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Abstract

Most current state-of-the-art connectome reconstruction
pipelines have two major steps: initial pixel-based segmen-
tation with affinity prediction and watershed transform, and
refined segmentation by merging over-segmented regions.
These methods rely only on local context and are typically
agnostic to the underlying biology. Since a few merge er-
rors can lead to several incorrectly merged neuronal pro-
cesses, these algorithms are currently tuned towards over-
segmentation producing an overburden of costly proofread-
ing. We propose a third step for connectomics reconstruc-
tion pipelines to refine an over-segmentation using both lo-
cal and global context with an emphasis on adhering to the
underlying biology. We first extract a graph from an in-
put segmentation where nodes correspond to segment la-
bels and edges indicate potential split errors in the over-
segmentation. To increase throughput and allow for large-
scale reconstruction, we employ biologically inspired geo-
metric constraints based on neuron morphology to reduce
the number of nodes and edges. Next, two neural networks
learn these neuronal shapes to aid the graph construction
process further. Lastly, we reformulate the region merg-
ing problem as a graph partitioning one to leverage global
context. We demonstrate the performance of our approach
on four real-world connectomics datasets with an average
variation of information improvement of 21.3%.

1. Introduction
By studying connectomes–wiring diagrams extracted

from the brain containing every neuron and the synapses be-
tween them–neuroscientists hope to understand better cer-
tain neurological diseases, generate more faithful models of
the brain, and advance artificial intelligence [12, 15]. To
this end, neuroscientists produce high-resolution images of
brain tissue with electron microscopes where every synapse,
mitochondrion, and cell boundary is visible [19]. Since
these datasets now exceed a petabyte in size, manual tracing
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of neurons is infeasible and automatic segmentation tech-
niques are required.

Current state-of-the-art automatic 3D reconstruction ap-
proaches typically use pixel-based convolutional neural net-
works (CNNs) and watershed transforms to generate an
initial over-segmentation [24, 37, 42], followed by region
merging steps [11, 21, 25, 30, 35]. Flood-filling networks
combine these two steps into one by gradually expanding
segments from a seed voxel [18]. However, all of these
above strategies make decisions using only the local con-
text and do not consider the global ramifications to individ-
ual merges. Therefore, a small number of compounding
merge errors can create an under-segmentation with sev-
eral neuronal processes labeled as one neuron. Since cor-
recting such merge errors is computationally challenging,
current methods typically favor over-segmentation where a
neuronal process is segmented into multiple labels. Unfor-
tunately proofreading these split errors, while easier, still
remains onerous [33].

We propose a third step for connectomics reconstruction
workflows to refine these over-segmentations and close the
gap between automatic and manual segmentation. We re-
formulate the region merging problem as a graph partition-
ing one to leverage global context during the agglomeration
process. Thus far the computational burden associated with
global optimization strategies remains their biggest draw-
back despite some research into parallelizing the computa-
tion [2]. Performing the graph partitioning step after an ex-
isting agglomeration technique allows us to capture larger
shape context when making decisions. Furthermore, the
amount of computation significantly decreases as the input
method correctly segments a large number of supervoxels.
The remaining split errors typically occur in places where
a neuronal process becomes quite thin or the corresponding
image data noisy—difficult locations to reconstruct using
only the local context from images and affinities.

When constructing our graph, we employ geometric con-
straints guided by the underlying biological morphology
to reduce the number of nodes and edges. Due to their
biological nature, over-segmented regions should be con-
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Figure 1. Most current state-of-the-art segmentation pipelines consist of affinity generation with watershed transform and region merging
(left). We follow these existing methods by constructing a graph derived from their segmentation by enforcing geometric constraints
inspired by the underlying biology and learning typical neuronal morphologies (center). Our graph formulation allows us to partition the
graph with a global optimization strategy to produce an improved segmentation (right).

nected with specific geometric and topological properties in
mind. For example, among other biological considerations,
L-shaped junctions and arrow-shaped junctions are rare in
neuronal structures. We can both use and learn these shape
priors to produce a more accurate region merging strategy.

