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Abstract

We provide the first information theoretic tight analysis for inference of latent
community structure given a sparse graph along with high dimensional node
covariates, correlated with the same latent communities. Our work bridges recent
theoretical breakthroughs in the detection of latent community structure without
nodes covariates and a large body of empirical work using diverse heuristics
for combining node covariates with graphs for inference. The tightness of our
analysis implies in particular, the information theoretical necessity of combining
the different sources of information. Our analysis holds for networks of large
degrees as well as for a Gaussian version of the model.

1 Introduction

Data clustering is a widely used primitive in exploratory data analysis and summarization. These
methods discover clusters or partitions that are assumed to reflect a latent partitioning of the data with
semantic significance. In a machine learning pipeline, results of such a clustering may then be used
for downstream supervised tasks, such as feature engineering, privacy-preserving classification or
fair allocation [CMS11, KGB™ 12, CDPF*17].

At risk of over-simplification, there are two settings that are popular in literature. In graph clustering,
the dataset of n objects is represented as a symmetric similarity matrix A = (A;;)1<i j<n. For
instance, A can be binary, where A;; = 1 (or 0) denotes that the two objects i, j are similar (or not).
It is, then, natural to interpret A as the adjacency matrix of a graph. This can be carried over to
non-binary settings by considering weighted graphs. On the other hand, in more traditional (binary)
classification problems, the n objects are represented as p-dimensional feature or covariate vectors
b1,ba,- -, by,. This feature representation can be the input for a clustering method such as k-means,
or instead used to construct a similarity matrix A, which in turn is used for clustering or partitioning.
These two representations are often taken to be mutually exclusive and, in fact, interchangeable.
Indeed, just as feature representations can be used to construct similarity matrices, popular spectral
methods [NJW02, VLO7] implicitly construct a low-dimensional feature representation from the
similarity matrices.

This paper is motivated by scenarios where the graph, or similarity, representation A € R"*", and
the feature representation B = [by,bo,...,b,] € RP*™ provide independent, or complementary,
information on the latent clustering of the n objects. (Technically, we will assume that A and B
are conditionally independent given the node labels.) We argue that in fact in almost all practical
graph clustering problems, feature representations provide complementary information of the latent
clustering. This is indeed the case in many social and biological networks, see e.g. [NC16] and
references within.

As an example, consider the ‘political blogs’ dataset [AG05]. This is a directed network of political
blogs during the 2004 US presidential election, with a link between two blogs if one referred to the
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other. It is possible to just use the graph structure in order to identify political communities (as was
done in [AGO05]). Note however that much more data is available. For example we may consider an
alternative feature representation of the blogs, wherein each blog is converted to a ‘bag-of words’
vector of its content. This gives a quite different, and complementary representation of blogs that
plausibly reflects their political leaning. A number of approaches can be used for the simple task of
predicting leaning from the graph information (or feature information) individually. However, given
access to both sources, it is challenging to combine them in a principled fashion.

In this context, we introduce a simple statistical model of complementary graph and high-dimensional
covariate data that share latent cluster structure. This model is an intuitive combination of two
well-studied models in machine learning and statistics: the stochastic block model and the spiked
covariance model [Abb17, HLL83, JL04]. We focus on the task of uncovering this latent structure
and make the following contributions:

Sharp thresholds: We establish a sharp information-theoretic threshold for detecting the latent
structure in this model. This threshold is based on non-rigorous, but powerful, techniques
from statistical physics.

Rigorous validation: We consider a certain ‘Gaussian’ limit of the statistical model, which is of
independent interest. In this limit, we rigorously establish the correct information-theoretic
threshold using novel Gaussian comparison inequalities. We further show convergence to
the Gaussian limit predictions as the density of the graph diverges.

Algorithm: We provide a simple, iterative algorithm for inference based on the belief propagation
heuristic. For data generated from the model, we empirically demonstrate that the the
algorithm achieves the conjectured information-theoretic threshold.

The rest of the paper is organized as follows. The model and results are presented in Section 2.
Further related work is discussed in Section 3. The prediction of the threshold from statistical physics
techniques is presented in 4, along with the algorithm. While all proofs are presented in the appendix,
we provide an overview of the proofs of our rigorous results in Section 5. Finally, we numerically
validate the prediction in Section 6.

