efficiency. 

Statistical/machine learning algorithms learn from and make predictions based on data, sometimes without exploration

of the behavioral foundations and plausibility of the learning processes on which they are based. However, this is not the

case in our proposed Kriging framework. Firstly, instead of performing unstructured interpretation of the input-output mech-

anisms, the proposed approach utilizes information on the network structure, path, and time to identify parts of the input

variables that are likely to be correlated, and defines the correlation functions accordingly. Secondly, although the path delay

operators may be discontinuous, it is understood that the congestion effect, observed at some point in the spatio-temporal

domain, tend to progress in a continuous way in space and time due to the finite propagation speeds of traffic character-

istics (e.g. kinematic waves). The potential discontinuity of path delay operators may be dealt with in Kriging by making

appropriate regions of the spatio-temporal surface very steep yet smooth. 

There is a large and rapidly growing literature on machine learning methods ( Hastie et al., 2009; James et al., 2013;

Murphy, 2012 ). Among the many choices of statistical/machine learning techniques that can be used for metamodeling,

Kriging is the only technique that has all the following 3 properties: 

• It is an exact interpolator . This means that when approximating a function Y ( x ) with a metamodel ˆ Y ( x ) at a data point

x used to fit the model (a point in the training dataset), ˆ Y ( x ) = Y ( x ) (i.e, the prediction error at x is zero). This is

an important property in metamodeling if running the original model to be approximated is very expensive or time

consuming. It is therefore convenient that the metamodel mimics the original model exactly at the instances where

the original model was already ran. This property is not shared by other popular techniques such as Support Vector

Regression (SVR), Neural Network (NN), or Random Forest (RF); 

• It provides a predictor that is closed-form and analytic. This is a property shared by Kriging and SVRs, but not by NNs or

RFs. A closed-form Kriging predictor has a number of advantages in DTA applications as we have discussed before and

subsequently in Section 5.2 ; 

• It provides a closed-form, analytic expression of the prediction error variance (or standard error). This property is exclu-

sive to Kriging thanks to the interpretation of its predictor as the mean of the predictive posterior density of a Gaussian
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Process (or Gaussian Random Field). The underlying Gaussianity assumption is used only if prediction intervals are de-

sired, in which case Kriging provides minimum mean square error predictions ( Santner et al., 2013 ). If the Gaussianity

assumption does not hold, the Kriging predictor can be shown to be the Best Linear Unbiased Predictor ( Santner et al.,

2013 ). 

In common with other Kernel-based machine learning methods such as SVRs or Smoothing Splines, Kriging is highly

flexible. Flexibility refers to its ability to fit functions/mappings with different degrees of smoothness, whether they are

differentiable or not ( Santner et al., 2013 ). Kriging does not rely on any given functional form (in contrast to, e.g. polynomial-

based fitting), which is suitable for our problem since the delay operator cannot be explicitly expressed and enjoys little

regularity. 

We perform Kriging on a non-conventional space with network-specific distance metric. The metamodel requires a set of

training data consisting of both inputs (i.e. path departure rates) and outputs (i.e. path travel times) of the delay operator

to be approximated, which are generated by conducting the conventional DNL procedure; e.g. following Daganzo (1995) ,

Han et al. (2016a ) and Yperman et al. (2005) . Then, based on statistical learning and parameter estimation, we are able to

provide an analytical and closed-form predictor as a surrogate DNL model. 

We note that the proposed metamodeling approach is not an attempt to statistically fit a model in an ad hoc fashion.

Rather, it seeks to represent the complicated nature of the DNL problems in a systematic, efficient, and parsimonious way –

in the same way any model tries to describe physical processes with fewer variables and simpler assumptions. Any output of

the metamodeling is a new DNL model that strikes a balance between physical accuracy in terms of capturing the network

congestion effect, and tractability barely seen in existing DNL models. 

In addition, Kriging is capable of handling high dimensionality. As we shall show later, through working on an input

space with reduced dimension and customized distance metric, we will be able to handle large-scale dynamic networks

quite efficiently. When the problem size further increases, more advanced experimental design and parameter estimation

methods are required, and the Kriging framework easily allows these extensions. Some other machine learning methods can

handle the high dimensionality of DNL problems, such as Neural Networks ( Haykin, 2008 ). However, NNs can be difficult

to implement because the trained neural networks do not provide predictions as closed-form and analytical expressions.

Rather, they are expressed in terms of numerous neurons and activation functions without meaningful interpretation of

the network structure or traffic dynamics. In contrast, Kriging yields zero error at the training data and provides analytical

expressions of the delay operators, which are essential for theoretical investigation of the DUE and DTA problems (e.g. see

Section 5 ). A numerical comparison of the Kriging and Neural Network approaches is presented in Section 6.3 . 

This paper explores the potential of a new generation of dynamic network performance models which, if utilized prop-

erly, could benefit DTA research and bring fundamental changes to the way transportation networks are modeled. The rest

of this paper is organized as follows. Section 2 provides a brief review of state of the arts in topics including dynamic

network loading, metamodeling, and Kriging. In Section 3 we articulate the mathematical notion of delay operator in both

continuous- and discrete-time settings. Section 4 presents the metamodeling framework and technical details of the Kriging

method. In Section 5 , we discuss in detail the closed-form representations of the proposed delay operators, their analytical

properties, and impacts on dynamic traffic assignment problems. In Section 6 we show the efficacy of the proposed surro-

gate DNL models in approximating the exact ones and their superior computational efficiencies. Finally, Section 7 provides

a few concluding remarks and future research directions. 