Our region merging framework consists of several steps
to first construct a graph from an input segmentation and
then to partition the graph using a global optimization strat-
egy (Fig. 1). We first identify segments that are clearly
over-segmented based on our knowledge of the span of neu-
ronal processes and use a trained CNN to merge these seg-
ments with larger ones nearby. Remaining segments receive
a node in our graph. We then generate skeletons for each
segment to produce a simple yet expressive representation
of the underlying shape of a given segment (Fig. 1, cen-
ter). From these skeletons, we identify potential segments
to merge, which in turn receive a corresponding edge in the
graph. Another CNN classifier learns the local structural
shapes of neurons and produces probabilities that two seg-
ments belong to the same neuron. Finally, we employ a
graph optimization algorithm to partition the graph into an
improved reconstruction (Fig. 1, right). Our graph formula-
tion creates a formal description of the problem enabling a
diverse range of optimization strategies in the future.

This work makes three main contributions: first, a
method to extract biologically-inspired graphs from an
input segmentation using hand-designed geometric con-
straints and machine-learned neuronal morphologies; sec-
ond, a top-down framework to correct split errors in an input
segmentation; last, a reduction of variation of information
on state-of-the-art inputs by 21.3% on four datasets.

2. Related Work

Initial Pixel-based Segmentation Methods. There are two
main approaches to segmenting electron microscopy im-

ages at the voxel-level. In the first, 2D or 3D convolu-
tional neural networks are trained to produce an interme-
diate representation such as boundary [7, 16, 21, 37] or
affinity maps [24, 39]. Advancements in architecture de-
signs (e.g., 3D U-Net [6]), model averaging techniques [40],
segmentation-specific loss functions (e.g., MALIS [4]), and
data augmentation strategies [25] have greatly improved the
results for these intermediate representations. Afterwards,
clustering techniques such as watershed [8, 10, 42] or graph
partition [1] transform these intermediate representations
into a segmentation. In the second approach, neural net-
works [18, 28] are trained recursively to grow the current
estimate of a binary segmentation mask, which is further
extended to handle multiple neurons [29]. Despite impres-
sive segmentation accuracies, the computational burden of
this approach remains a limitation as the network needs to
infer each segment separately.

Agglomeration Strategies. Agglomeration methods are
parameterized by the similarity metric between adjacent
segments and merging strategy. For the similarity metric,
Lee et al. [25] and Funke et al. [11] rely solely on the pre-
dicted affinities and define the metric as the mean affin-
ity between segments. Classification-based methods gen-
erate the probability to merge two segments from hand-
crafted [17, 21, 30, 34, 42] or learned features [3]. Niko
et al. [23] use the information about post- and pre-synaptic
connections to refine the multicut algorithm and prevent ax-
ons and dendrites from merging. For the merging strat-
egy, most methods use variants of hierarchical agglomer-
ation [21, 30, 34, 35, 42] to greedily merge a pair of re-
gions at a time. Other methods formulate agglomeration
as reinforcement learning [17] and superpixel partitioning
problems [2]. More recently, flood-filling networks [18] use
different seeding strategies with the same network from the



Figure 2. The above neuronal process is incorrectly segmented into
several labels. Five of the segments are very small indicating that
they must merge with a nearby larger segment. Frequently these
small segments are artifacts of noisy affinities around locations
where a process becomes quite thin.

initial segmentation step to agglomerate regions.
Error-correction Methods. Although significant advance-
ments in the above methods produce impressive results,
there are still errors in the segmentations. These errors are
corrected either manually with human proofreading [14, 22]
or automatically [43]. Since correcting errors is a compu-
tationally expensive task, various research explores how to
use machine learning to improve human efficiency [13], au-
tomatic detection of error regions [36, 43], or reduce the
search space via skeletonization [9]. However, these meth-
ods rely only on local context for decision-making and do
not enforce biological constraints on their corrections.

3. Biologically-Constrained Graphs
Most current graph-based approaches assign a node to

every unique label in the volume with edges between seg-
ments that have at least one neighboring pair of voxels.
However, as the image volumes grow in size, the number
of edges under such an approach increases dramatically. We
employ hand-crafted geometric constraints based on the un-
derlying biology to reduce the number of nodes and edges.
Furthermore, we learn neuron morphologies with two neu-
ral networks to aid in the graph generation process.