2 Model and main results

We will focus on the simple case where the n objects form two latent clusters of approximately equal
size, labeled + and —. Let v € {£1}" be the vector encoding this partitioning. Then, the observed
data is a pair of matrices (A, B), where A“ is the adjacency matrix of the graph G and B € RP*™
is the matrix of covariate information. Each column b;, 7« < n of matrix B contains the covariate
information about vertex i. We use the following probabilistic model: conditional on v, and a latent
vector u ~ N(0,1,/p):
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where Z; € RP has independent standard normal entries. It is convenient to parametrize the edge
probabilities by the average degree d and the normalized degree separation A:

Cn=d+MWd, com=d—\d. 3)

Here d, A, 1 are parameters of the model which, for the sake of simplicity, we assume to be fixed and
known. In other words, two objects 7, j in the same cluster or community are slightly more likely to
be connected than for objects 4, j’ in different clusters. Similarly, according to (2), they have slightly
positively correlated feature vectors b;, b, while objects 7, j” in different clusters have negatively
correlated covariates b;, b;.

Note that this model is a combination of two observation models that have been extensively studied:
the stochastic block model and the spiked covariance model. The stochastic block model has its
roots in sociology literature [HLL83] and has witnessed a resurgence of interest from the computer



science and statistics community since the work of Decelle et al. [DKMZ11]. This work focused
on the sparse setting where the graph as O(n) edges and conjectured, using the non-rigorous cavity
method, the following phase transition phenomenon. This was later established rigorously in a series
of papers [MNS15, MNS13, Mas14].

Theorem 1 ([MNS15, MNS13, Mas14]). Suppose d > 1 is fixed. The graph G is distinguishable
with high probability from an Erdds-Renyi random graph with average degree d if and only if A > 1.
Moreover; if X > 1, there exists a polynomial-time computable estimate © = D(A%) € {£1}" of the
cluster assignment satisfying, almost surely:

lim inf [0, )]
n— o0 n

> £(\) > 0. 4)

In other words, given the graph G, it is possible to non-trivially estimate the latent clustering v if, and
only if, A > 1.

The covariate model (2) was proposed by Johnstone and Lu [JL04] and has been extensively studied
in statistics and random matrix theory. The weak recovery threshold was characterized by a number
of authors, including Baik et al [BBAPO5], Paul [Pau07] and Onatski et al [OMH*13].

Theorem 2 ([BBAPO05, Pau07, OMH™ 13]). Let vy be the principal eigenvector of BT B, where

Dy is normalized so that |0y ||* = n. Suppose that p,n — oo with p/n — 1/ € (0,00). Then
liminf,, o [(01,0)|/n > 0 if and only if p > /7. Moreover, if i1 < /¥, no such estimator exists.

In other words, this theorem shows that it is possible to estimate v solely from the covariates using,
in fact, a spectral method if, and only if u > /7.

Our first result is the following prediction that establishes the analogous threshold prediction that
smoothly interpolates between Theorems 1 and 2.

Claim 3 (Cavity prediction). Given A% Basin Egs.(1), (2), and assume that n,p — oo withp/n —
1/~ € (0,00). Then there exists an estimator v = v(A®, B) € {+1}" so that liminf |(v, v)|/n is
bounded away from 0 if and only if
2

Ao 5)
v
We emphasize here that this claim is not rigorous; we obtain this prediction via the cavity method.
The cavity method is a powerful technique from the statistical physics of mean field models [MMO09].
Our instantiation of the cavity method is outlined in Section 4, along with Appendix B and D (see
supplement). The cavity method is remarkably successful and a number of its predictions have been
made rigorous [MMO09, Tal10]. Consequently, we view Claim 3 as a conjecture, with strong positive
evidence. Theorems 1 and 2 confirm the cavity prediction rigorously in the corner cases, in which
either A or u vanishes, using intricate tools from random matrix theory and sparse random graphs.

Our main result confirms rigorously Claim 3 in the limit of large degrees.

Theorem 4. Suppose v is uniformly distributed in {+1}" and we observe A% Basin (1), (2).
Consider the limit p,n — oo with p/n — 1/~. Then, for some (X, 1) > 0 independent of d,

(0(A, B), v)|

lim inf sup > e(A, ) —o4(1) A2+ p2/y > 1, (6)
n— 00 o(-) n
(A%, B
lim sup sup [(o(A%, B), v)]| = 04(1) A2+ p2/y < 1 (7
n—oo () n

Here the limits hold in probability, the supremum is over estimators v : (A%, B) — 9(AY, B) € R",
with ||[0(AY, B) || = v/n. Here 04(1) indicates a term independent of n which tends to zero as
d — oo.