2. Literature review 

2.1. Dynamic network loading 

In DTA modeling, the DNL sub-problem aims at describing and predicting the spatial-temporal evolution of traffic flows

and congestion on a network that is consistent with established route and departure time choices of drivers. This is done

by introducing appropriate dynamics to flow propagation, flow conservation, and travel delays on a network level. Any

DNL must be consistent with the established path departure rates and link delay model, and is usually performed under the

first-in-first-out (FIFO) rule. A few link flow models commonly employed for the DNL procedure include the link delay model

( Friesz et al., 1993 ), the point-queue model ( Han et al., 2013a; 2013b ), the cell transmission model ( Daganzo, 1995 ), and the

link transmission model ( Yperman et al., 2005; Han et al., 2016b ). Studies of the dynamic network loading models date

back to the1990’s with a significant number of publications ( Friesz et al., 2013; Lo and Szeto, 2002; Szeto, 2003; Szeto and

Lo, 2004; Ukkusuri et al., 2012 ). Among these advancements some have focused on capturing realistic network congestion

effects such as the formation, propagation and dissipation of queues and spillbacks ( Nie and Zhang, 2010; Han et al., 2016a ),

while others have managed to reduce the complexity of the network dynamics and improve the computational efficiency

( Yperman et al., 2005; Gentile et al., 2007 ). 

2.2. Metamodeling 

Metamodeling is first proposed for achieving better analytical insight and computational efficiency by providing a surro-

gate model of a complex process/simulation procedure/function/computer routine ( Kleijnen, 2015; Wang and Shan, 2007 ).
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Table 1 

Comparison of metamodeling in transportation. 

Metamodel Application Underlying model Object of surrogate model 

Ciuffo et al. (2013) Ordinary Kriging Sensitivity analysis Mesoscopic simulation Network-wide density, average flow, 

(AIMSUN) average delay, average travel time 

Zhang et al. (2014) Stochastic Kriging Active traffic Simulation-based DTA Network average trip time 

management (DynasT) 

Chen et al. (2015) Universal Kriging Bi-level Simulation-based DUE Network average travel time 

network design (DTALite) 

Chen et al. (2014) Polynomial, Gaussian Bi-level Static MPEC, Network average travel time 

RBF, Kriging road pricing AIMSUN simulation 

Idé and Kato (2009) Ordinary Kriging Travel time Agent-based Path travel time 

estimation simulation (IBM) 

Xie et al. (2010) Universal Kriging Short-term traffic Empirical data Link traffic volume 

flow forecast 

Sun and Xu (2011) Mixtures of Short-term traffic Empirical data Link traffic volume 

Gaussian processes flow prediction 

Chan et al. (2012) Neural networks Short-term traffic Empirical data Link traffic volume 

flow forecast 

Wang and Shi (2013) Hybrid Support Short-term traffic Empirical data Link traffic speed 

Vector Machine speed forecast 

Ye et al. (2012) Hybrid ARIMA Short-term traffic Empirical data Road segment 

and NN speed forecast traffic speed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the age of modern information, massive datasets have become available for interpreting complex systems, which in-

spire growing interests and research efforts to investigate problems with high dimensionality and nonlinearity. In the past

decade, new developments in metamodeling have been continuously coming forth, which have become powerful tools for

approximating models, exploring design spaces, formulating problems, and supporting optimization, with good accuracy and

performance at a reasonable cost ( Wang and Shan, 2007 ). 

In general, metamodeling consists of the following three main steps: (1) experimental design/sampling; (2) metamodel

choice; and (3) model learning/fitting. The goal of experimental design is to strategically sample the design space to gen-

erate sample dataset for better training of models ( Fang et al., 2005 ). The goodness of a design strategy is assessed by

the efficiency of sampling the design region and accuracy of the resulting surrogate models. Santner et al. (2013) provide

a systematic introduction on space-filling techniques for computer metamodeling and experiments. Steps (2) and (3) are

often coupled and considered in line with each other since learning/fitting techniques have evolved to be highly specific

and dependent on the metamodel used. Examples of popular metamodels include polynomials ( Montgomery, 2008 ), Kriging

( Sacks et al., 1989 ), neural networks ( Cheng and Titterington, 1994 ), radial basis functions ( Fang and Horstemeyer, 2006;

Regis and Shoemaker, 2013 ), multivariate adaptive regression splines ( Friedman, 1991 ), and inductive learning ( Wang and

Shan, 2007 ). 

The application of metamodeling in transportation is relatively recent, and can be categorized into (1) traffic prediction

and (2) network optimization. Table 1 provides a comparison of several relevant studies. Our literature search reveals the

non-existence of studies that try to characterize or approximate the network delay operator using metamodeling. Moreover,

all the studies on network design & management rely on simulation-based DTA models at the expense of mathematical

rigor and solution optimality. For example, the simulation softwares shown in Table 1 do not yield lower-level DUE in the

analytical sense; rather, the simulations terminate when some stationarity conditions are met. To the authors’ knowledge,

there does not exist a single study that combines metamodeling with analytical DTA problems for the benefit of fast com-

putation and sound theoretical foundation, which this paper tries to achieve. The proposed surrogate delay operator holds

much promise in facilitating the analysis and computation of DUE and MPEC problems with analytical insights unavailable

in the current literature. 

2.3. Kriging 

Kriging, named after the South African mining engineer Krige, refers to a class of response surface methods that provide

estimation of complex and computationally expensive functions, procedures, or systems. The method was first developed

in the 1960’s ( Matheron, 1963 ), and extensively studies in late1980’s, which provides solid foundation for using Kriging to

build surrogate models for deterministic computer codes or experiments, especially when they are high-dimensional and

computationally expensive (see Sacks et al., 1989 for a comprehensive review). In recent years, due to its capability to ex-

plore implicit relationships among intrinsic variables and its flexibility in approximating nonlinearity, Kriging has become an

important class of kernel-based learning and metamodeling algorithms. Kriging is widely used in modeling computer exper-

iments, especially exact and deterministic computer programs or routines ( Fang et al., 2005 ), which is ideal for the analytical

DNL models that this paper addresses. For some general introduction to Kriging, we refer the reader to Cressie (1993) and

Stein (2012) . More advanced application of Kriging with experimental design and statistical learning in metamodeling can

be found in Fang et al. (2005) , Jones et al. (1998) , Santner et al. (2013) and Sacks et al. (1989) . 
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3. Dynamic network loading and the delay operator 

The notion of dynamic network loading varies in context and application in the literature. In this section we articulate

the delay operator that this paper addresses using precise mathematical languages, while referring the reader to a number

of other papers that discuss the DNL procedures as well as their numerical implementations in a wider spectrum ( Friesz

et al., 2013; Gentile et al., 2007; Han et al., 2016a; Huang and Lam, 2002; Ukkusuri et al., 2012 ). However, we note that

the proposed metamodeling framework is applicable regardless of the shape or form of the underlying dynamic network

loading model. The DNL model employed in this paper is meant to provide an illustrative example, and our conclusion is

not dependent on such a specific choice. The comparison of surrogate delay operators for different DNL models remains a

future study. 