3.1. Node Generation

Current pipelines that agglomerate regions based on the
affinity predictions alone produce a large number of tiny
segments (e.g., 86.8% of the segments produced by the wa-
terz algorithm on a representative dataset contain fewer than
9, 600 voxels corresponding to a volume of approximately
0.01 µm3). Since these strategies use only the mean affin-
ity between two supervoxels, noise in the affinity generation
process produces these small artifacts. In particular, these
segments frequently occur in regions where a neuronal pro-
cess becomes quite thin leading to low affinities between
voxels (Fig. 2). We can leverage additional information
about the underlying biology to identify and correct these
segments: namely that neurons are quite large and should

Figure 3. Both networks take three channels as input correspond-
ing to if a particular voxel belongs to segment one, segment two, or
either segment. This particular example is input to the edge CNN
to determine if two segments belong to the same neuronal process.

not contain few voxels when segmented. Figure 2 shows
an example neuronal process over-segmented into six dis-
tinct components, five of which are relatively small. Each
of these segments had sufficiently low mean affinities with
its neighbors.

We identify these small segments and merge them be-
fore graph construction to reduce the number of nodes (and
edges). We flag any segment whose volume is less than tvol
cubic microns as small and create a list of nearby large seg-
ments as potential merge candidates. The simplest method
to absorb these segments is to agglomerate them with a non-
flagged neighbor with the highest mean affinity. However,
these segments arise because of inaccuracies in the affini-
ties. We employ two methods to merge these nodes based
on the geometry of the small segments themselves. Some
agglomeration strategies produce several “singleton” seg-
ments that are completely contained within one image slice.
We link these singletons together across several slices by
considering the Intersection over Union when superimpos-
ing two adjacent slices. Second, we train a neural network
to learn if two segments, one small and the other large, be-
long to the same neuron.

Looking at the local shape around two segments can pro-
vide significant additional information over just the raw im-
age data or affinities alone. Often split errors occur at re-
gions with either image artifacts or noisy affinities; how-
ever, the segment shapes provide additional information.
We extract a small cube with diameter dnode nanometers
around each small–large segment pair. We train a feed-
forward 3D CNN to learn the neuron morphology and pre-
dict which pairs belong to the same neuron. The CNN takes
as input three channels corresponding to if the voxel be-
longs to the small segment, the large segment, or either seg-
ment (Fig. 3). Our network contains three VGG-style con-
volution blocks [5] and two fully connected layers before a
final sigmoid activation. The network parameters are fur-
ther discussed in Sec. 4.2. Each small segment is merged
with exactly one nearby large segment to prevent a merge



Figure 4. Two typical instances of split errors in connectomics seg-
mentations. In the top image, the neuronal process is split multiple
times at some of its thinnest locations. On the bottom, multiple
spines are split from the dendrite.

error from connecting two distinct neurons completely.

3.2. Edge Generation

Each remaining segment in the volume has a large num-
ber of adjacent neighbors (28 per segment averaged over
three gigavoxel datasets). We use a geometric prior on
the split errors to reduce the number of considered errors
greatly. Most split errors follow one of two modalities: ei-
ther a neuronal process is split into two or more parts across
its primary direction (Fig. 4, top) or several spines are bro-
ken off a dendrite (Fig. 4, bottom).

We generate skeletons for each segment to create a sim-
ple yet expressive representation of a volume’s underlying
shape. For example, this approach allows us to quickly
identify all of the dendritic spines in a segment with min-
imal computation (Fig. 5). Some previous research focuses
on the development and use of skeletons in the biomedi-
cal and connectomics domains for quicker analysis [38, 41]
and error correction [9]. Topological thinning and medial
axis transforms receive a significant amount of attention
in the computer graphics and volume processing commu-
nities [26, 32].

We first downsample each segment using a max-pooling
procedure to a resolution of (Xres, Yres, Zres) nanometers
before generating the skeletons. This process does not cause
significant detail loss since the finest morphological fea-
tures of neurons are on the order of 100 nm [36]. In fact,
the produced skeletons more closely follow the underly-
ing geometry since the boundaries of these segments are
quite noisy. We use a sequential topological thinning algo-
rithm [31] to gradually erode the boundary voxels for each
segment until only a skeleton remains. Figure 5 shows two
example segments with their corresponding skeletons. The
larger spheres in the skeleton correspond to endpoints. We
generate a vector at each endpoint to indicate the direction
of our skeleton before endpoint termination.