In order to establish this result, we consider a modification of the original model in (1), (2), which is
of independent interest. Suppose, conditional on v € {£1} and the latent vector u we observe (4, B)
as follows:

Ay~ {N()\vivj/m 1/n) ifi<j ®)

N(Avvj/n,2/n) ifi=j,
B ~ N(\/ﬁviua/\/ﬁ7 1/]?) (9)



This model differs from (1), in that the graph observation A is replaced by the observation A
which is equal to Avv" /n, corrupted by Gaussian noise. This model generalizes so called ‘rank-one
deformations’ of random matrices [Péc06, KY13, BGN11], as well as the Z5 synchronization model
[ABBS14, Cucl5].

Our main motivation for introducing the Gaussian observation model is that it captures the large-
degree behavior of the original graph model. The next result formalizes this intuition: its proof is an
immediate generalization of the Lindeberg interpolation method of [DAMI16].

Theorem 5. Suppose v € {£1}" is uniformly random, and u is independent. We denote by
I(v; A%, B) the mutual information of the latent random variables v and the observable data A% B.
For all \, p: we have that:

1
dlim lim sup f|I(v;AG, B) - I(v;A,B)| =0, (10)
n

— X0 n—oo

o 1dI(v; A%, B) 1 e _
dhjgoh,?l_,solip EW_ZMMSE(U’A ,B)| =0, (11

where MMSE(v; A9, B) = n=2E{|lovT — E{vv"|A%, B}||%}.

For the Gaussian observation model (8), (9) we can establish a precise weak recovery threshold,
which is the main technical novelty of this paper.

Theorem 6. Suppose v is uniformly distributed in {+1}" and we observe A, B as in (8), (9).
Consider the limit p,n — oo with p/n — 1/~.

1. If \2 + u? /vy < 1, then for any estimator v : (A, B) — (A, B), with ||[0(A, B)||2 = v/n,
we have lim sup,,_, . [(V,v)|/n = 0.

2. If A% + u?/y > 1, let 9(A, B) be normalized so that ||0(A, B)||2 = \/n, and proportional
the maximum eigenvector of the matrix M (€,), where

_ 20 1 S
M<§)_A+/\272§B B+§

and &, = arg mingsg Amax (M (€)). Then, liminf,_, . |(U,v)|/n > 0 in probability.

L, (12)

Theorem 4 is proved by using this threshold result, in conjunction with the universality Theorem 5.

3 Related work

The need to incorporate node information in graph clustering has been long recognized. To address
the problem, diverse clustering methods have been introduced— e.g. those based on generative
models [NC16, Hof03, ZVA10, YICZ09, KL12, LM12, XKW*12, HL.14, YML13], heuristic model
free approaches [BVR17, ZLZ 16, GVB12, ZCY09, NAJ03, GFRS13, DV12, CZY11, SMJZ12,
SZLP16], Bayesian methods [CB10, BC11] etc. [BCMM15] surveys other clustering methods for
graphs with node and edge attributes. Semisupervised graph clustering [Peel2, EM12, ZMZ14],
where labels are available for a few vertices are also somewhat related to our line of enquiry. The
literature in this domain is quite vast and extremely diffuse, and thus we do not attempt to provide an
exhaustive survey of all related attempts in this direction.

In terms of rigorous results, [AJC14, LMX15] introduced and analyzed a model with informative
edges, but they make the strong and unrealistic requirement that the label of individual edges and
each of their endpoints are uncorrelated and are only able to prove one side of their conjectured
threshold. The papers [BVR17, ZLZ" 16] —among others— rigorously analyze specific heuristics
for clustering and provide some guarantees that ensure consistency. However, these results are not
optimal. Moreover, it is possible that they only hold in the regime where using either the node
covariates or the graph suffices for inference.

Several theoretical works [KMS16, MX16] analyze the performance of local algorithms in the semi-
supervised setting, i.e., where the true labels are given for a small fraction of nodes. In particular
[KMS16] establishes that for the two community sparse stochastic block model, correlated recovery
is impossible given any vanishing proportion of nodes. Note that this is in stark contrast to Theorem 4



(and the Claim for the sparse graph model) above, which posits that given high dimensional covariate
information actually shifts the information theoretic threshold for detection and weak recovery. The
analysis in [KMS16, MX16] is also local in nature, while our algorithms and their analysis go well
beyond the diameter of the graph.