3.1. Delay operator as an infinite-dimensional mapping 

We consider a general network with a time horizon [ t 0 , t f ]. Let P be the set of all paths employed by travelers. For each

p ∈ P, we define its path departure rate h p ( · ) as a function of departure time t . Then, we let h (·) = 

(
h p (·) : p ∈ P 

)
be the

vector of path departure rates. The following constraints on the departure rates are commonly employed for route choice

DUE problems ( Smith and Wisten, 1995; Zhu and Marcotte, 20 0 0 ): ∑ 

p∈P rs 
h p (t) = R rs (t) ∀ t ∈ [ t 0 , t f ] ∀ (r, s ) ∈ W, (3.1)

where W is the set of origin-destination (O-D) pairs, P rs is the set of paths that connect O-D pair (r, s ) ∈ W . R rs ( t ) is the

time-varying departure rate between O-D pair ( r , s ) (over all possible paths), and is given a priori . Therefore, the set of

feasible path departure rates can be defined as 

� = 

{ 

h (·) : h p (t) ≥ 0 , 
∑ 

p∈P rs 
h p (t) = R rs (t) ∀ t ∈ [ t 0 , t f ] , ∀ (r, s ) ∈ W 

} 

. (3.2) 

The delay operator � is a mapping that relates the set of path departure rates h to the set of path travel times: 

�(h ) 
. = 

(
�p (t; h ) : t ∈ [ t 0 , t f ] , p ∈ P 

)
h ∈ �, (3.3)

where each �p ( t ; h ) denotes the path travel time experienced by drivers departing at time t and following path p , when the

path departure rates of the entire network is given by h . In summary, we define the delay operator, which is viewed as an

infinite-dimensional mapping, as follows. 

Definition 3.1. (Infinite-dimensional delay operator) Given a road network and the feasible path flow set (3.2) , a delay

operator � is a mapping from the set of path departure rates h ∈ � to the set of path travel times �( h ). 

Remark 3.2. There are many different ways to perform the DNL procedure in order to evaluate the delay operator � , in-

cluding those mentioned in Section 2.1 and at the beginning of Section 3 . Each way can be seen as a DNL model and hence

there are many different DNL models. On the other hand, this paper proposes one metamodel that can be applied to these

individual DNL models by following the same procedure, which is to be elaborated in the sections below. 

3.2. Delay operator as a finite-dimensional mapping 

In order to apply the Kriging technique and facilitate numerical implementation, we need to define the delay operator

in a finite-dimensional space. To this end, we let n be an arbitrary positive integer, and partition the time horizon [ t 0 , t f ]

into n equal sub-intervals, denoted I i , i = 1 , . . . , n . We define the discrete path departure rate to be a n -dimensional vector

h p ∈ R 
n + , and the entire vector of path departure rates to be a n × |P| -dimensional vector h = 

(
h p : p ∈ P 

)
∈ R 

n ×|P| 
+ . Then,

we define the corresponding continuous-time path departure rates as: 

h = 

(
h p (·) : p ∈ P 

)
such that h p (t) ≡ h p,i t ∈ I i , ∀ 1 ≤ i ≤ n, ∀ p ∈ P, 

h can be viewed as the continuous-time counterpart of h . We then construct the mapping � as follows: 

�( h ) 
. = 

(
�p,i ( h ) : p ∈ P, i = 1 , . . . , n 

)
∈ R 

n ×|P| 
+ where �p,i ( h ) 

. = 

1 

|I i | 
∫ 
I i 

�p (t ; h ) dt . 

Let us also define the discrete version of the flow conservation constraints (3.2) , as follows: 

� = 

{ 

h ∈ R 

n ×|P| 
+ , 

∑ 

p∈P rs 
h p,i = R 

i 
rs ∀ i = 1 , . . . , n, ∀ (r, s ) ∈ W 

} 

, (3.4) 
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where 

R 
i 
rs 

. = 

1 

|I i | 
∫ 
I i 
R rs (t) dt 

can be interpreted as the average O-D departure rate during the i th time interval. 

Definition 3.3. (Finite-dimensional delay operator) Given a network and the feasible path flow set (3.4) , a delay operator

� is a mapping from the set of discrete path departure rates h ∈ � to the set of discrete path travel times �( h ). 

As such, � is a mapping between two subsets of the Euclidean space R 
n ×|P| , and is viewed as the discrete counterpart

of the delay operator � . 

Remark 3.4. The operator � should not be confused with the delay operators with numerical discretization, such as those

based on DNL performed via the cell transmission model or the link transmission model. Here, the selection of n is arbi-

trary, not constrained by the network or the time horizon, nor by the numerical discretization scheme (e.g. the Courant–

Friedrichs–Lewy condition). The introduction of h and � enables us to effectively trade off temporal granularity with di-

mensionality. Moreover, a coarse time grid (small n ) also makes sense in practice: In an actual network the average path

departure rates or path travel times may not vary much over a time period (e.g. 30 min) that is significantly longer than

a typical time step in numerical computations (e.g. 5 s, 1 min). Thus, the delay operator � with a small n is useful for

providing average travel times within, say, 30 min. 