Figure 5. Two example skeletons produced by a topological thin-
ning algorithm [31]. The larger spheres represent endpoints and
the vectors protruding from them show the direction of the skele-
ton at endpoint termination.

When generating the edges for our graph, we exploit the
aforementioned split error modalities which follow from the
underlying biological structure of neurons. To identify these
potential split error locations, we use the directional vectors
at each skeleton endpoint. For each endpoint ve in a given
segment Se we consider all voxels vn within a defined ra-
dius of tedge nanometers. If that voxel belongs to another
segment Sn that is locally adjacent to Se and the vector be-
tween ve and vn is within θmax degrees of the directional
vector leaving the skeleton endpoint, nodes Se and Sn re-
ceive an edge in the graph. θmax is set to approximately
18.5◦; this value follows from the imprecision of the end-
point vector generation strategy.

3.3. Edge Weights

To generate the merge probabilities between two seg-
ments we use a CNN similar to the one discussed in Sec-
tion 3.1. We extract a small cube of diameter dedge nanome-
ters around each potential merge location found in the edge
generation step. Again, we train a new feed-forward 3D
CNN with three channels encoding whether a voxel belongs
to each segment or either (Fig. 3). The network follows the
same general architecture with three VGG-style convolution
layers followed by two fully connected layers and a final
sigmoid activation.

We next convert these probabilities into edge weights
with the following weighting scheme [20]:

we = log
pe

1− pe
+ log

1− β

β
(1)

where pe is the corresponding merge probability and β
is a tunable parameter that encourages over- or under-
segmentation. Note high probabilities transform into pos-
itive weights. This follows from our optimization strategy



Table 1. We show results on four testing datasets, two from the PNI volumes, one from the Kasthuri volume, and one on the SNEMI3D
challenge dataset. We use four PNI volumes for training and three for validation. We further finetune our neural networks on separate
training data for both the Kasthuri and SNEMI3D volumes.

Dataset Brain Region Sample Resolution Dimensions Segmentation
PNI Primary Visual Cortex 3.6× 3.6× 40 nm3 2048× 2048× 256 Zwatershed and Mean Agg [25]

Kasthuri Somatosensory Cortex 6× 6× 30 nm3 1335× 1809× 338 Waterz [11]
SNEMI3D Somatosensory Cortex 3× 3× 30 nm3 1024× 1024× 100 Waterz [11]

(discussed below) which minimizes an objective function
and therefore should collapse all positive weighted edges.

3.4. Graph Optimization

Our graph formulation enables us to apply a diverse
range of graph-based global optimization strategies. Here,
we reformulate the partitioning problem as a multicut one.
There are two primary benefits to this minimization strat-
egy: first, the final number of segments depends on the input
and is not predetermined; second, the solution is globally
consistent (i.e., a boundary remains only if the two corre-
sponding nodes belong to different segments) [20].

We use the greedy-additive edge contraction method to
produce a feasible solution to the multicut problem [20].
Following their example, we use the more general lifted
multicut formulation where all non-adjacent pairs of nodes
receive a “lifted” edge and a corresponding edge weight in-
dicating the long-range probability that two nodes belong
to the same neuron. Ideally, these weights perfectly reflect
the probability that two nodes belong to the same neuron
by considering all possible paths between the nodes in the
graph. Unfortunately, such computation is expensive, so
we create a lower estimate of the probability by finding the
shortest path on the negative log-likelihood graph (i.e., each
original edge weight we is now − logwe) and setting the
probability equal to e raised to the distance [20].

4. Experiments
We discuss the datasets used for evaluation and the vari-

ous parameters from the previous section.

4.1. Datasets

We evaluate our methods using four datasets with differ-
ent resolutions, acquisition techniques, and input segmen-
tation strategies (Table 3.2). The PNI volumes were given
to us by the authors of [43] and contain nine separate vol-
umes imaged by a serial section transmission electron mi-
croscope (ssTEM). We use four of these volumes to train
our networks and tune parameters, three for validation, and
the last two for testing. These image volumes have an initial
segmentation produced by a variant of a 3D U-Net followed
by zwatershed and mean agglomeration [25].