4 Belief propagation: algorithm and cavity prediction

Recall the model (1), (2), where we are given the data (AG, B) and our task is to infer the latent
community labels v. From a Bayesian perspective, a principled approach computes posterior expecta-
tion with respect to the conditional distribution P(v, u| A%, B) = P(v,u, A%, B)/P(A%, B). This
is, however, not computationally tractable because it requires to marginalize over v € {+1, —1}"
and v € RP. At this point, it becomes necessary to choose an approximate inference procedure,
such as variational inference or mean field approximations [WJT08]. In Bayes inference problem
on locally-tree like graphs, belief propagation is optimal among local algorithms (see for instance
[DM15] for an explanation of why this is the case).

The algorithm proceeds by computing, in an iterative fashion vertex messages nt, m! fori € [n],
a € [p] and edge messages n}_, ; for all pairs (i, j) that are connected in the graph G. For a vertex i

of G, we denote its neighborhood in G by 9i. Starting from an initialization (0, m* ), —_; o, we
update the messages in the following linear fashion:

t+1 _ [RogT oty o1 A ¢ __)\\/g ‘ 13
nZ—U \/;( m)l ’)/777 + \/& Z Mk—i n Z N> (13)

kEdi\j ke[n]
t+1 _ [HopT ¢ Kot A t d t
. —\f(Bm»m + =Y i Y ks (14)
v v Vd (3, " rem
mt+1 — \/ﬁB t_ﬂmt—l. (15)
Y
Here, and below, we will use 1 = (7});cn), m" = (m})acpp) to denote the vectors of vertex

messages. After running the algorithm for some number of iterations t,,,x, We return, as an estimate,
the sign of the vertex messages nf‘“a", ie.

(A%, B) = sg(n;™>). (16)

K2

These update equations have a number of intuitive features. First, in the case that i = 0, i.e. we have
no covariate information, the edge messages become:

A \Wd

== ) i = —— D ks (17)
\/ak: = n

€0i\j ke[n]

which corresponds closely to the spectral power method on the nonbacktracking walk matrix of G
[KMM™13]. Conversely, when A = 0, the updates equations on m?, n correspond closely to the
usual power iteration to compute singular vectors of B.

We obtain this algorithm from belief propagation using two approximations. First, we linearize the
belief propagation update equations around a certain ‘zero information’ fixed point. Second, we use
an ‘approximate message passing’ version of the belief propagation updates which results in the
addition of the memory terms in Eqgs. (13), (14), (15). The details of these approximations are quite
standard and deferred to Appendix D. For a heuristic discussion, we refer the interested reader to the
tutorials [Mon12, TKGM 14] (for the Gaussian approximation) and the papers [DKMZ11, KMM*13]
(for the linearization procedure).

As with belief propagation, the behavior of this iterative algorithm, in the limit p,n — oo can be
tracked using a distributional recursion called density evolution.

Definition 1 (Density evolution). Let (7, U) and (7], V') be independent random vectors such that
U ~ N(0,1), V ~ Uniform({£1}), m, 7 have finite variance. Further assume that (7], V) 4

(=7, =V) and (m,U) 4 (=m, =U) (where 4 denotes equality in distribution).



We then define new random pairs (7', U") and (7, V'), where U’ ~ N(0,1), V' ~ Uniform({£1}),
m

and (77,V) 4 (=7, =V), (m,U) 4 (—m, —U), via the following distributional equation

w|,, L BV + (WE(T*Y) ¢, (18)
PR k_
Ny = N [;%L + ;ﬁﬂ} — \WdE{n}
1% _ Ko 2 1/2
+EEUm) + (gE{m ) G (19)

Here we use the notation X|y = Z to mean that the conditional distribution of X given'Y is the
"Iy _ is determined

by the last equation using the symmetry property. Further ;|1 and | — denote ind;pendent random
variables distributed (respectively) as |y —+ and |y ~_. Finally k ~ Poiss(d/2 + \Vd/2), k_ ~
Poiss(d/2 — A\/d/2), (1 ~ N(0,1) and & ~ N(0, 1) are mutually independent and independent

from the previous random variables.

The density evolution map, denoted by DE, is defined as the mapping from the law of (7, V,m,U)
to the law of (7', V', m',U"). With a slight abuse of notation, we will omit V,U, V', U’, whose
distribution is left unchanged and write

(', m') = DE(7,m). (20)
The following claim is the core of the cavity prediction. It states that the density evolution recursion

faithfully describes the distribution of the iterates 7%, m?.

Claim 7. Let (7°, V), (m°, U) be random vectors satisfying the conditions of definition 1. Define
the density evolution sequence (7', m') = DE'(70,m°), i.e. the result of iteratively applying the
mapping DE t times.