The procedure above defines the delay operator in a finite-dimensional setting, where the vector of path departure rates

is represented by the vector h and the corresponding vector of path travel times is �( h ). This process is graphically illus-

trated in Fig. 1 . The definition of � allows us to apply Kriging techniques in the finite-dimensional space R 
n ×|P| . 

4. Details of the Kriging-based metamodeling 

4.1. Statistical model and assumptions 

We propose the learning method based on Gaussian processes by making statistical assumptions on the underlying delay

operator �, based on the interdependencies across all paths and time steps. In particular, the delays for a set of departure
Fig. 1. Illustration of the mapping from h p to �p when n = 8 , which defines the finite-dimensional operator �. 
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choice pairs ( p , i ) 1 can be seen as a statistical process, with the dissimilarity between any two such pairs defined as a vector

of aggregated differences in the path departure rates, which we will introduce in detail in subsequent sections. We apply

the Ordinary Kriging model, which is the most commonly used Kriging model in practice ( Fang et al., 2005 ). For any vector

of path departure rates h ∈ R 

n ×|P| 
+ , we assume that the mapping � can be approximated by a realization of the random

process: 

˜ �p,i ( h ) = μp,i + ε p,i ( h ) ∀ (p, i ) , ∀ h ∈ R 

n ×|P| 
+ . (4.5)

For each pair ( p , i ), μp, i is the deterministic mean, 2 εp, i ( · ) is a Gaussian process with zero mean and covariance as follows:

cov 
(
ε p,i ( h 

1 ) , ε p,i ( h 
2 ) 

)
= C p,i ( h 1 , h 2 ; θ

p,i 
) ∀ (p, i ) , (4.6)

where θp, i is some vector of parameters to be estimated later. We further assume the stationary property. That is, 

C p,i ( h 1 , h 2 ; θ
p,i 

) = 
˜ C p,i 

(
d p,i ( h 

1 
, h 

2 ) ; θ
p,i )

, (4.7) 

where d p, i ( h 
1 , h 2 ) is some dissimilarity indicator between h 1 and h 2 . 

Remark 4.1. The stationarity is a common assumption made to characterize the class of Gaussian random fields (Gaussian

processes) we are considering. Without it, the statistical inference about the underlying probability law would be almost

impossible based on a single realization of the field ( Cressie and Wikle, 2011; Fang et al., 2005 ). Assuming stationarity

means that the probabilistic structure of the random process looks similar in different areas of the experimental region

( Santner et al., 2013 ). However, this is not a strong assumption since the Gaussian random field remains sufficiently flexible

through anisotropic variance function and unknown parameters. 

It is crucial to determine an appropriate form of the dissimilarity function in order for the statistical model to perform

properly. Here, we propose a dissimilarity function that uses different kernels for different paths and time intervals. We first

use δpq defined below to indicate the proximity or similarity between an arbitrary pair of paths p and q : 

δpq = 

# of shared links between path p and path q 

average # of shared links betwen p and all paths q ′ ∈ P 

, (4.8) 

which gives rise to the proximity matrix { δpq } p,q ∈P . 
Remark 4.2. The distance measure δpq encapsulate information about the network structure into the Kriging framework.

There are a number of other choices for the distance measure, e.g., the portion of overlapping sections, and link/path char-

acteristics such as free-flow travel time and capacity. Further study should compare these different measures in terms of

the performance of their respective Kriging predictors. 

Next, we define the dissimilarity (distance) d p, i ( h 
1 , h 2 ) between two path departure rate vectors h 1 and h 2 , pertaining to

path p and time interval i : 

d p,i ( h 
1 
, h 

2 ) = 

(
δpq 

∥∥w 
i ◦ ( h 1 q − h 

2 
q ) 

∥∥2 

2 
: q ∈ P 

)
∈ R 

|P| ∀ p ∈ P, 1 ≤ i ≤ n, (4.9)

where h 1 p − h 2 p 
. = 

(
h 1 p,i − h 2 p,i : i = 1 , . . . , n 

)
∈ R 

n , and the operator ◦ performs component-wise multiplication. The parameter

w 
i ∈ R 

n is defined as 

w 
i = (w 

i 
1 , . . . , w 

i 
n ) where w 

i 
j = 

{
1 if j ≤ i 
0 if j > i 

1 ≤ j ≤ n. (4.10)

Remark 4.3. The similarity indicator δpq accounts for the topological configuration of any two paths in the network and

therefore reflects the potential influences of one another using spatial information. On the other hand, w 
i 
j 
accounts for the

temporal correlation between the departure rates in two distinct time intervals. The way in which we define w 
i 
j 
implies the

assumption that the departure rates at a later time are not considered in defining the dissimilarity at an earlier time. Note

that this assumption is not entirely realistic as the departure flow along certain path can indeed affect drivers departing

at an earlier time along some other path. But here we choose (4.10) to balance between sophistication of the model and

mathematical simplicity as well as dimensionality. Building on this, the dissimilarity function d p, i ( · , · ) assesses the ‘distance’
between two feasible path flows comprehensively in both spatial and temporal dimensions. 