The Kasthuri dataset is freely available online1 and rep-
1https://neurodata.io/data/kasthuri15/

resents a region of the neocortex imaged by a scanning elec-
tron microscope (SEM). We divide this volume into training
and testing blocks. We initially use a 3D U-Net to produce
affinities and agglomerate with the waterz algorithm [11].

Although our proposed method is designed primarily for
large-scale connectomics datasets, we evaluate our method
on the popular SNEMI3D challenge dataset.2 Our initial
segmentation strategy is the same for both the SNEMI3D
and Kasthuri datasets.

4.2. Parameter Configuration

Here we provide the parameters and CNN architectures
discussed in Section 3. The supplemental material provides
additional experiments that explore each of these parame-
ters and network architectures in further detail.
Node Generation. To determine a suitable value for tvol—
the threshold to receive a node in the graph—we consider
the edge generation step which requires expressive skele-
tons. Skeletons generated through gradual boundary ero-
sion [31] tend to reduce small segments to a singular point
removing all relevant shape information. After exploring
various threshold values on four training datasets we set
tvol = 0.010 36 µm3.
Skeletonization Method. To evaluate various skeleton
generation approaches we create and publish a skeleton
benchmark dataset.3 We evaluate three different skele-
ton approaches with varying parameters on this benchmark
dataset [26, 31, 38]. Downsampling the data to 80 nanome-
ters in each dimension followed by a topological thinning
algorithm [31] produces the best results.
Edge Generation. During edge generation, we want to
minimize the total number of edges while maintaining a
high recall on the edges corresponding to split errors. After
considering various thresholds, we find that tedge = 500 nm
guarantees both of these attributes. When transforming our
probabilities into edge weights, we use β = 0.95 to reduce
the number of false merges further.
CNN Training. Of the nine PNI datasets, we use four for
training and three for validation. We experimented with var-
ious network architectures and input cube sizes. Our node
network receives a cube with dnode = 800 nm which is then
sampled into a voxel grid of size (60, 60, 20). Our edge

2http://brainiac2.mit.edu/SNEMI3D/home
3http://rhoana.org/skeletonbenchmark



Table 2. Our proposed method reduces the total variation of information by 20.9%, 28.7%, 15.6%, and 19.8% on four testing datasets.
The variation of information split decreases significantly, achieving a maximum reduction of 45.5% on the second PNI testing dataset.

Dataset

PNI Test One
PNI Test Two
Kasthuri Test

SNEMI3D

Total VI
Baseline Proposed Decrease

0.491 0.388 -20.9%
0.416 0.297 -28.7%
0.965 0.815 -15.6%
0.807 0.647 -19.8%

VI Split
Baseline Proposed

0.418 0.273
0.368 0.200
0.894 0.681
0.571 0.438

VI Merge
Baseline Proposed

0.073 0.115
0.049 0.097
0.071 0.134
0.236 0.209

Figure 6. Here we show three success (left) and two failure (right) cases for our proposed methods. On the left, we see two dendrites with
eight spines each correctly merged. Correcting these types of splits errors is particularly essential for extracting the wiring diagram since
synaptic connections occur on the spines. In between these examples, we show a typical neuronal process initially split at numerous thin
locations. Circled on the top right is an incorrectly merged spine to the dendrite. We correctly connect five spines but we accidentally
merge two spines to the same location once. Below that is an example where a merge error in the input segmentation causes an error.

network receives a cube with dedge = 1200 nm which is
similarly sampled into a voxel grid of size (52, 52, 18)

We train each network on the PNI data for 2,000 epochs.
There are 20,000 examples per epoch with an equal rep-
resentation of ones that should and should not merge. We
employ extensive data augmentation by randomly rotating
the input around the z-axis and reflecting over the xy-plane.
For the Kasthuri and SNEMI3D data, we finetune the pre-
trained network for 500 epochs.

4.3. Error Metrics

We evaluate the performance of the different methods
using the split variation of information (VI) [27]. The split
and merge variation of information scores quantify over-
and under-segmentation respectively using the conditional
entropy. The sum of the two entropies gives the total varia-
tion of information. For our CNNs, a true positive indicates
a corrected split error and a false positive a merge error in-
troduction.

5. Results
We provide quantitative and qualitative analysis of our

method and ablation studies comparing the effectiveness of
each component.