Consider the linear message passing algorithm of Egs. (13) to (15), with the following initializa-
tion. We set (m )re[p] conditionally independent given u, with conditional a’lstrlbutlon mr|u =
mP|y— fu Analogously, nz,nlﬁj are condttlonally independent given v with 19|, 4 7y =,
772_>j|v 70y =u, Fmallyn = niﬁj =m, ' =0foralli,j,r.

Then, as n,p — oo with p/n — 1/, the following holds for uniformly random indices i € [n] and
a € [p):

(m*,U) 2D
(7", V)- (22)

(Mg tar/D)
(ni> i)

d
=
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=

The following simple lemma shows the instability of the density evolution recursion.

Lemma 8 Under the density evolution mapping, we obtain the random variables (77, m') =
DE(7}, m’ Let m and m’ denote the vector of the first two moments of (7, V,m,U) and (77, V', m/,U")
defined as follows:

m = (E{V7}, E{Um}, E{7°}, E{m?}), (23)
and similarly for m’. Then, for |m||2 — 0, we have

N op/y 00
g 0 0 0
0 0 N pu/ly
0 0 pu 0

m’ =

m + O(|m|*) 24)

In particular, the linearized map m — m’ at m = 0 has spectral radius larger than one if and only if
AN+ )y > 1



The interpretation of the cavity prediction and the instability lemma is as follows. If we choose an
initialization (7°, V'), (m°, U) with 1°, m® positively correlated with V and U, then this correlation
increases exponentially over time if and only if A?> + 2/ > 1°. In other words, a small initial
correlation is amplified.

While we do not have an initialization that is positively correlated with the true labels, a random
initialization 7°, m° has a random correlation with v, of order 1//n. If A? + p?/y > 1, this
correlation is amplified over iterations, yielding a nontrivial reconstruction of v. On the other hand, if
A? 4+ u?/~ < 1 then this correlation is expected to remain small, indicating that the algorithm does
not yield a useful estimate.

5 Proof overview

As mentioned above, a key step of our analysis is provided by Theorem 6, which establishes a weak
recovery threshold for the Gaussian observation model of Egs. (8), (9).

The proof proceeds in two steps: first, we prove that, for A% + ;2 /v < 1 it is impossible to distinguish
between data A, B generated according to this model, and data generated according to the null model
= A = 0. Denoting by IP, , the law of data A, B, this is proved via a standard second moment
argument. Namely, we bound the chi square distance uniformly in n, p

dPy .\ 2
X2 (P s Poo) = Eoyo £ -1<C, (25)
d]P)QO

and then bound the total variation distance by the chi-squared distance ||Py , — Pooll7v < 1 —
(X*(Px,.sPoo) + 1)~1. This in turn implies that no test can distinguish between the two hypotheses
with probability approaching one as n, p — co. The chi-squared bound also allows to show that weak
recovery is impossible in the same regime.

In order to prove that weak recovery is possible for A2 + y?/y > 1, we consider the following
optimization problem over z € R", y € RP:

maximize (z, Ax) + b.(z, By), (26)
subjectto ||z|l2 = |lylla=1. (27)

where b, = i—‘; Denoting solution of this problem by (Z, ), we output the (soft) label estimates
v = y/nZ. This definition turns out to be equivalent to the spectral algorithm in the statement of
Theorem 6, and is therefore efficiently computable.

This optimization problem undergoes a phase transition exactly at the weak recovery threshold
A? + u? /v = 1, as stated below.

Lemma 9. Denote by T = T,, ,,(A, B) the value of the optimization problem (26).

(i) If)\2 + ”72 < 1, then, almost surely

: b2y
lim Ty p(A B) =241+ =L +b,. (28)
n.p—o0 4

(ii) If X\, > 0, and \? + % > 1 then there exists 6 = 6(\, ) > 0 such that, almost surely

2
lim Tp,(A,B) =21/1+ 5 b 460 ). (29)
n,p—oo
(iii) Further, define
Tnp(0; A, B) = sup {(x, Az) + b.(z, By)|.

lel=llyll=1,|(z,0)|<év/n

>Notice that both the messages variance E(n?) and covariance with the ground truth E(nV') increase, but the
normalized correlation (correlation divided by standard deviation) increases.
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Figure 1: (Left) Empirical probability of rejecting the null (lighter is higher) using BP test. (Middle)
Mean overlap | (2B, v) /n| and (Right) mean covariate overlap |(@BP, u)| attained by BP estimate.