Based on the dissimilarity function, we employ an exponential form for the covariance function (4.7) : ˜ C p,i 
(
d p,i ( h 

1 
, h 

2 ) ; θ
p,i 

)
= σ 2 

p,i exp 

(
− d 

T 
p,i · θp,i 

)
, (4.11) 

where θ
p,i = (θ p,i 

1 
, θ p,i 

2 
, . . . , θ p,i 

|P| ) 
T ∈ R 

|P| , and σ p, i is the variance of the response ˜ �p,i at the sampled data points. 
1 Here and subsequently, p denotes path and i denotes departure time interval, i = 1 , 2 , . . . , n . 
2 Ordinary Kriging, which assumes a constant mean, does not imply a flat surface. This assumption often suffices in handling complex situations in 

practice ( Kleijnen, 2009; Chen et al., 2003 ). 
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4.2. Training and predicting procedures 

We consider a set of training data ( h k : k = 1 , . . . , K) and ( �( h k ) : k = 1 , . . . , K) . We will state how such a set of training

data should be generated, namely the design of experiments later in Section 4.3 . Given these data, we first learn the param-

eters in the covariance function through maximum likelihood estimation (MLE) based on the assumed Gaussian process. Let

θp, i be the parameters in the covariance function, which is to be learned. The MLE of θp, i is given by: 

θ
p,i = argmin 

x 

(
K log σ 2 

p,i (x ) + log | �p,i (x ) | 
)
, (4.12)

where 

σ 2 
p,i (x ) = 

1 

K 

(
φp,i − ˆ μp,i (x ) · 1 

)T (
�p,i (x ) 

)−1 (
φp,i − ˆ μp,i (x ) · 1 

)
(4.13)

ˆ μp,i (x ) = 

1 T 
(
�p,i (x ) 

)−1 

φp,i 

1 T 
(
�p,i (x ) 

)−1 

1 

(4.14)

�p,i (x ) = 

{ 

C p,i ( h j , h k ; x ) 
} 

j,k =1 , ... ,K 
∈ R 

K×K , φp,i = 

(
�p,i ( h 

1 ) , . . . , �p,i ( h 
K ) 

)T 

∈ R 
K , 

and 1 is the K ×1 column vector consisting of one’s. The best linear unbiased predictor (BLUP) from ordinary Kriging yields

the following estimates for a given vector h 0 of path departure rates: 

�p,i ( h 
0 
) ≈ ˆ μp,i ( θ

p,i 
) + c T p,i ·

(
�p,i ( θ

p,i 
) 
)−1 (

φp,i − ˆ μp,i ( θ
p,i 

) · 1 
)

∀ (p, i ) , (4.15)

where c p,i = (C p,i ( h 0 , h 1 ; θ
p,i 

) , . . . , C p,i ( h 0 , h K ; θ
p,i 

)) T , and each C p,i ( h 0 , h 1 ; θ
p,i 

) is given by (4.7) –(4.11) . 

4.3. Experimental design of training dataset 

4.3.1. A space-filling experimental design 

In this section we discuss how certain methodology in experimental design should be applied to generate training data

for our problem. The goal of experimental design is to uniformly sample the input variables from their respective domains.

The uniformity of a design or sampling strategy can be measured by many different criteria including mean square error,

discrepancy and so forth. For our specific problem, we apply a space-filling sampling strategy adapted from Latin Hypercube

Sampling (LHS) ( Tang, 2008; Fang et al., 2005; Santner et al., 2013 ). The advantage of LHS, compared to simple random

sampling or Monte Carlo sampling, is that it has a smaller variance of the sample mean and lower discrepancy, which

means better uniformity in the experimental region ( Fang et al., 2005; McKay et al., 1979 ). 

Our procedure is to systematically generate the training data on a simplex induced by some flow conservation con-

straints, which is aligned with the route-choice DUE framework; see (3.4) . Specifically, given the O-D departure rate vector

R rs = 

(
R 
i 
rs : i = 1 , . . . , n 

)
for each O-D pair (r, s ) ∈ W, we have the following constraints for path-specific departure rates h p :∑ 

p∈P rs 
h p,i = R 

i 
rs ∀ i = 1 , . . . , n, ∀ (r, s ) ∈ W . (4.16)

We see that such constraints are decoupled for different time intervals i and different O-D pairs ( r , s ). Taking advantage

of such a time-independency, we employ the Latin Hypercube Sampling(LHS) method and map the design onto simplex

uniformly, following Fang et al. (2005) ; Santner et al. (2013) and Fang and Wang (1993) . We begin with the following

definition ( Fang et al., 2005 ). 

Definition 4.4. (Latin Hypercube Design (LHD)) A LHD design with M runs and N input variables, denoted by LHS ( M , N ), is

a M ×N matrix. In such a matrix, each column is a random permutation of {1, 2, ���, M }. 

The LHS is a well developed design method based on Latin Hypercube Design (LHD) for uniformly sampling a cubic

design region. Here, we propose an algorithm based on the LHS ( Fang et al., 2005 ) and a mapping method suggested by

Fang and Wang (1993) that converts a unit cube design to a unit simplex design. The following algorithm summarizes the

procedure to generate the training data uniformly within the simplex defined based on (4.16) . 

For networks with multiple O-D pairs and time periods, this algorithm takes advantage of the fact that the traffic de-

mands are independent among different O-D pairs and with respect to time. For a target sample size, the training dataset

are generated by first carrying out Algorithm 1 independently for all O-D pairs ( r, s ) and time interval i , and then grouping

all the generated O-D specific departure rates into one complete vector of path departure rates. 
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Algorithm 1. LHS-based generation of training data for OD-pair ( r , s ) and time interval i . 

 

 

 

 

 

 

 

 

4.3.2. Adaptive sampling of the experimental domain 

The LHS-based algorithm presented above tends to sample the training dataset uniformly from the simplex structure

(4.16) . However, when the response surface is sufficiently irregular such uniform sampling strategy may not be ideal. To

further improve the performance of the training phase we apply an adaptive sampling procedure to iteratively update the

training set until a target error rate is achieved. This will result in a better exploration of the experimental domain especially

in areas where the response surface has low regularity. The procedure is shown in Algorithm 2 . 

Algorithm 2. Iterative update of the training set. 