5.1. Benchmark Comparison

Table 2 shows the total variation of information improve-
ment of our method over our input segmentations on four
test datasets. We reduce the total variation of information on
the two PNI, Kasthuri, and SNEMI3D datasets by 20.9%,
28.7%, 15.6%, and 19.8% respectively. Our VI split scores
decrease by 34.5%, 45.5%, 23.8%, and 23.3% on the four
datasets. Our proposed method only merges segments to-
gether and does not divide any into multiple components,
and thus our VI merge scores can only increase. However,
our input segmentations are very over-segmented and have
a small VI merge score at the start. Our algorithm increases
the VI merges (i.e., it makes some wrong merge decisions)
but the overall decrease in VI split overcomes the slight in-



Figure 7. One success (left) and one failure (right) of our proposed biologically-constrained edge generation strategy. In the left instance,
the broken spine has a skeleton endpoint with a vector directed at the main process. In the right example, two spines are split from the
dendrite but merged together in the input segmentation. The skeleton traverses near the broken location without producing an endpoint.

creases in VI merge. On the SNEMI3D dataset, we generate
multiple baselines and proposed segmentations by varying
the merging threshold in the waterz algorithm. We show the
results on the best baseline compared to the best-corrected
segmentation, and thus the VI merge can decrease for this
dataset.

Figure 6 shows five examples from our proposed
method, three correct (left) and two failures (right). Here,
we see two example dendrites with eight spines each cor-
rectly reconnected to the neuronal process. Fixing these
types of split errors is crucial for extracting the wiring di-
agram from the brain: electrical signal from neighboring
cells is propagated onwards through post-synaptic densities
located on these spines. Between these two dendrites, we
show a typical neuronal process split into multiple segments
at locations where the process becomes quite thin. Our edge
generation step quickly identifies these locations as poten-
tial split errors, and our CNN predicts that the neuronal pro-
cess is continuing and not terminating. On the top right, we
show an example dendrite where we correctly merge five
spines. However, in one location (circled) we accidentally
merge one additional spine causing a merge error. Below
that, we show an error caused by a merge error in the input
segmentation. The purple neuronal process is incorrectly
merged at one location with a perpendicular traversing pro-
cess (circled). We merge other segments with the perpen-
dicular process causing an increase in VI merge.

5.2. Empirical Ablation Studies

Here, we elaborate on the effectiveness of each compo-
nent of our method on three of the datasets and compare
against relevant baselines.
Node Generation. Table 3 summarizes the success of our
node generation strategy in terms of correctly merging small
segments to larger ones from the same process. We compare
our results against the following simple baseline: how many
small labels are correctly merged if they receive the same
label as the adjacent large segment with which it shares
the highest mean affinity. Our method significantly outper-
forms the baseline on the PNI datasets. The baseline per-
forms poorly as expected since the input segmentation ag-

Table 3. Our proposed node generation strategy that merges small
segments into nearby larger ones outperforms the baseline strat-
egy. In our best instance, we correctly merge 444 small segments
while only incorrect merging 75.

Dataset Baseline Proposed
PNI Test One 305 / 521 (36.9%) 686 / 169 (80.2%)
PNI Test Two 185 / 281 (39.7%) 444 / 75 (85.5%)
Kasthuri Test 4,514 / 4,090 (52.5%) 6,623 / 2,020 (76.6%)

glomeration strategy initially opted not to merge these small
segments based on the affinities alone. In each case, we cor-
rectly merge between 76 and 85% of small segments. The
waterz agglomeration strategy produces many more small
segments than the mean agglomeration method. Interest-
ingly, the baseline is much higher for this strategy, indicat-
ing that a simple post-processing method of merging small
segments based on a thresholded affinity might be justified.

Edge Generation. There are two main components to edge
generation: skeletonization and location of potential split
errors. We created a skeleton benchmark dataset for con-
nectomics segmentations and labeled the endpoints for 500
ground truth segments. The utilized skeletonization ap-
proach has a precision of 94.7% and a recall of 86.7% for
an overall F-score of 90.5% on the benchmark dataset.