Then for each 6 > 0, there exists 6>0 sufficiently small, such that, almost surely

lm T, (5 A, B) < 24/14+ 2 14, 40 (30)
n’z}gloo n,p b ) 4 * 2 .

The first two points imply that T, ,,(A, B) provide a statistic to distinguish between Py o and Py ,
with probability of error that vanishes as n, p — oo if A + 2/ > 1. The third point (in conjunction
with the second one) guarantees that the maximizer Z is positively correlated with v, and hence
implies weak recovery.

In fact, we prove a stronger result that provides an asymptotic expression for the value 7), ,(A, B)
for all \, 1. We obtain the above phase-transition result by specializing the resulting formula in the
two regimes A2 + p?/y < 1 and A\? + pu2 /v > 1. We prove this asymptotic formula by Gaussian
process comparison, using Sudakov-Fernique inequality. Namely, we compare the Gaussian process
appearing in the optimization problem of Eq. (26) with the following ones:

A _ _

1(,y) = e v0) @) + bey [ vo) s wo) + (.G (D)
A 5 1, — I 1, —~

Xo(z,y) = E@",Uo) + §<$’ Waz) + b, ﬁ<x,vo><y,uo> + §<y, Wyy), (32)

where g, g, are isotropic Gaussian vectors, with suitably chosen variances, and Wx, Wy are GOE
matrices, again with properly chosen variances. We prove that max, , X3 (x,y) yields an upper
bound on T, (A, B), and max, , X2(z,y) yields a lower bound on the same quantity.

Note that maximizing the first process X} (z,y) essentially reduces to solving a separable problem
over the coordinates of = and y and hence to an explicit expression. On the other hand, maximizing
the second process leads (after decoupling the term (x, vg){y, ug)) to two separate problems, one
for the vector z, and the other for y. Each of the two problems reduce to finding the maximum
eigenvector of a rank-one deformation of a GOE matrix, a problem for which we can leverage on
significant amount of information from random matrix theory. The resulting upper and lower bound
coincide asymptotically.

As is often the case with Gaussian comparison arguments, the proof is remarkably compact, and
somewhat surprising (it is unclear a priori that the two bounds should coincide asymptotically). While
upper bounds by processes of the type of X} (z,y) are quite common in random matrix theory, we
think that the lower bound by X5 (z,y) (which is crucial for proving our main theorem) is novel and
might have interesting generalizations.



6 Experiments

We demonstrate the efficacy of the full belief propagation algorithm, restated below:

B2
nf+1:\/723q1m _’Y(Z —t )tanh +ank;*yup Zf(nltcapn)7
ke(n]

q€lp] aclp] ¢ keoi
(33)
B2
UARES \[ > Bumi - S ( > )tanh + > i) = > Fkien),
q€lp] q€lp] ¢ kedi\j ke(n]
(34)
mit = i +1 75" B, tanh(yl) — po; (Z B2 sech’( n]) mi! (35)
7 jeln] j€ln]
-1
= 14— "= Z BZsech®(nl) | . (36)
Here the function f(; p) and the parameters p, p,, are defined as:
1 cosh(z + p)
)= brog (XML, 7
F(zp) 5 8 cosh(z — p) 67
p = tanh ™' (\/Vd), (38)
AVd
pn = tanh™! ( vd ) (39)
n—d

We refer the reader to Appendix D for a derivation of the algorithm. As demonstrated in Appendix D,
the BP algorithm in Section 4 is obtained by linearizing the above in 7.

In our experiments, we perform 100 Monte Carlo runs of the following process:

1. Sample A®, B from Py, with n = 800,p = 1000,d = 5.
1

2. Run BP algorithm for T' = 50 iterations with random initialization 19,7, *, m%, m ! ~iq
N(0,0.01). yielding vertex and covariate iterates n° € R, m’" € R,

3. Reject the null hypothesis if HnT H2 5» else accept the null.

4. Return estimates 927 = sgn(n!), Ut = mT/ HmTH2

Figure 1 (left) shows empirical probabilities of rejecting the null for (A, i) € [0, 1] x [0, \/7]. The
next two plots display the mean overlap (25, v) /n| and (@B”, u)/ ||u|| achieved by the BP estimates
(lighter is higher overlap). Below the theoretical curve (red) of A\? + 2 /v = 1, the null hypothesis is
accepted and the estimates show negligible correlation with the truth. These results are in excellent
agreement with our theory. Importantly, while our rigorous result holds only in the limit of diverging
d, the simulations show agreement already for d = 5. This lends further credence to the cavity
prediction Claim 3.
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