5. Discussion and application 

The proposed metamodeling framework is applicable to a wide range of DNL models with a variety of link dynamics,

junction models, and path delay models. It underpins a new generation of network performance models that serve as effi-

cient and tractable alternatives to the otherwise exact models, and their reliability can be improved with in-depth analysis of

the covariance functions, parameters, and methods that generate training data ( Li and Sudjianto, 2005 ). The computational
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efficiency of the DNL models resulting from the metamodeling approach based on Kriging, which will be demonstrated in

our numerical studies in Section 6 , could significantly speed up DTA computations for large-scale networks. Moreover, the

corresponding delay operators have closed-form expressions, which is potentially beneficial for DTA modeling, and this sec-

tion will explore these opportunities. Throughout this section, we use � : R 
n ×|P| → R 

n ×|P| to denote the surrogate delay
operator obtained from Kriging. 

5.1. Closed-form expression of the delay operator �

Given a training dataset consisting of K samples, the predictor, expressed in (4.15) , can be written in a concise form as:

�p,i ( h 
0 ) = X p,i + c p,i ( h 

0 ) T · Y p,i (5.17)

∀ p ∈ P, i = 1 , . . . , n, where h 0 is the input path flow vector. Both X p,i ∈ R and Y p,i = (Y p,i 
k 

: k = 1 , . . . , K) ∈ R 
K only depend

on the training data and thus can be treated as constant once the training phase is finished. Moreover, the expression for

c p, i ( h 
0 ) is given by (4.7) –(4.11) : 

c p,i ( h 
0 ) = σ 2 

p,i 

(
exp 

(
− d p,i ( h 

0 
, h 

1 ) T · θ p,i 
)

, . . . , exp 

(
− d p,i ( h 

0 
, h 

K ) T · θp,i 
))

∈ R 
K . (5.18)

Recall that 

d p,i ( h 
0 
, h 

k ) = 

(
δpq 

∥∥w 
i ◦ ( h 0 q − h 

k 
q ) 

∥∥2 

2 
: q ∈ P 

)
∈ R 

|P| k = 1 , . . . , K, (5.19)

and w 
i ∈ R 

n is such that w 
i = (w 

i 
1 
, . . . , w 

i 
n ) where w 

i 
j 
= 1 if j ≤ i and w 

i 
j 
= 0 if j > i . Based on (5.17) –(5.19) , it is easy to derive

the following closed-form expression: 

�p,i ( h 
0 ) = X p,i + σ 2 

p,i 

K ∑ 

k =1 

Y p,i 
k 

exp 

( 

−
∑ 

q ∈P 
δpq θ

p,i 
q 

n ∑ 

j=1 

w 
i 
j 

(
h 
0 
q, j − h 

k 
q, j 

)2 ) 

(5.20)

∀ p ∈ P, i = 1 , . . . , n . Here, h 0 q, j ’s are input variables of the delay operator; X 
p, i , σ p, i , Y 

p,i 

k 
’s, θ p,i 

q ’s and h 
k 
q, j ’s are all treated as

constants in the prediction of path delays. 

5.2. Analytical properties of the surrogate delay operator �

5.2.1. Continuity and smoothness 

The delay operator expressed in (5.20) is not only continuous but also smooth (i.e. infinitely differentiable), since it

involves only elementary summation, multiplication, and exponential operations. Unlike conventional DNL models for which

the discontinuity may fail when spillback occurs (we refer the reader to Szeto (2003) and Han et al. (2016a ) for some

examples), the continuity and smoothness of the proposed surrogate delay operator � will always hold regardless of the

underlying link, junction, or network flow dynamics. The continuity of � can be used to prove the existence of solutions to

DTA problems when the DNL problem is replaced with the approximate surrogate model we have presented so far. 

5.2.2. Differentiability and lipschitz continuity 

We can also easily differentiate the delay operator and obtain its Jacobian matrix as follows. Recall that the surrogate

delay operator is a mapping from the n × |P| -dimensional Euclidean space into itself: 

�( h 0 ) = 

(
�p,i ( h 

0 ) : ∀ (p, i ) 
)
. 

Therefore, individual entries of the Jacobian matrix can be calculated as: 

∂ �p,i 

∂(q, j) 

∣∣∣∣
h 
0 

= −2 σ 2 
p,i δpq θ

p,i 
q w 

i 
j 

K ∑ 

k =1 

Y p,i 
k 

exp 

( 

−
∑ 

ˆ q ∈P 
δp ̂ q θ

p,i 

ˆ q 

n ∑ 

ˆ j =1 

w 
i 
ˆ j 

(
h 
0 

ˆ q , ̂ j 
− h 

k 

ˆ q , ̂ j 

)2 ) 

( h 0 q, j − h 
k 
q, j ) . (5.21)

Due to the finite-dimensional nature of this problem, it can be easily shown that the partial derivatives (5.21) are uniformly

bounded. Therefore the delay operator � is in fact Lipschitz continuous. 

The differentiability and closed-form Jacobian of the delay operator � will have a number of important applications

including, but not limited to, the following. 

• All gradient-based methods can directly benefit from the explicit Jacobian of the delay operator. These include single-

level problems (e.g. dynamic user equilibrium, dynamic system optimal), and bi-level problems (e.g. dynamic mathemat-

ical program with equilibrium constraints) that can be reduced to single-level problems (e.g. via the KKT conditions). All

these problems can be directly solved by commercial solvers such as GAMS (e.g. see Friesz et al., 2007 ). 

• The explicit differentiation of the delay operator also facilitates sensitivity analysis of dynamic network traffic equilibria

( Chung et al., 2014 ), and benefits network design heuristics based on it. For example, the heuristic network design based
on sensitivity analysis from Suwansirikul et al. (1987) can be adapted to treat dynamic traffic networks. 
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5.2.3. Generalized monotonicity 

Generalized monotonicity, such as monotonicity, strong monotonicity, pseudo monotonicity, quasi monotonicity, and dual 

solvability, is necessary for the convergence of computational algorithms for DUE problems (see Han et al., 2015 for an

overview of these notions). However, conventional DNL models do not allow insights regarding generalized monotonicity for

general networks due to the lack of analytical representations of the delay operators. With the closed-form expression of

the delay operator �, it is possible to conduct rigorous analysis regarding monotonicity. 