Figure 7 shows some qualitative examples of where our
method succeeds (left) and fails (right). Our method cor-
rectly establishes edges whenever one of the neuronal pro-
cesses has a skeleton endpoint and directional vector in the
vicinity of the error (left). In this particular example, the
broken spine has an endpoint vector pointing directly at the
corresponding dendrite. On the right, we see a failure where
two spines are connected to one another causing the skele-
ton to have no endpoints at the break.

Table 4 provides the quantitative results for our edge
generation method. The simple baseline strategy is to use
the adjacency graph from the segmentation. That is, two
nodes receive an edge if the corresponding segments have a
pair of neighboring voxels. We notice that the adjacency
graph creates a large number of edges between neuronal
processes that should not merge. In contrast, our proposed
method reduces the graph size by around 60% on each of



Table 4. Our edge generation strategy reduces the number of edges
in the graph by around 60% on each of the three datasets. Impres-
sively 80% of the true split errors remain after the edge pruning
operations.

Dataset Baseline Proposed Edge Recall
PNI Test One 528 / 25,619 417 / 10,074 79.0% / 39.3%
PNI Test Two 460 / 30,388 370 / 11,869 80.4% / 39.1%
Kasthuri Test 1,193 / 43,951 936 / 18,168 78.5% / 41.3%

Figure 8. The receiver operating characteristic (ROC) curve for
our learned edge features for three test datasets.

Table 5. Using a global graph optimization strategy prevents seg-
ments from merging incorrectly over a traditional greedy ap-
proach. Our average decrease in VI merge over the baseline is
15.1% with a maximum decrease of 23.6%.

Dataset Baseline Proposed Decrease
PNI Test One 0.127 0.115 -9.4%
PNI Test Two 0.127 0.097 -23.6%
Kasthuri Test 0.153 0.134 -12.4%

the three datasets. Similarly, our recall of true split errors is
around 80% on each dataset.

We provide the results of our edge CNN in Figure 8.
Overall our network performs well on each of our datasets
with accuracies of 96.4%, 97.2%, and 93.4% on the PNI
and Kasthuri datasets respectively.

Graph Partitioning. Lastly, we quantify the benefits to us-
ing a global graph partitioning strategy over a standard ag-
glomeration technique. As a baseline, we merge regions to-
gether using only the local context from our CNN classifier.
To create a fair comparison with our proposed method, we
merge all segments whose predicted merge scores exceed
95% (a corollary to the chosen β value). Table 5 shows
the improvement in variation of information merge over a
greedy agglomeration approach. The VI merge score de-
creases by 15.1% on average when using a global optimiza-
tion strategy.

5.3. Computational Performance

All performance experiments ran on an Intel Core i7-
6800K CPU 3.40 GHz with a Titan X Pascal GPU. All
code is written in Python and is freely available4. We
use the Keras deep learning library for our neural net-
works with Theano backend and cuDNN 7 acceleration
for CUDA 8.0. Table 6 shows the running time for each
step of our proposed method on the PNI Test Two dataset
(2048× 2048× 256). Our method achieves a throughput of
1.66 megavoxels per second.

Table 6. Running times on a gigavoxel dataset.
Step Running Time

Node Feature Extraction 73 seconds
Node CNN 208 seconds

Skeleton Generation 34 seconds
Edge Feature Extraction 208 seconds

Edge CNN 109 seconds
Lifted Multicut 13 seconds

Total 10.75 minutes

6. Conclusions
We propose a third step for connectomics reconstruction

workflows to refine over-segmentations produced by typical
state-of-the-art reconstruction pipelines. Our method uses
both local and global context to improve on the input seg-
mentation using a global graph optimization strategy. For
local context, we employ geometric constraints based on the
underlying biology and learn typical neuron morphologies.
Performing the graph optimization after initial segmenta-
tion allows us to capture larger shape context when mak-
ing decisions. We improve on state-of-the-art segmentation
methods on four different datasets, reducing the variation of
information by 21.3% on average.

Our graph formulation provides a formal description of
the problem and enables a wide range of optimization strate-
gies in the future. Our current implementation makes use
of the lifted multicut formulation. However, our method
can easily be extended to a wide range of other graph parti-
tioning strategies. For example, with progress in automatic
identification of neuron type (e.g., excitatory or inhibitory)
we can introduce additional constraints to the global opti-
mizer to prevent different types from merging.
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