We take (strong) monotonicity as an example. An operator � is said to be (strongly) monotone if 

〈 �( h 1 ) − �( h 2 ) , h 1 − h 
2 〉 ≥ 0 (≥ λ‖ h 

1 − h 
2 ‖ 

2 for some λ > 0) ∀ h 
1 
, h 

2 ∈ �. (5.22) 

Although it is not likely that the operator � satisfies these conditions in its entire domain, its closed-form expression allows

us to identify regions where it is (strongly) monotone. For instance, thanks to the closed-form representation of � the left

hand side of (5.22) can be also expressed in closed form, making it sufficient to solve an algebraic equation in order to

identify the (strongly) monotone region of �. In addition, due to the closed-form expression and differentiability, methods

based on first-order expansion of � can be similarly applied to draw insights into its generalized monotonicity. 

The closed-form expressions of � and its Jacobian allow us to inspect, in a quantitative way, a wide spectrum of con-

vergence conditions proposed in the literature ( Han and Lo, 2002; Konnov, 2003; Long et al., 2013 ), and to devise tailored

numerical schemes that take advantage of such information, which is unavailable through conventional DNL models. This

approach holds much promise in tackling the convergence issue that have stymied researchers for decades, and will be

pursued in a future study as it is out of the scope of this paper. 

6. Numerical studies 

The goal of this section is to numerically evaluate the performance of the surrogate DNL models obtained from the

proposed metamodeling approach with Kriging, in terms of approximation accuracy and computational efficiency. For the

conventional and exact DNL model used in generating both the training and testing datasets, we employ the discretized

Lighthill–Whitham–Richards network model equivalent to the link transmission model ( Yperman et al., 2005 ). The detailed

DNL procedure based on this model is presented in Han et al. (2016a ). The link transmission model is among the most

efficient computational algorithms for propagating flow and congestion on a network level, and captures realistic phenomena

such as physical queues and spillback. 

For the training phase of Kriging, we adapt the well-known DACE Matlab toolbox ( Lophaven et al., 2002 ) by incorporating

the customized distance and correlation functions defined in (4.9) and (4.11) . The maximum likelihood estimation (4.12) is

performed with an iterative pattern search algorithm. Moreover, the generation of the training data follows Algorithms 1 and

2 presented in Section 4.3 . 

6.1. Test scenarios 

We test the performance of the Kriging approach based on five network scenarios: 

(1) The 19-arc network with 4 OD pairs and 24 paths, which is studied in Nguyen (1984) and Nie and Zhang (2010) and

hereafter referred to as the Nguyen network; and 

(2) The Sioux Falls network ( Friesz et al., 2011; Suwansirikul et al., 1987 ) with 60, 119, 201, and 501 paths, respectively. 

The Nguyen network and the Sioux Falls network are shown in Fig. 2 . The time horizon of all DNL models is [0, 5] (in

h). Two values n = 5 and n = 10 are considered where n is the number of time intervals used in the construction of the

finite-dimensional delay operator � (see Section 3.2 ). 

In order to evaluate the accuracy of the delay operators � obtained from Kriging, we compare their outputs (i.e. predicted

path travel times) with those from the exact delay operator �. Specifically, the prediction error corresponding to one test

data h 0 is calculated as 

Prediction error = 

‖ �( h 0 ) − �( h 0 ) ‖ 2 

‖ �( h 0 ) ‖ 2 

× 100% . (6.23) 

Moreover, the speed-up index for one instance of prediction is defined as the ratio between the computational time of the

exact delay operator � and the prediction time of � (not including training time). The larger the speed-up index, the more

computationally efficient our surrogate model is compared to the conventional DNL. For each test scenario, 100 testing data

are randomly generated, over which the prediction errors and speed-up indices are averaged. 

6.2. Test results for the kriging-based delay operator 

The performance of the Kriging-based delay operators � is summarized in Table 2 where, for each test scenario, a smaller

and a larger dataset are used to train �. It can be seen that the accuracy of the approximate DNL models increases at some

expense of decreased efficiency when the training dataset becomes larger. Such a trend is further illustrated in Fig. 3 for the

Nguyen network and Fig. 4 for the Sioux Falls network (with 119 paths), where results based on a wider range of training
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Fig. 2. The test networks. 

Fig. 3. Trends of the prediction errors and training time as the number of training data increases for the Nguyen network. 
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Table 2 

Performances of the surrogate delay operator �. The prediction errors and speed-up indices are averaged over 100 randomly sampled testing data. 

n = 5 Nguyen network Sioux Falls Sioux falls Sioux falls Sioux falls 

(24 paths) (60 paths) (119 paths) (201 paths) (501 paths) 

# of training data 100 200 100 200 100 200 100 300 100 300 

Training time 30 s 121 s 270 s 1053 s 30 min 151 min 99 min 873 min 32 h 221 h 

Prediction error 6.7% 5.3% 2.5% 1.9% 3.3% 2.7% 1.9% 1.7% 3.2% 2.8% 

Speed-up index 181 89 143 77 455 159 21 21 91 31 

n = 10 Nguyen network Sioux falls Sioux falls Sioux falls Sioux falls 

(24 paths) (60 paths) (119 paths) (201 paths) (501 paths) 

# of training data 120 240 120 240 120 240 150 200 200 300 

Training time 91 s 351 s 777 s 3116 s 105 min 386 min 458 min 752 min 449 h 497 h 

Prediction error 7.1% 5.6% 2.9% 2.2% 3.3% 2.9% 2.2% 2.2% 3.3% 2.9% 

Speed-up index 38 20 42 19 132 66 12 9 13 9 

Fig. 4. Trends of the prediction errors and training time as the number of training data increases for the Sioux Falls network. 

 

 

 

 

 

 

 

 

 

dataset sizes are available. It is also obvious from Table 2 and Figs. 3 –4 that the surrogate DNL models yield accurate

prediction of the path travel times, with errors typically below 8% for the Nguyen network and, interestingly, below 3.4% for

the Sioux Falls networks. The lower errors for larger networks is likely to be caused by the selection of training data; that

is, Algorithms 1 and 2 sample the design domain more exhaustively for the Sioux Falls networks than the Nguyen network.

One can adaptively reduce the training datasets for the Sioux Falls networks to gain more computational efficiency in the

training phase without significantly increasing the errors. This highlights the robustness of the Kriging method with flexible

trade-offs between model accuracy and complexity. 

In addition, the surrogate DNL models yield significant computational savings compared to the exact DNL models, with

speed-ups ranging from 9 to 455 (times faster). This far superior computational efficiency is achieved at only very minor

prediction error, showing a very effective trade-off between model accuracy and complexity. In addition, the results for
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Fig. 5. The Nguyen network: Comparison of exact and predicted path delays on example paths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the Sioux Falls network with 501 paths also shows that the proposed metamodeling methodology is capable of handling

large-scale and high-dimensional problems. 

In Figs. 5 and 6 we show, for some example paths, the exact and predicted path delays on the Nguyen network and the

Sioux Falls network, respectively. It is clearly seen that the surrogate DNL models approximate the exact ones quite well,

with errors similar to those shown in Tables 2 . The situations on the other paths are similar and are not shown exhaustively

here. 

6.3. Comparison with neural networks 

A comparison of metamodeling performances between Kriging and Neural Networks (NN) is conducted. The test scenario

involves the Nguyen network and n = 5 . Both Kriging and the NN are fitted using the same set of training datasets, with

sizes ranging from 100 to 880. Afterwards, their prediction performances are compared using the same test data consisting

of 100 randomly generated samples. The NN has 2 layers and is trained with the Levenberg–Marquardt algorithm. We use

Matlab’s R2016 Neural Networks toolbox for this task. 

Fig. 7 (left) shows the average prediction error provided by each method on the testing dataset. The bars denote two

standard deviations from the prediction means. The overlap of the prediction intervals indicates that differences in pre-

diction error between the two methods are not statistically significant. Fig. 7 (right) shows the training times to build the

surrogate models. Again, no significant different is found between the computational efforts required as a function of the

size of the training dataset. 

Based on the preliminary comparison on this test case, we can see that for about the same computational training

time, Kriging and NN meta-models perform similarly. As mentioned before, Kriging has two main advantages which justify

its use: it provides closed form, analytic expressions for the predictions and it is an exact interpolator, which means that

predictions at the trained data points are not smoothed but are identical to the observed (i.e., the prediction error for the

training dataset is zero). These are not properties shared by Neural Networks. 
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Fig. 6. Sioux Falls network with 501 paths: Comparison of exact and predicted path delays on example paths. 

Fig. 7. Comparison of Kriging and NN on the Nguyen network. The vertical bars denote two standard deviations from the prediction means. 

 

 

 

 

 

7. Conclusion and future research 

This paper proposes a novel metamodeling approach based on statistical learning for a class of dynamic network loading

models. The goal is to provide a class of surrogate DNL models that approximate the exact ones, with considerable benefits

including closed-form representation, improved regularity, and superior computational efficiency, at the expense of minor 

yet controllable approximation errors. In order to achieve this, we employ the Kriging method to interpret and approximate

the inherent input-output mechanism of the delay operator. This method considers the observed functional relationship as

a realization of a Gaussian Random field, and the Kriging estimate corresponds to the posterior predictive density of the

function approximation. 
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Within the framework of metamodeling, we first articulate the precise definition of delay operators in continuous time,

and then define its discrete counterpart in finite-dimensional spaces. Then, we implement the statistical learning methodol-

ogy by utilizing the network structure and path information to perform Kriging on a non-conventional space with network-

specific distance metric. Training of the model parameters is formulated as a maximum likelihood estimation based on the

Gaussian process, and yields a closed-form predictor. Following this, a way to systematically generate training data based on

Latin Hypercube Design is proposed, and complemented by a second one based on heuristic and adaptive approach. 

This metamodeling approach produces, as its output, a family of surrogate DNL models that approximate the exact ones.

Compared to the delay operators obtained from conventional DNL procedures, the proposed ones enjoy much improved

analytical properties that benefit DTA analysis and computation significantly; these include closed-form expression, (Lips-

chitz) continuity, differentiability, and closed-form expression for the Jacobians. These advantages are partially discussed in

this paper, and further applications are proposed in future studies. On the computational side, it is shown in our numer-

ical study that the surrogate DNL models have far superior computational efficiencies, and are 9 to 333 times faster than

conventional ones. Moreover, the approximation errors remain low (less than 8%) throughout our numerical experiment.

However, we note that there are many other advanced experimental design methods that could potentially further improve

the performance of our metamodels. These include the penalty method for solving the likelihood maximization problem

( Li and Sudjianto, 2005 ), and dimension reduction techniques based on the clustering of the paths. 

It is widely known that the occurrence of vehicle spillback may cause the delay operator to be discontinuous ( Han et al.,

2016a; Szeto, 2003 ). Such a fact does not render our metamodel ineffective as Kriging is a highly flexible metamodeling

method in that it can fit functions/mappings with different degrees of smoothness (including discontinuities). However,

the discontinuity in the delay operator could affect the error estimate of the Kriging method. Further study is needed to

distinguish the performance of Kriging by different regularities of the delay operator; i.e. the spillback vs. non-spillback

cases. 

The proposed statistical metamodeling approach opens the pathway to a family of new network performance models

with tractability barely seen in existing ones. Research is underway to explore its impact on dynamic traffic assignment by

(1) incorporating the surrogate DNL models into the computation of DUE and DSO problems; (2) devising gradient-based

methods for solving bi-level problems on large-scale networks; and (3) testing the possibility of incorporating real-world

measurements into the delay operator through statistical learning of similar kind. 
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